FOURTEENTH EDITION

WILLS'S PRACTICE AND PROCEDURE FOR THE QUANTITY SURVEYOR

ALLAN ASHWORTH CATHERINE HIGGS

NILEY Blackwell

Willis's Practice and Procedure for the Quantity Surveyor

Willis's Practice and Procedure for the Quantity Surveyor

Fourteenth Edition

Allan Ashworth University of Salford York, UK

Catherine Higgs University College of Estate Management Reading, UK

WILEY Blackwell

This edition first published 2023 © 2023 John Wiley & Sons Ltd

Edition History John Wiley & Sons, Inc. (13e, 2013)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Allan Ashworth and Catherine Higgs to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/ or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Ashworth, Allan, 1944– author. | Higgs, Catherine, author. Title: Willis's practice and procedure for the quantity surveyor / Allan Ashworth, University of Salford, York, UK, Catherine Higgs, University College of Estate Management, UK. Other titles: Practice and procedure for the quantity surveyor Description: Fourteenth edition. | Chichester, West Sussex, UK ; Hoboken : Wiley-Blackwell, 2023. | Includes index. Identifiers: LCCN 2022056919 (print) | LCCN 2022056920 (ebook) | ISBN 9781119832126 (paperback) | ISBN 9781119832133 (adobe pdf) | ISBN 9781119832140 (epub) Subjects: LCSH: Building–Estimates–Great Britain. Classification: LCC TH435 .W6853 2023 (print) | LCC TH435 (ebook) | DDC 692/.50941–dc23/eng/20221206 LC record available at https://lccn.loc.gov/2022056920

Cover Design: Wiley Cover Image: © Rudy Balasko/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

Contents

Preface

1	The Work of the Quantity Surveyor	1
	Introduction	2
	Characteristics of the construction industry	2
	Construction sectors	3
	Building work	3
	Building engineering services	3
	Civil engineering	4
	Heavy and industrial engineering	4
	Private and contractors quantity surveyors	4
	The quantity surveying profession	5
	The origins of the role	5
	The Royal Institution of Chartered Surveyors (RICS)	5
	Other quantity surveying bodies	6
	The role of the quantity surveyor	6
	Traditional role	6
	Evolved role	8
	Skills, knowledge and understanding	9
	Acting morally and ethically	12
	Quantity surveying education	13
	RICS accreditation	13
	Assessment of professional competence (APC)	14
	Continuing professional development (CPD)	16
	References	16
2	Digital Technologies	19
	Introduction	19
	Construction 4.0	20
	Use of digital technologies within the sector	21
	Building information modelling (BIM)	22
	BIM definition	22
	BIM stages of maturity	22
	BIM as a technology	23

v

xvii

vi Contents

	BIM as a process	24
	BIM strategy	24
	BIM standards	25
	Common Data Environment (CDE)	26
	BIM execution plan (BEP)	26
	Information protocol	26
	BIM use within the industry	27
	BIM adoption	27
	Barriers to implementation	28
	Benefits of BIM	28
	Benefits of BIM to the QS	30
	Digital twins	32
	A continuous digital transformation	33
	References	34
3	Organisations and Management	37
	Introduction	38
	Business structures	38
	Sole trader	38
	Partnership	38
	Limited liability partnerships (LLP)	39
	Limited company	39
	Regulated by the RICS	39
	Staffing	40
	Practice structure	40
	General organisation costs	41
	Corporate responsibilities	42
	Inclusive working environments	43
	Employer's responsibilities	43
	Health and safety	43
	Fire safety	44
	Data protection	44
	Employer's liability insurance	45
	Public liability insurance	45
	Professional indemnity insurance	45
	Marketing	45
	Management systems	46
	Environmental management systems	46
	Quality management systems	46
	Document management systems	46
	Inhouse data sources	47
	Building costs records	47
	Time and cost management	48
	Resource allocation	48
	Individual time management	48
	Staff time records and diaries	48

	Organisational overview and benchmarking	49
]	Developing staff and skills	49
]	Finance and accounts	50
	The accounts	50
	Profit and loss account	50
	Balance sheet	51
	Assets	52
	Liabilities	52
	Capital	52
	Finance	53
	Cashflow statement	53
	Managerial accounting	53
	Annual reports and auditing	54
]	References	54
	The Ouantity Surveyor and the Law	57
]	Introduction	58
-	The quantity surveyor and the client	58
	The OS appointment	58
	Case law relating to OS appointment and payment	58
	Death of the quantity surveyor	60
	Death of the client	60
	Responsibility for appointment	61
1	Agreement for appointment	61
	Responsibility for payment of fees	62
	Amount and method of payment	62
	Limitation of liability	63
	Collateral warranties	63
	Professional indemnity insurance (PII)	63
	Performance bonds	64
	Confidentiality	64
	Complaints and dispute procedures	64
l	Negligence	65
1	Unbefitting professional behaviour	66
	Disciplinary procedures	67
(Other legislation requirements	67
	Contracts of employment	68
	Equality Act 2010	69
	Bribery Act 2010	69
	Modern Slavery Act 2015	70
	Health and Safety at Work Act 1974	70
]	References	70
(Cost Control	71
]	Introduction	71
]	Project cost control	72
]	Project cost control	

