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Preface

Fractional calculus and applications are rapidly developing research directions 
in science and engineering at present. This book provides a systematic introduc-
tion to fractional calculus, focusing on the use of computer tools to directly solve 
problems in the field of fractional calculus and applications. The structure and 
general idea of this book are as follows: 7 Chap. 1 gives a review of  the related 
fields; 7 Chap. 2 introduces some special functions commonly used in this field; 
7 Chaps. 3 and 4 introduce the evaluation of  fractional-order derivatives and in-
tegrals of  known functions or sampling points; 7 Chap. 5 introduces the use of 
specially designed filters to find the fractional-order derivatives and integrals of 
signals when the signals are unknown in advance. Chapters 3 to 5 can also be un-
derstood as offline and online methods for evaluating fractional-order derivati-
ves and integrals. 7 Chapter 6 introduces the analytical and numerical solutions 
of  linear fractional-order differential equations (FODEs), 7 Chap. 7 introduces 
the “command-driven” solution of  nonlinear FODEs, 7 Chap. 8 introduces the 
block diagram-based solution of  FODEs, and 7 Chap. 9 introduces the solution 
of  special FODEs (including implicit ones, delayed differential equations, diffe-
rential equation boundary value problems, and partial differential equations) that 
were previously difficult or impossible to solve. Each part in the book is equipped 
with MATLAB general solution functions written by the author, whereas a new 
FOTF Toolbox is released with the book. The readers can directly use these reu-
sable codes to reproduce the results in the book, and more importantly, use them 
to creatively solve practical problems and explore new knowledge.

In 2015, I was invited by Prof. Li Changpin of the Department of Mathematics, 
Shanghai University, an internationally renowned scholar in the field of fractional 
calculus, to write a related monograph for his series “Fractional Calculus in Applied 
Science and Engineering”. In 2017, my monograph Fractional-Order Control Sys-
tems: Fundamentals and Numerical Implementations was fortunately published as 
the first volume of the series in de Gruyter Publishing. The following year, the cor-
responding monograph in Chinese, Fractional-Order Calculus and Fractional-Order 
Control, was officially published by Science Press.

This book was completed in collaboration with Dr. Bai Lu, School of Infor-
mation Engineering of Shenyang University. It incorporates many of our new re-
sults in recent years. In this book, there are many original research results which 
are published for the first time, including analytical solutions in fractional calculus, 
high-precision algorithms for high-order fractional-order derivatives, simulation 
and stability analysis of irrational systems, new FOTF Toolbox and FOTF Block-
set, unified framework for solving FODEs, solution methods for fractional-order 
delay differential equations, solution methods for FODEs in boundary value prob-
lems, and time-fractional partial differential equations, benchmark problems for 
more types of algorithms for solving various FODEs, and so on.

In around 2000, I was encouraged and even persuaded by a long-time collabo-
rator, Prof. YangQuan Chen, now at the University of California, Merced, to start 
research in the field of fractional-order control. But it was not until 2003, when 
I started working with Prof. Chen on the first edition of MATLAB Solutions for  
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Advanced Applied Mathematics Problems, that I really took the time to study the 
literature in this area and began to study fractional calculus, I began my research 
on numerical implementations in fractional calculus. In that work, a lot of work on 
fractional calculus computation, filter approximation, closed-form solution algo-
rithms for linear FODEs, and block diagram-based solution of nonlinear FODEs 
were systematically introduced, and many of these codes and models are still widely 
used by the researchers in the field of fractional calculus. Therefore, I must first 
thank Prof. YangQuan Chen here.

We would also like to thank a number of prominent scholars and active re-
searchers in the field of fractional calculus, including Profs. Igor Podlubny and Ivo 
Petráš of Technical University of Košice, Slovakia, Li Changpin of Shanghai Uni-
versity, Li Yan of Shandong University, Wang Yong of University of Science and 
Technology China, Lu Junguo of Shanghai Jiaotong University, Li Donghai of Ts-
inghua University, Yu Yongguang of Beijing Jiaotong University, Sun Guanghui 
of Harbin Institute of Technology, Chen Wen and Sun Hongguang of Hohai Uni-
versity, Zeng Caibin of South China University of Technology, Wang Chunyang 
of Changchun University of Technology, Wei Yiheng of Southeast University, Liu 
Dayan and Driss Boutat of INSA Centre Val de Loire, France (in no particular or-
der), and others. I am also grateful to my former co-authors, namely, Profs. Blas 
Vinagre, Concepción Monje, and Vicente Feliu, when I published my monograph 
at Springer Publishing House in 2010, and my discussions and idea exchanges with 
them have generated many new ideas and research results in this field, which have 
enriched the content of this book.