Contents **vii**

viii Contents

6

Cost advice	74
Cost reporting	74
New Rules of Measurement (NRM1)	75
Pre-contract estimating methods	75
Functional unit method	76
Floor area (superficial) method	76
Elemental method	77
General considerations	78
Market conditions	78
Design economics	80
Quality factors	80
Engineering services	80
External works	80
Cost planning	80
Additions to the building works estimate	81
Main contractor's costs	81
Design and professional fees	81
Other project costs	82
Risk allowances	82
Inflation	82
Exclusions associated with specialist advice	83
Accuracy of approximate estimates	84
Cost data	84
Cost models	85
BIM and cost estimating	85
Client's cash flow	86
Contractor's cost control	86
Contractor's cash flow	87
The role of lean construction in cost control	87
References	91
Whole Life Costing	93
Introduction	93
Government policy	95
Whole life costing and environmental impact	95
Whole life costing applications	96
Whole life costs	97
NRM3	98
Life cycle costing	98
Levels of life cycle studies	100
Periods of analysis	100
Main factors to consider in WLC and LCC	100
Building life	100
Deterioration and obsolescence in buildings	101
Long life, loose fit and low energy	102
Component life	103

		Contents ix
	Discount rate	103
	Taxation	104
	Calculations	104
	Life cycle worked examples	105
	Sensitivity analysis	106
	Reporting to the client	106
	BIM and LCC	106
	References	107
7	Value Management	109
	Introduction	109
	Background	110
	Terminology	110
	Benefits of value management	111
	Value management and the RIBA plan of work	112
	Key aspects of value management	113
	The job plan	114
	Pre-workshop stage	114
	Scenario	115
	Study team	116
	Information gathering and briefing	116
	Workshop phases	116
	The information phase	117
	Function analysis phase	117
	Creative phase	117
	The evaluation phase	117
	The development phase	118
	The presentation phase	119
	Post-workshop stage	119
	Report	119
	Implementation	121
	Role of the quantity surveyor in the value management workshop	121
	BIM and value management	121
	Function analysis	122
	Function analysis diagramming techniques	124
	Cinema scenario	125
	Supporting the case for value management	126
	Professional development and accreditation	128
	References	128
8	Risk Management	131
	Introduction	132
	Management of risk and the cost management process	132
	To assist in the decision-making process	132
	To assist in the choice of procurement	133
	The application of risk management	133
	-	

x Co	ontents
---------------	---------

	Risk identification	134
	Risk analysis	135
	The risk management workshop – qualitative	136
	Probability/impact tables (a 'semi-quantitative' approach)	136
	Expected monetary value (EMV)	138
	Monte Carlo simulation (quantitative risk analysis)	138
	Risk evaluation	141
	Risk management plan	141
	Appraisal of risk management plan options	143
	Considerations in risk allocation	143
	Willingness of a party to accept risk	144
	Risk monitoring and control	144
	Risk reporting	145
	Response when a risk eventuates	145
	BIM and risk management	145
	References	146
9	Procurement	147
	Introduction	147
	General matters	148
	Consultants or contractors	149
	Competition or negotiation	149
	Measurement or reimbursement	150
	Traditional or alternative methods	150
	Standard forms of contract	150
	Methods of price determination	151
	Measurement contracts	151
	Drawing and specification	152
	Performance specification	152
	Schedule of rates	152
	Bill of quantities	152
	Bill of approximate quantities	152
	Cost-reimbursement contracts	153
	Cost plus percentage	153
	Cost plus fixed fee	153
	Cost plus variable fee	153
	Contractor selection	154
	Sustainable procurement and tendering	156
	Selective competition	157
	Open competition	157
	Negotiated competitive dialogue	157
	Two-stage tendering	158
	Serial tendering	158
	Procurement options	159
	Traditional	159
	Advantages	159
	Disadvantages	159