My in-depth discussions with my colleagues at Northeastern University, espe-
cially Profs. Pan Feng, Chen Dali, and Zhang Xuefeng, have also brought much 
meaningful content to this book. I also thank my former students for their results 
and contributions to this book and related research, specifically Dr. Zhao Chunna 
for her contributions to the numerical computation of fractional calculus and dif-
ferential equations, Drs. Zhao Chunna and Meng Li for their contributions to filter  
design, Drs. Zhao Chunna, Meng Li, MSc student Wang Weinan, Dr. Liu Lu, and 
Dr. Li Tingxue for their contributions to controller design, and also in other re-
lated areas Dr. Yang Yang, Dr. Zhang Yanzhu, Dr. Liu Yanmei, Dr. Chen Zhen, 
Dr. Chen Lanfeng and Ph.D. students Cui Xinshu, Liu Yitong and Wang Zhe for 
their contributions.

We thank the National Natural Science Foundation of China for the Natural 
Science Foundation projects (project numbers: 61174145 and 61673094) for the re-
search work on this book.

Last but not least, I would like to thank my wife, Yang Jun, and my daughter, 
Xue Yang, for their great help and encouragement in my life and career. Without 
their encouragement and continued support, this book and my other books would 
not have come out successfully, and I would like to dedicate this book to them.

Xue Dingyü
Shenyang, China
November 2022
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1

2 Chapter 1 · Introduction to Fractional Calculus

1.1 Historic Review of Fractional Calculus

At the beginning of the development of the theory of classical calculus (called integer-
order calculus in this book), the British scientist IsaacNewton and theGermanmath-
ematician Gottfried Wilhelm Leibniz used different symbols for different orders of
derivatives. For example, Newton used the notation ẏ(x), ÿ(x) and

...
y (x), while Leib-

niz used the notation dny(x)/dxn, where n is a positive integer. A natural question
is how to extend n into fractions or even complex numbers. In a letter written by
the French mathematician Marquis de l’Hôpital to Leibniz in 1695, he asked ques-
tion “what would be the meaning if n = 1/2 in the dny(x)/dxn notation”. In a letter
dated 30 September 1695, Leibniz replied, “Thus it follows that d1/2x will be equal to
x
√
dx : x. This is an apparent paradox fromwhich, one day, useful consequences will

be drawn” [1]. The question and answer between these two mathematicians is widely
considered to be the beginning of fractional calculus.

In 1819, the French mathematician Sylvestre François Lacroix used the Gamma
function to study the power function

dn

dxn
xm = �(m + 1)

�(m − n + 1)
xm−n+1, m � n, (1.1)

and found that
d1/2

dx1/2
x = �(2)

�(3/2)

√
x = 2

√
x
π

. (1.2)

This conclusion is in full agreement with the later results of Riemann−Liouville
fractional-order derivatives.

Now it seems that the derivative notation invented by Newton is not suitable for
extension to the field of fractional calculus, while the notation invented by Leibniz
can be used directly in fractional calculus.

More than three centuries have passed and until a few decades ago research in the
field of fractional calculus has focused on purely mathematical theoretical aspects of
the work. Some of the better historical reviews in the field of fractional calculus can be
found in References [1] and [2]. In Reference [1], Profs. Kenneth Miller and Bertram
Ross gave a good historical review of fractional calculus from a purely mathematical
point of view, and in Reference [2], Keith Oldham and Jerome Spanier quoted the
chronicles of fractional calculus from its inception to the year 1975, summarized by
Prof. Ross. An overview of historical figures and their contributions in the field of
fractional calculus is presented in Reference [3].