	Contents	xi
Design and build	160	
Advantages	162	
Disadvantages	162	
Management-based procurement strategies	162	
Management contracting	162	
Advantages	163	
Disadvantages	164	
Design and manage	164	
Construction management	164	
Contract strategy	164	
Project size	165	
Client type	165	
Client procurement needs	165	
Time	165	
Cost	166	
Quality	166	
Accountability	166	
Certainty of project objectives	166	
Market conditions	166	
Partnering	167	
Project partnering (short term)	168	
Strategic partnering (long term)	168	
The partnering process	168	
Advantages and disadvantages of partnering	169	
Alliancing and long-term partnering	170	
The Private Finance Initiative (PFI)	170	
The role of the quantity surveyor	171	
References	171	
10 Contract Documentation	173	
Contract documents	173	
Coordinated project information	175	
Common Arrangement of Work Sections (CAWS)	175	
Technology enabled information exchanges	176	
Form of contract	176	
Articles of agreement	176	
Contract particulars	176	
Conditions of contract	177	
Contract drawings	177	
Descriptive schedules	178	
Contract bills	178	
Purpose of contract bills	178	
Preparation of contract bills	179	
Preliminaries	179	
Measured works	179	
Provisional sums	180	
Schedule of construction risks	180	

xii Contents

	Credits	180
	Dayworks	180
	Annexes	180
	Summary	181
	Form of tender	181
	Contract specification	181
	National Building Specification	181
	Schedules of rates	182
	Master programme	182
	Information release schedule	182
	Discrepancies in documents	182
	BIM and contracts	183
	References	183
11	Preparation of Contract Bills	185
	Appointment of the quantity surveyor	185
	Receipt of drawings	186
	Study of documents	186
	Schedules	187
	Taking-off	188
	Query sheets	188
	Division of taking-off	188
	Methods of measurement	189
	Alterations in taking-off	190
	Standard descriptions	191
	Numbering items	191
	Schedule of basic rates (fluctuations option B)	191
	Schedule of allocation (fluctuations option C)	192
	Completing the contract bills	192
	Computerised bill production	193
	Tendering procedure	193
	Droliminary on quiry	194
	Dispatch of finished hills	194
	Tender queries	195
	Receipt of tenders	196
	Delivery and opening	196
	Reporting of tenders	198
	Examination of priced bill	198
	Correction of errors	199
	Tender decision and reporting	200
	Addendum bills	201
	Preparation of contract bill of quantities	202
	Preparing the contract	202
	E-tendering	203
	Online auctions	203
	References	203

		Contents xiii
12	Cost Management	205
	Introduction	205
	Valuations	206
	Certificates and payments	207
	Accuracy	207
	Timing	208
	Extent of measurement	210
	Preliminaries items	211
	Subcontractors	212
	Named subcontractors	213
	Unfixed materials	213
	Valuing change	215
	Advance payment (JCT 2016, clause 4.7)	215
	Price adjustment	215
	Retention	216
	Liquidated damages	216
	Predetermined stage payments	217
	Previous interim certificates	218
	Valuation forms	218
	Record keeping	218
	Valuation on insolvency	218
	Cost control and reporting	219
	Cash flow	221
	BIM and valuing and managing change	222
	References	222
13	Final Accounts	225
	Introduction	226
	Variations	227
	General procedures	227
	Drawing revisions	227
	Procedure for measurement and evaluation	229
	Oral instructions	229
	Measurement	229
	Grouping of items within the final account	230
	The role of the clerk of works	231
	Pricing variations	231
	Pre-costed variations	231
	The pricing of measured work	232
	Dayworks	233
	Overtime working	235
	Provisional measurements	235
	Provisional sums	236
	Defined work	237
	Undefined work	238
	Loss and expense	238
	Fluctuations	238

xiv Contents

	Option A – contributions, levy and tax	239
	Option B – labour and material cost and tax	239
	Labour	239
	Materials	240
	Option C – formula adjustment	240
	Completing the account	241
	Audit	242
	The tender	243
	Interim payments	243
	Variations	244
	The final account	244
	Liquidated damages	244
	Fees	244
	Timing and resources	244
	References	245
14	Insolvency	247
	Introduction	247
	The role of the quantity surveyor	250
	The role of the liquidator	250
	The law	251
	Creditors	252
	Termination of contract (contractor insolvency)	252
	Provision in the forms of contract	253
	Factors to consider at insolvency	253
	Secure the site	254
	Materials	254
	Plant	254
	Retention	254
	Other matters	254
	Completion of the contract	255
	The employer's loss	256
	Expenditure involved	256
	Termination of contract (employer insolvency)	256
	Insolvency of the quantity surveyor or architect	258
	Performance bonds	258
	References	259
15	Contractual Disputes	261
	Introduction	261
	Why disputes arise	262
	General	262
	Employers	262
	Consultants	263
	Contractors	263
	Subcontractors	263
	Manufacturers and suppliers	263