Starting from 1960, the study of fractional calculus began to be extended to the
field of science and engineering. To solve the nonzero initial value problems in frac-
tional calculus, Prof.MicheleCaputo, an Italian scholar, proposed a newdefinition of
fractional calculus, which was later called Caputo’s definition [4]. He presented a dis-
sipation model based on fractional-order derivatives with Prof. Francesco Mainardi
[5], which established the foundation for the engineering applications of fractional
calculus. In Japan, Prof. Shunji Manabe extended the study of non-integer-order to
the application of control systems and introduced the concept of non-integer-order
control systems [6]. In Slovakia, Prof. Igor Podlubny proposed the fractional-order
PID controller [7]. The research group led by Prof. Alain Oustaloup in France pro-
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posed the concept and technique of fractional-order robust control and successfully
applied it to suspension control in the automotive industry [8, 9], which is regarded
as a milestone for the applications of fractional calculus in the real world.

Since about 2000, a number of monographs devoted to fractional calculus and
its applications have appeared in various fields of specialization, among which the
more influential ones are Prof. Podlubny’s 1999 book on fractional-order differential
equations and their applications in the field of automatic control [10], Prof. Rudolf
Hilfer’s 2000 book in the field of physics [11], Prof. RichardMagin’s 2006 book in the
field of bioengineering [12], and so on.

Severalworks have also beenpublished in recent years on the theory andnumerical
computation in fractional calculus, such as the works of Prof. Kai Diethelm’s in 2010
[13], Prof. Das’s in 2010 [14], Prof. Uchaikin’s in 2013 [15], and Prof. Li Changpin
and Dr. Zeng Fanhai’s in 2015 [16]. Also, Prof. Xue Dingyü’s monograph in 2017 on
numerical implementation of fractional-order systems and control [17].

In 2017, de Gruyter published the series “Fractional Calculus in Applied Sciences
and Engineering”, edited by Prof. Li Changpin, and the “Handbook of Calculus in
Applied Sciences and Engineering”, edited by Profs. Anatoly Kochubei and Yuri
Luchko.

In the field of automatic control, somemonographs have been published in recent
years, such as those by Profs. Caponetto, Dongola, Fortuna, and Petráš in 2010 [18];
Profs. Monje, Chen, Vinagre, Xue, and Feliu in 2010 [19]; Prof. Petráš in 2011 [20];
Dr. Luo Ying and Prof. Chen YangQuan in 2012 [21]; and Prof. Oustaloup in 2014
[22]. Prof.Uchaikin gave a good introduction to the applications of fractional calculus
in various fields in 2013 [23].

Chinese scholars have also published textbooks and monographs on fractional
calculus and its applications. There is a special chapter on fractional calculus and
its computation in the book published by Profs. Xue Dingyü and Chen YangQuan
in 2004 [24]. The following works are related to the research of this book, including
the books by Profs. Chen Wen, Sun Hongguang, and Li Xicheng in 2010 [25]; Prof.
Wang Jifeng in 2010 [26]; Profs. Zhao Chunna, Li Yingshun, and Lu Tao in 2011
[27]; Profs. Wang Chunyang, Li Mingqiu, and Jiang Shuhua in 2014 [28]; Profs. Li
Wen and Zhao Huimin in 2014 [29]; Profs. Xiaozhong Liao and Zhe Gao in 2016
[30]; Profs. Qiang Wu and Jianhua Huang in 2016 [31]; Prof. Xue Dingyü in 2018
[32]; and so on.

Chinese scholars in the field of fractional calculus and applications established a
special committee on fractional-order systems and control under the Chinese Associ-
ation of Automation in July 2018 [33]. Special sessions or special issues in the field of
fractional-order systems have also appeared one after another in many international
conferences or international journals.

It is important to note that the term “fractional-order” is a misused one. The
correct name should be “non-integer-order” or even “arbitrary order”, because the
order can be irrational or even complex. In addition to fractions (rational numbers),
for example, d

√
2y(t)/dt

√
2 can be considered as the

√
2nd-order derivative of the

signal y(t). The complex order is beyond the scope of this book. However, the term
“fractional-order” has been used by the huge majority of researchers in the vast ref-
erence text. So the term will be used in this book, but in essence it includes irrational
orders and even irrational system structures.
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Integer-order calculus has a concise and clear physical meaning. For example, dis-
placement, velocity, and acceleration can be used to explain the relationship between
a signal and its integer-order derivatives well. However, the fractional calculus does
not have such a concise and understandable physical interpretation, although many
scholars have tried to do so. One meaningful interpretation was given by Prof. Pod-
lubny as “a shadow moving on a fence” [34], but it still seems to lack such a concise
interpretation as the integer-order calculus.

Examples are given below to demonstrate fractional calculus operations for com-
monly used functions.

� Example 1.1

Consider the sinusoidal signal sin t. It is known that the first-order derivative of this signal is
cos t. If we then find the high-order derivative of this signal, the result will be nothing more
than ± sin t and ± cos t. No other signal can be derived. What will happen if we introduce
the concept of fractional calculus?

Solutions From the famous Cauchy integral formula

dn

dtn
sin t = sin

(
t + n

π

2

)
.

In fact, the above formula holds when n is any non-integer, so the following MATLAB
statements canbeused todraw the surfaceof the fractional-orderderivativesof the function,
as shown in. Fig. 1.1.

>> n0=0:0.1:1.5; t=0:0.2:2*pi; Z=[];

for n=n0, Z=[Z; sin(t+n*pi/2)]; end, surf(t,n0,Z)

It can be seen that, in addition to the four known results ± sin t and ± cos t, other
information can be obtained and the results are asymptotic. Therefore, the fractional-
order derivative of a function may provide richer information than the integer-order ones.
In practical applications, if the world is viewed from the perspective of fractional calcu-
lus, it may reveal more things that were invisible from the perspective of integer-order
calculus. �

. Fig. 1.1 Representation of surfaces with different order derivatives
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1.2 Fractional Calculus Phenomena andModeling Examples in
Nature

There are many examples about the applications of fractional calculus in References
[11, 12, 14]. Some relevant typical examples are listed here, which often cannot be
described well in the framework of integer-order calculus. They must be described
with the help of fractional calculus. Thus, fractional-order phenomena are actually
ubiquitous.

� Example 1.2

Inpolymermaterials andelasticmaterial research, according to the suggestions inReference
[11], the rheological constitutive equation should be more precisely described as fractional-
order differential equations (FODEs)

σ(t) + τα−β dα−βσ(t)

dtα−β
= Eτα dα

dtα
σ(t),

where 0 < α, β < 1. �

� Example 1.3

Consider the driving-point impedance problem of a semi-infinite length lossy transmis-
sion line, whose standard voltage equation satisfies the integer-order partial differential
equation. The boundary value conditions are known

∂v(x, t)
∂t

= α
∂2v(x, t)

∂x2
, v(0, t) = vI(t), v(∞, t) = 0.

After a series of direct mathematical formulations [14], the voltage−current equation for
the impedance at the driving point can be derived as the following FODE with zero initial
value:

i(t) = 1
R

√
α

d1/2v(t)

dt1/2
or v(t) = R

√
α
d−1/2i(t)

dt−1/2
.

�

� Example 1.4

TheBagley−Torvik equation [35, 36] describing the vibration of an oscillator in a viscoelas-
tic medium is

A
d2

dt2
y(t) + B

dα

dtα
y(t) + Cy(t) = C(t + 1). (1.3)

The initial value conditions are y(0) = y′(0) = 1, with solution y(t) = t + 1. �

� Example 1.5

Ionic polymer metal composite (IPMC) is a new type of smart material that has a wide
range of applications in areas such as robotics actuators and artificial muscles. In order
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to identify the model of IPMC, a set of frequency domain response data can be measured
experimentally.The identification canbe attemptedby thewell-establishedmethodof linear
system model identification, but Reference [18] shows that no good identification model
can be obtained in the framework of integer-order system. If the idea of fractional calculus
is introduced, it may result in the following identification model:

G(s) = 340

s0.756(s2 + 3.85s + 5880)1.15
.

It is clear that the identified model is a special form of fractional-order model. �

� Example 1.6

In a standard heat diffusion process, the temperature of a heat source rod at coordinate x
can be directly described by the one-dimensional linear partial differential equation given
below:

∂c
∂t

= K
∂2c

∂x2
.

If a constant temperature source C0 is added at x = 0, the Laplace transform expression
for the temperature under thermal diffusion can be deduced [37]

c(x, s) = C0
s
e−x

√
s/k .