		Contents	xv
	Litigation	264	
	Alternative dispute resolution	264	
	Adjudication	265	
	Arbitration	266	
	Non-adversarial alternative dispute resolution	268	
	Conciliation	268	
	Mediation	268	
	Project mediation	269	
	Early neutral evaluation	269	
	Mini trial	269	
	Dispute boards	270	
	Independent expert determination	270	
	Choice of dispute resolution	270	
	Expert witness	272	
	Claims	273	
	Contractual claims – extensions of time	274	
	The quantity surveyor	274	
	Contractors	275	
	Example	276	
	References	276	
16	Project Management	279	
	Introduction	279	
	Project management	281	
	Terminology	281	
	Duties of the project manager	282	
	BIM and the project manager	285	
	Responsibilities of the project manager	285	
	Stage 0 – strategic definition	285	
	Client's objectives	285	
	Stage 1 preparation and briefing	286	
	Client's brief	286	
	Contractor involvement	287	
	Design team selection	287	
	Feasibility and viability reports	288	
	Planning and programming	288	
	Stage 2 concept design to stage 4 technical design	289	
	Design process management	289	
	Stage 5 Manufacturing and Construction	290	
	Supervision and control during construction	290	
	Stage 6 handover	290	
	Evaluation and feedback	290	
	References	291	
4 -	Facilities Management	202	
1/	raciuties management	293	
		294	
	Measuring building performance	294	

xvi Contents

	The role of the facilities manager	295
	Outsourcing	296
	Maintenance management	297
	Problems of working in existing buildings	298
	Procurement	299
	Tendering and contractual arrangements	302
	Project contracts	302
	Measured term contracts	302
	Managed contracts	302
	Facilities management contract	302
	Budget and cost control	303
	Setting budgets	303
	Whole life costing	304
	Cost control	304
	Taxation considerations	305
	Benchmarking to improve value	305
	Sustainability	306
	Facilities management and BIM	308
	Education and training for the facilities manager	309
	Facilities management opportunities for the quantity surveyor	309
	References	310
18	Sustainability in the Built Environment	313
	Introduction	313
	Sustainable development	314
	A global perspective	314
	UN sustainability development goals	315
	The construction sector perspective	316
	SDGs: the sector perspective	317
	Legislation	319
	Assessment methods	320
	BREEAM	320
	LEED	321
	Health and well-being certification	321
	CEEQUAL	321
	Net zero	321
	Carbon definitions	322
	Embodied carbon	323
	Operational carbon	323
	Sequestered carbon	324
	Whole life carbon	324
	Circular economy	324
	Measuring embodied carbon emissions drivers	325
	Whole life carbon assessments	325
	Quantity surveying and sustainability	327
	References	328

Index

Preface

This book was first written by Arthur J. Willis, who became very well-known because of this book in particular. Hence, the current description is described as *Willis's Practice and Procedure for the Quantity Surveyor*. I am never quite sure whether the apostrophe is in the correct place since there were three generations of Willis and each at one time or another edited the book.

Looking back over previous editions of this well-known book, it is clear that the world of quantity surveying has evolved and is vastly different today. In 1951, when the book was first published, quantity surveying could be summarised as approximate estimating, bills of quantities, and final accounts. Such changes should not surprise us, since they are common in all professions. Accountants do not just account, nor solicitors just solicit!

Even the name quantity surveying has changed as the profession emphasises different aspects of their work today. Many will argue that this name is out of date and restrictive. Many firms today use a vaguer term of management or construction consultant to attract wider and different commissions. Traditionally, quantity surveyors operated in the United Kingdom and most of the commonwealth since they adopted UK practices. But quantity surveyors have worked extensively, for example, in the Middle East for a long time. More recently many of the household names of some practices have been acquired by international consultancies that have their head offices in Europe and the United States. These obviously recognise the work that they do and the value that they can add to projects.

It was suggested some time ago that if there were no bills (of quantities), then there would be no fees and hence no quantity surveyors. How wrong this prediction was! If anything the profession is now busier than ever across even a fuller range of construction projects. There has always been a distinction between the large and small practices and the services that they could provide. Some small practices, for example, offer bespoke services in a limited but valuable aspect of how quantity surveying can be applied to a range of different problems today.

The introduction of computers and information technology forecasts a similar demise. There is no doubt that these brought about challenging times for quantity surveyors. This technology created a sort of revolution of what quantity surveyors did and how they did it. How to grapple with it and how to get it to work to the best advantage for both themselves and their clients? No one can doubt that much of the routine activities were removed and that the technology has allowed practices to work more efficiently and smarter rather than just working harder. There is a current focus on modern technologies such as building

xviii Preface

information management (BIM) that will have extensive ramifications on the world of quantity surveying. Whether such technology will ever be fully effective is still a matter of conjecture, certainly when considered across the full range and type of construction projects today.

The preface to the ninth edition that was published in 1987 speaks of gradual changes to the profession, describing some of them as far reaching. All of these changes that were envisaged then are considered minor in our world today. Whilst the core skills of analysis and evaluation are the same to those days, their applications are much more far and wide ranging. Practices earn fees in a variety of different ways by being able to adapt their skills and knowledge for a wide range of applications. By the turn of this century a much greater emphasis was already being placed on cost and value management.

The previous edition of this book was published 10 years ago. Vast changes have occurred over these intervening years most notably in the areas of sustainability issues and the wider uses of information technology not only to analyse and evaluate building performance just for today but also to examine the implications and impact on project life cycles in attempting to future-proof design and construction.