�

� Example 1.7

The memristor (resistor with memory) was pointed out as the fourth basic circuit element
(the first three are the familiar and physically present resistor, capacitor, and inductor) by
Prof. Chua in 1971 [38]. In 2008, researchers claimed to have found such a missing element
[39]. Since the fractional calculus has the capabilities of describing memory, its resistance
can be expressed in the fractional calculus sense as follows:

Rm =
[
Rα+1
in ∓ 2kRd

∫ t

0

v(τ )

(t − τ)1−α
dτ

]1/(α+1)
,

where the integral function is the basic expression of the fractional calculus [40]. �

In controller design, it is often necessary to deliberately introduce fractional-order
actions in order to achieve a certain control performance index. An example of a
controller is given below.

� Example 1.8

Consider the fractional-order quantitative feedback theory (QFT) given in the literature
[19]. The controller model is as follows, which contains fractional-order operations.
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Gc(s) = 1.8393
(
s + 0.011

s

)0.96
(

8.8 × 10−5s + 1

8.096 × 10−5s + 1

)1.76
1

(1 + s/0.29)2
.

�

In integer-order calculus, the signal in the system exhibits the form of an exponen-
tial function,while it can be observed in real life that certain phenomena exhibit results
that may be power functions of time, often referred to as power-law phenomenon.
This phenomenon is easier to understand under the fractional calculus framework.
With the perspective of fractional calculus, one can better understand the complex
world [41].

1.3 Historic Review of Fractional Calculus Computations

1.3.1 Numerical Computing in Fractional Calculus

With the maturity of computer technology, the theory of numerical computation in
fractional calculus has developed rapidly. The first problem that was extensively stud-
ied was how to evaluate fractional-order derivatives and integrals numerically. Many
classical algorithms emerged. A concise approach is to remove the limit sign from the
definition of Grünwald−Letnikov fractional calculus, which leads to an approximate
formula. References [10, 42] proved that this method has O(h) accuracy. For most
functions, the Grünwald−Letnikov definition is equivalent to the Riemann−Liouville
definition, so this method can also be applied to evaluate the Riemann−Liouville
fractional-order derivatives and integrals. Profs.Meerschaert and Tadjeran proposed
the shifted approximation formula, which shifts the discrete points backward, so as
to increase the convergence speed of the formula [43].

Prof.Lubich and co-workers, in their studyof theAbel−Volterra integral equation,
proposed the linear fractional-order multi-step method [44, 45], which introduced
higher accuracy formulas for evaluating fractional-order derivatives and integrals.
Reference [44] proved that the accuracy of this algorithm is not only related to the
order of the generating function, but also affected by the initial value conditions
of the original function. The linear fractional-order multi-step method is a classi-
cal algorithm that has had a great influence on the development of fractional-order
numerical algorithms. Prof. Podlubny introduced the fast Fourier transform-based
method to evaluate wj on this basis. This algorithm has a faster computational speed
[10], although it is possible to introduce greater errors as a result.

The finite-part integral (FPI) method proposed by Prof. Kai Diethelm and co-
workers [13, 46−48] allows the evaluation of not only Riemann−Liouville fractional-
order derivatives and integrals, but also Caputo fractional-order derivatives. This
method converts the fractional-order derivative or integral into a Hadamard inte-
gral by dividing equidistant grid points on the integration interval, finding a simple
function to replace the original function at the grid points, and then deriving the
computational formula. Reference [46] proves that this method has O(h2) accuracy.

Prof. Igor Podlubnyproposed thematrixmethod [49], which represents fractional-
order derivatives and integrals in the form of matrices. Applying this method, it is
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also possible to convert FODEs into matrix equations, which are easier to find the
numerical solutions.

1.3.2 Numerical Computing in Fractional-Order Ordinary
Differential Equations

With the vigorous development of fractional calculus theory, more andmore FODEs
appear in engineering, and how to solve FODEs becomes a hot topic of research.
From the perspective of the demand of applied science, the solution of FODEs under
Caputo’s definition is widely concerned. For some simple FODEs, the analytical solu-
tions can be found directly. Commonly used methods include the integral transform
method [50, 51], the Green’s function method [10, 52, 53], and the Adomian decom-
position method [54]. However, for most of the FODEs, finding analytical solutions
is an impractical matter. Therefore, numerical algorithms for solving FODEs have
become a hot research topic in this field.

The Adams−Bashforth−Moulton algorithm [55, 56] is an effective method for
solving one-term FODEs. This algorithm first derives the integral form of the equa-
tion, then applies the first-order extrapolation to calculate the predictor solution, then
substitutes the predictor solution into the original equation and applies the second-
order extrapolation to calculate the corrector solution. The Adams−Bashforth−
Moulton algorithm has O(h2) accuracy. Even if the FODE is nonlinear, it can also
be solved by this algorithm.

It is also possible to introduce Prof. Igor Podlubny’s matrix algorithm into the
numerical solution process of linear and nonlinear FODEs. It should be noted in
particular that the matrix algorithm can also solve certain fractional-order implicit
differential equations.

The finite partial integration algorithm proposed by Prof. Kai Diethelm and his
collaborators can be used to solve the one-term FODEs [46]. This algorithm writes
the solution of the original equation in the form of Hadamard integral, applies the
interpolation algorithm to find a simple function to replace the integrand, numerically
computes the integral to obtain the predictor solution, and substitutes the predictor
solution into the original equation to calculate the corrector solution. Reference [46]
proves that the finite partial integration algorithm has O(h2) accuracy. Based on
the finite partial integration algorithm, Diethelm proposed the predictor−corrector
(PECE) algorithm [48, 57, 58]. This algorithm first applies extrapolation to solve
the predictor solution of the equation and then substitutes the predictor solution
into the original equation to find the corrector solution. In Reference [59], FODEs
with nonzero initial value conditions were investigated. An auxiliary function was
introduced to transform the original equation into an equation with zero initial value
condition before solving it efficiently. The iterative algorithm was embedded into a
corrector process in References [17, 32], which substantially improved the solution
accuracy of the predictor−corrector algorithm.

Chinese scholars havemademany contributions in thenumerical algorithmsabout
fractional calculus, including the closed-form solutions of linear FODEs proposed
by Prof. Xue Dingyü and co-workers [24, 60]; high-precision algorithms in frac-
tional calculus [61, 62]; high-precision numerical algorithms for Caputo ordinary
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differential equations [17, 32]; block diagram-based unified modeling and simula-
tion framework for Caputo ordinary differential equations [63]; the high-precision
numerical algorithms for fractional calculus and differential equations proposed by
Prof. Li Changpin and co-workers [64, 65]; the block-by-block algorithm proposed
by Profs.Wang Ziqiang and Cao Junying [66]; and so on. The algorithm in Reference
[65] has a high-precision accuracy. With this algorithm it is possible to evaluate the
Caputo derivative of orders in the (0, 1) interval and to find the numerical solution of
the equation. Reference [65] proves that this method has an accuracy of O(hr+1−α).
In the block-by-block algorithm, the FODE is transformed into the Volterra inte-
gral equation, and the integral interval is divided into equally spaced intervals. The
quadratic Lagrange basis function is applied to replace the integrand in each interval
to derive the formula for solving the numerical solution of the original equation.

To evaluate the algorithms for solving FODEs, the authors of this book proposed
a series of benchmark problems for Caputo equations [67, 68]. These problems are
highly general and can be used for a fair comparison of various FODE algorithms.
Based on a general modeling and simulation approach based on block diagrams,
this book further explores fractional-order state space equations with orders larger
than 1, implicit FODEs, fractional-order delay differential equations (FODDEs),
and FODEs with known boundary value conditions. Many of them are extremely
rare or even completely non-existent in the literature, but the general modeling and
simulation methods presented in this book make it easy to derive high-precision
numerical solutions.

1.3.3 Numerical Computing in Fractional-Order Partial Differential
Equations

Fractional-order partial differential equations (FOPDEs) can be broadly classified
into time-fractional partial differential equations, space-fractional partial differential
equations, time−space-fractional partial differential equations, and so on. There are
some mature methods for solving FOPDEs, including finite difference algorithm,
Adomian decomposition method, and variational iteration method.

Prof. Liu Fawang and co-workers [69] and Prof. Sun Zhizhong and co-workers
[70] have discussed finite difference methods in detail in their respective monographs,
given difference format algorithms for different kinds of FOPDEs. The accuracy,
stability, solvability, and convergence of each difference format are discussed. More
results and literature on finite difference methods are also listed and the development
of finite difference methods is summarized. The authors of this book give algorithms
for the solution of the unified two time-fractional difference formats [71].