> Allan Ashworth University of Salford York, UK Cathy Higgs University College of Estate Management Reading, UK

1

The Work of the Quantity Surveyor

KEY CONCEPTS

- The role of the quantity surveyor (QS)
- The Royal Institution of Chartered Surveyors (RICS)
- Skills, knowledge and behaviours of the QS
 Ethical decision making
- QS education
- Life long learning

LEARNING OUTCOMES

After reading this chapter you should be able to:

- Understand the role of the quantity surveyor
- Understand the role of the RICS
- Appreciate the knowledge, skills, and behaviours of a QS
- Appreciate the need for life long learning to continual enhance knowledge and skills to meet the needs of industry.

1

COMPETENCIES

Competencies covered in this chapter:

• Ethics, Rules of Conduct and professionalism

Introduction

In 1971, the Royal Institution of Chartered Surveyors (RICS) published a report titled *The Future Role of the Quantity Surveyor*, which defined the work of the quantity surveyor as:

"...ensuring that the resources of the construction industry are utilised to the best advantage of society by providing, *inter alia*, the financial management for projects and a cost consultancy service to the client and designer during the whole construction process'.

The report sought to identify the distinctive competencies or skills of the quantity surveyor associated with measurement and valuation in the wider aspects of the construction industry. This provides the basis for the proper cost management of the construction project in the context of forecasting, analysing, planning, controlling and accounting. Many reading this will reflect that this is no longer an adequate description of the work of the quantity surveyor.

Since the report there have been major drivers for change across the construction sector and quantity surveyors now balance the traditional skills of cost expertise with responding to the changing demands in the sector. The needs of clients have changed markedly over the last 50 years. The large regular-procuring clients of the construction industry are increasingly pursuing innovative approaches to the way in which their projects are planned, designed and delivered to facilitate their business strategies. They tend to work more closely with a smaller number of organisations and more closely with their supply chains to maximise value and achieve continuous improvement in performance both of their construction processes and buildings when in use. Advances in digital technologies have had a profound impact on how quantity surveyors operate, their function and the scope and breath of the services they provide. Large practices have responded to the needs of a global market and, over the last decade, there has been an increase in both multidisciplinary and multinational surveying organisations. Quantity surveying practices have diversified in response to government strategies; the most influential being those that address reducing greenhouse gases and improving efficiency within the industry. Pre-2020 these drivers of change were relatively steady, but the global pandemic has accelerated these changes. This chapter seeks both to show how the quantity surveyor role has evolved and the need for continuous enhancement of knowledge and skills.

Characteristics of the construction industry

The total value of the construction new work output in the UK is in the region of 5% of GDP or £116 bn per annum of expenditure (Office for National Statistics 2021). The industry offers direct employment to around two million people and to others in supporting occupations. In addition, many UK firms and practices, including quantity surveyors, have an international perspective through offices overseas or through associations with firms abroad. There has, for example, been an increasing and expanding role of activities on mainland Europe. Approximately 80% of the UK workload is on building projects as

distinct from engineering and infrastructure works. New construction projects account for about 64% of the workload of the industry (2022). The repair and maintenance sector will remain an important component for the foreseeable future as clients place greater emphasis upon the improved long-term management of such major capital assets.

The industry is characterised by the following:

- The physical nature of the product
- The product is normally manufactured on the client's premises, i.e. the construction site
- Many of its projects are one-off designs in the absence of a prototype model
- The traditional arrangement separates design from manufacture
- It produces investment rather than consumer goods
- It is subject to wider swings of activity than most other industries
- Its activities are affected by the vagaries of the weather
- Its processes include a complex mixture of different materials, skills and trades
- Typically, throughout the world, it includes a small number of relatively large construction firms and a very large number of small firms

Construction sectors

Quantity surveying offers a diverse range of employment opportunities, within the construction industry, both within the UK and globally. Quantity surveyors are involved in the following four main areas of work.

Building work

The employment of the quantity surveyor on building projects today is well established. The introduction of new forms of contract and changes in procedures continue to alter the way in which quantity surveyors carry out their duties and responsibilities. They also occupy a much more influential position than in the past, particularly when they are involved at the outset of a project.

Quantity surveyors are the cost and value experts of the construction industry. Their responsibilities include advising clients on the cost and value implication of design decisions and the controlling of construction costs. Great importance is now attached to the management of costs in relation to whole life costing. Work within this sector not only relates to new work but to refurbishment of the existing building stock.

Building engineering services

Whilst building services installations are very much a part of the building project, it has tended to become a specialist function for the M & E quantity surveyor, especially on large complex projects. As greater consideration is given to the energy efficiency of systems and alternative sustainable technologies the professional advice from quantity surveyors in this sector will become increasingly influential in project design decisions. Quantity surveyors employed in this discipline have had to become more conversant

4 The Work of the Quantity Surveyor

with the science, technology and terminology of engineering services in order to interpret engineering drawings correctly.

Civil engineering

It is difficult to define the line of demarcation between building and civil engineering works. The nature of civil engineering works often requires a design solution to take into account physical and geological problems that can be very complex. The scope, size and extent of civil engineering works are also frequently considerable. The problems encountered can have a major impact on the cost of the solution, and the engineer must be able to provide an acceptable one within the limits of an agreed budget, in a similar way that buildings are cost planned within cost limits. However, because of their nature, civil engineering works can involve a large amount of uncertainty and temporary works can be considerable, representing a significant part of the budget.

Civil engineering projects use different methods of measurement and different forms and conditions of contract are also used. These to some extent represent the different perception of civil engineering works. The work is more method-related than building works, with a much more intensive use of mechanical plant and temporary works. Bills of quantities, for example, comprise large quantities of comparatively few items. Because much of the work involved is at or below ground level, the quantities are normally approximate, with a full remeasurement of the work that is actually carried out.

Quantity surveyors working in the civil engineering industry provide similar services to those of their counterparts working on building projects.

Heavy and industrial engineering

This work includes such areas as onshore and offshore oil and gas, petrochemicals, nuclear reprocessing and production facilities, process engineering, power stations, steel plants and other similar industrial engineering complexes. Quantity surveyors have been involved in this type of work for a great number of years, and as a result of changing circumstances within these industries a greater emphasis is also being placed on value for money. In an industry that employs a large number of specialists, quantity surveyors, with their practical background, commercial sense, cost knowledge and legal understanding, have much to offer.

Private and contractors quantity surveyors

As well as specialised by project type, quantity surveyor's role can have either a client focus or work for a contracting organisation. Those working in the public or private sector on behalf of clients are known as Private Quantity Surveyors, referred to as a 'PQS' or the clients QS and those working for a main contractor or subcontractor are Contractors Quantity Surveyors, a 'CQS'. The role of the PQS is primarily covered in this book. The role of the CQS is somewhat different from that of the client's quantity surveyor with a focus on commercial management and the supply side of the sector, in that they consider costs from the contractor's perceptive maximising cash flow and ensuring the project stays within budget These activities could include estimation, financial management, site costing and bonusing, contract management, negotiation with suppliers and subcontractors, interim certificates and payments, contractual matters and the preparation and agreement of claims. Further consideration of the role is given within the relevant chapters.

The quantity surveying profession

The origins of the role

The origins of quantity surveying as a distinct activity are hard to trace back in time much further than the Great Fire of London. However, in the New Testament, there is a story about counting the cost before you build (Luke's Gospel, chapter 14). Perhaps quantity surveyors can trace their roots back to more than 2000 years ago! The building activity that followed the Great Fire of London in 1666 encouraged the emergence of the architect and the growth of the single trades, contracting for their own part of the building work.

The measurers had to be invented if they did not already exist. There was a real need for someone to ensure impartiality between the proprietor and the workmen. The rest is history. In 1834, the fire that destroyed the Palace of Westminster was partially responsible for the use of the quantity surveyor on a major scale. Charles Barry won the competition to replace it and was asked to prepare an estimate of cost. Although detailed drawings were not yet prepared, a quantity surveyor, Henry Hunt, came up with an estimated cost of £724,984. Whilst this figure was basically accurate, changes made by Parliament resulted in a final cost closer to £1.5 m.

The name 'quantity surveyor' conjures up a variety of different images in people's imaginations. For some, the term 'quantity surveyor' is an outmoded title from the past. It certainly no longer *accurately* describes the sole duties that are performed as will be discussed later in the chapter. When the term was first applied to the profession, the work of the quantity surveyor was vastly different from that now being carried out and anticipated in the twenty-first century. New titles for the role, over time, have been debated, and it is common to find those offering current quantity surveying services describing themselves as cost consultants.

The Royal Institution of Chartered Surveyors (RICS)

The Royal Institution of Chartered Surveyors was formed in 1868 and offices were leased at 12 Great George Street, which is still part of the RICS Headquarters building today. The Institution of Surveyors, which later became the Royal Institution of Chartered Surveyors (RICS), has evolved into a renowned international organisation with approximately 134,000 members working in 146 countries. It was granted its Royal Charter in 1881 and in 1922 the Quantity Surveyors Association amalgamated with it. In 1930, the then Institution of Surveyors became the Institution of Chartered Surveyors. In 1946, it was granted the title Royal to become the Royal Institution of Chartered Surveyors. The RICS coat-of-arms with its motto *Est modus in rebus* (There is measure in all things) was adopted.

6 The Work of the Quantity Surveyor

The RICS is organised around 18 professional groups of which one is designated as Quantity Surveying and Construction. There are a number of other groups to which quantity surveyors are also likely to belong. These include Dispute Resolution, Facilities, Management Consultancy and Project Management.

The RICS's objective as a professional body, as outlined in the Charter, is to secure the advancement and facilitate the acquisition of that knowledge, which constitutes the profession of a surveyor, and to maintain and promote the usefulness of the profession for the public advantage in the United Kingdom – and in any other part of the world (RICS 2022c).

Working with key stakeholders of UK governments, the RICS as a leading expert within the sector informs government policy. Through the promotion of the expertise of chartered surveyors, the RICS's professional standards are adopted within the industry. Key activities in 2021 were advice provided for the UK's recovery from the pandemic, and the long-term value of sustainable development and management of the built and natural environments (RICS 2021a). In addition, the principle purposes of the RICS are:

- a global professional, standards and regulatory body
- existing to secure the advancement and usefulness of the profession for the public advantage
- focused on setting standards and assuring these standards are in the public interest delivering support that is valued by RICS members and their employers
- developing members' professional skills and knowledge and
- expanding opportunities for members to apply those professional skills. (RICS 2022c)

Other quantity surveying bodies

Whilst the RICS remains the premier institution for quantity surveyors, they may also be members of other industry bodies. This may be influenced by the sector they work in, for example quantity surveyors employed by contractors are likely to be members of the CIOB, or by the country in which they are located. The Pacific Association of Quantity Surveyors (PAQS) is an international association of quantity surveyor organisations located in the Asia and Western Pacific region. The membership of PAQS is shown in Fig. 1.1.

The Quantity Surveying International (QSi) was formed in 2004 as a professional body solely for those operating in the commercial aspects of construction and the built environment. Its objectives are very similar to the RICS, except they are fully focussed on quantity surveying.

The role of the quantity surveyor

Traditional role

The traditional role of the quantity surveyor has been described elsewhere and in previous editions of *Willis's Practice and Procedure for the Quantity Surveyor*. This traditional role, still practised by some and especially on small- to medium-sized projects, can be briefly

Full Members

- Australian Institute of Quantity Surveying (AIQS)
- China Cost Engineering Association (CCEA)
- The Hong Kong Institute of Surveyors (HKIS)
- Royal Institution of Surveyors Malaysia (RISM)
- Institution of Surveyors, Engineers and Architects, Brunei (PUJA)
- The Building Surveyors Institute of Japan (BSIJ)
- Canadian Institute of Quantity Surveyors (CIQS)
- New Zealand Institute of Quantity Surveyors (NZIQS)
- Singapore Institute of Surveyors and Valuers (SISV)
- Institute of Quantity Surveyors Sri Lanka (IQSL)
- Philippine Institute of Certified Quantity Surveyors (PICQS)
- Ikatan Quantity Surveyor Indonesia (IQSI)

Associate Members

- Fiji Institute of Quantity Surveyors (FIQS)
- Korea Institution of Quantity Surveyors (KIQS)

Observer Member

Association of South African Quantity Surveyors (ASAQS)

Fig. 1.1 Members of the pacific association of quantity surveyors.

described as a measure and value system. Approximate estimates of the initial costs of building are prepared using a single price method of estimating (see Chapter 5), and where this cost was acceptable to the client then the design was developed by the architect. Subsequently, the quantity surveyor would produce bills of quantities for tendering purposes, the work would be measured for progress payments and a final account prepared on the basis of the tender documentation (see Fig. 1.2). The process was largely reactive, but necessary and important. During the 1960s, to avoid tenders being received that were over budget, cost planning services were added to the repertoire of the duties performed by the quantity surveyor employed in private practice (PQS). The contractor's surveyor was responsible for looking after the financial interests of the contractor and worked in conjunction with the PQS on the preparation of interim payments and final accounts. On occasions, contractors felt that they were not being adequately reimbursed under the terms of the contract and submitted claims for extra payments. This procedure was more prevalent on civil engineering projects than on building projects, although the adversarial nature of construction was increasing all the time.

The distinctive competence found in quantity surveyors relies heavily on their analytical approach to buildings and this stems directly from their ability to measure construction works. Furthermore, the detailed analysis of drawings leads to a deep understanding of the design and construction which enables them to contribute fully to the process. This intimate knowledge of projects is at the root of the contribution made by the quantity surveyor to the value of the client's business through the provision of the services shown in Fig. 1.2.

- Single rate approximate estimates
- Cost planning
- Procurement advice
- · Measurement and quantification
- Document preparation, especially bills of quantities
- Cost control during construction
- Interim valuations and payments
- Financial statements
- Final account preparation and agreement
- Settlement of contractual claims

Fig. 1.2 Traditional quantity surveying activities (circa 1960).

Evolved role

In response to the potential demise of bills of quantities, quantity surveyors began exploring new potential roles for their services. Procurement, a term not used until the 1980s, became an important area of activity, largely because of the increasing array of options that were available. Increased importance and emphasis were also being placed upon design cost planning as a tool that was effective in meeting the client's objectives. Whole life costing (Chapter 6), value management (Chapter 7) and risk analysis and management (Chapter 8) were other tools being used to add value for the client. As buildings became more engineering services orientated, increased emphasis was being placed on the measurement, costs and value of such services. Quantity surveyors had historically dealt with this work through prime cost and provisional sums, but in today's modern buildings to describe the work in this context is inadequate. Other evolved roles have included project and construction management and facilities management (see Fig. 1.3). Because of the inherent adversarial nature of the construction industry they are also involved in contractual disputes and litigation.

The current role of the quantity surveyor reflects a more outcomes led approach by clients. Today's construction is not just about the provision of a building, but the performance of an asset in terms of the client's business outcomes. Client's environmental, social and digital agendas, influenced by the wider changing external political drivers, are having a greater influence on the design and use of buildings. The quantity surveyor's expertise in cost, value and managing risk has therefore increased importance in the 'whole life' success of a project. Whilst many of the services related to consultancy and project delivery offered, a decade ago, are similar, the use of technologies has meant that these services have become more integrated internally within the quantity surveying organisation, but crucially more integrated with the services provided by other built environment professionals using collaborative information platforms. The ability to automate some services has led to enhanced practices in benchmarking, scenario testing and risk analysis. The last decade has seen many quantity surveying mergers with other professions to offer more comprehensive and integrated services and an increase in the offer of post occupancy services. Such services include auditing, benchmarking, and information modelling to advise

- Investment appraisal · Advice on cost limits and budgets · Whole life costing Value management Risk analysis Insolvency services Cost engineering services Subcontract administration · Environmental services measurement and costing Technical auditing • Planning and supervision Valuation for insurance purposes · Project management · Facilities management Administering maintenance programmes · Advice on contractual disputes
 - Planning supervisorEmployer's agent
 - Programme management
 - Cost modelling
 - Sustainability Advisor

Fig. 1.3 Evolved role (circa 2012).

on business success. Quantity surveyors also offer specialist skills such as Capital Allowances and Alternative Dispute Resolution services.

Global strategies to support a sustainable future, such as 2030 Agenda for Sustainable Development and UK legislation to support the sector's trajectory towards meeting net zero, are key drivers informing the client's sustainability objectives and organisational practices. As a result, clients are becoming increasingly aware of the need to consider whole life costs, environmental impact assessments and evaluation of carbon emissions. The impact on the quantity surveying services is discussed in Chapter 18.

Skills, knowledge and understanding

In 1992, the Royal Institution of Chartered Surveyors published a report titled *The Core Skills and Knowledge Base of the Quantity Surveyor*. The report developed earlier themes from reports published by the RICS and others. These included *The Future Role of the Quantity Surveyor* (RICS 1971), *The Future Role of the Chartered Quantity Surveyor* (RICS 1983), *Quantity Surveying 2000* (Davis, Langdon and Everest 1991) and *Quantity Surveying Techniques: New Directions* (Brandon 1992). The *Core Skills* report examined the needs of quantity surveyors in respect of their education, training and continuing professional development. This reflected the requirements in the context of increasing changes and uncertainties in the construction industry and, more importantly, within the

10 The Work of the Quantity Surveyor

profession. The RICS report identified a range of skills that the profession would need to continue to develop if it wished to maintain its role within the construction industry. The report identified a knowledge base that includes:

- Construction technology
- Measurement rules and conventions
- Construction economics
- Financial management
- Business administration
- Construction law

and a skill base that includes:

- Management
- Documentation
- Analysis
- Appraisal
- Quantification
- Synthesis
- Communication.

All of these remain valid requirements 30 years later, indeed they are the core of many quantity surveying courses, although their relative importance has changed to suit changing needs and aspirations, as evidenced when comparing the QS activities listed in Figs 1.2 and 1.3 above.

Quantity surveying, like each specific surveying discipline, has developed its own repertoire of techniques. Skills occur in respect of the levels of ability required to apply these techniques in an expert way. The different array of skills is assimilated with the knowledge base through education, training and practice. Whilst there is a general agreement about the skills and knowledge base required, different surveyors will place different emphases upon the relative importance in practice. Skills and knowledge requirements are also not static but must be updated to reflect an ever changing environment.

The RICS Futures Report 2015 *Our Changing World: let's be ready* identified that both the skills needed by surveyors and the work roles were changing, due to the growing complexity of the sector, major skills gap in sustainability and technological advances (Fig. 1.4).

Current Skills	Future Skills	
Outcome focus	Sustainability	
Communication	Data analysis	
Integrated programme and cost management	Maximising resource productivity	
Skills for greater complexity	Risk management	
Interdisciplinary working	Leadership	
Advisory services	Client focus	
Understanding technology	Collaboration	
	Ethical behaviour	

Fig. 1.4 2015 Skills gap analysis (Source: Gray et al. 2016).