The decomposition method proposed by Prof. Adomian is a method to apply the
series to find the approximate analytical solution of equation [72]. Some scholars
have applied the Adomian decomposition method to solve FOPDEs [73, 74]. The
Adomian decomposition method avoids the discretization of FODEs and thus is
with less computational load, but this method requires the calculation of complicated
fractional-order integrals, so it increases the computational difficulty.

Many numerical methods for solving other forms of FOPDEs, such as variational
iterative methods, finite element methods, spectral methods, and so on, have also
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appeared in the literature. A summary of numerical algorithms for fractional calculus
and FOPDEs is given in the works of Prof. Liu Fawang and co-workers [69], Prof.
Guo Boling and co-workers [75], and Prof. Li Changpin and Dr. Zeng Fanhai [16],
and interested readers can find the related literature.

1.4 Tools in Fractional Calculus and Fractional-Order Control

There are several MATLAB toolboxes that are widely used in the field of fractional
calculus and fractional-order control. A comparative review of the commonly used
toolboxes is given in Reference [76]. In fact, many of the tools compared in Reference
[76] are only single MATLAB functions, among which only four can be called tool-
boxes. These toolboxes happen to be in the field of fractional-order control. A brief
comparison is presented here in the chronological order of their introduction.

(1) CRONE Toolbox [8] is the result of the CRONE research group led by the
famous French scholar Prof. Oustaloup. The work started around 1990 as a practical
tool for solving fractional-order system identification and robust controller design.
The disadvantage is that it is distributed in MATLAB pseudo-code encrypted form,
and there is no way for the user tomodify or extend any of the features of the toolbox.
CRONE is abbreviation of a French words commande robuste d’ordre non entier,
meaning non-integer-order robust control.

(2) Ninteger Toolbox [77] was developed by a Portuguese scholar, Prof. Valério,
in 2001. The earliest version mainly implemented the CRONE controller, and in the
more mature version 2.3, the toolbox provided a set of functions, models, and inter-
faces for thedesignandanalysis of fractional-order systemandcontroller designbased
onMATLAB and Simulink. The toolbox has two core functions, one is the identifica-
tion of fractional-order systems and the other is the approximation of fractional-order
systemswith integer-ordermodels.Nonewversions of this toolbox have been released
since 2009.

(3) FOTF Toolbox [78, 79] is a MATLAB toolbox for fractional calculus and
fractional-order control system researchwritten by Prof. XueDingyü inChina. It was
first made public under the name of FOTF in 2006, and since 2004, the author has
successively released many MATLAB functions and Simulink models for fractional
calculus and control. In 2017, all the programs and models were rewritten to support
the analysis and design of fractional-order multivariable systems in conjunction with
the publication of the monographs [17, 32]. In addition, the underlying fractional
calculus calculations are replaced by the high-precision algorithms proposed by the
authors, which are usually many orders of magnitude more accurate than the existing
ones, making the toolbox itself more efficient and reliable. A brief introduction and
demonstration of the main functions of the toolbox are given in Reference [80]. With
the writing and publication of this book, the FOTF Toolbox has undergone another
major revision, which is more powerful and more suitable for practical applications.
This book will introduce the theoretical knowledge of the system and the details of
the toolbox software development based on this toolbox in detail. The code is also all
open source, which is also useful for readers to learn the numerical implementation
in the field of fractional-order systems.

(4)TheFOMCONToolbox [81]was developed by theEstonian scholar Prof.Alek-
sie Tepljakov in his master’s research. The toolbox was developed initially by copying
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and integrating the facilities of the FOTF Toolbox and the Ninteger Toolbox. Later,
some of the procedures were rewritten under the framework established by the orig-
inal authors to form a set of procedures and models for solving the identification,
analysis, and design of fractional-order systems. Since the toolbox was based on an
earlier version of the FOTF class, the toolbox is limited to solving problems for uni-
variate fractional-order systems, and the new version provides limited functionality
for solving problems in multivariate systems [82].

In addition, readers are advised todownloaduser contributed toolboxes andutility
functions that may be available from the “File Exchange” section of theMathWorks’
website, but because of the varying levels of programming on this site, some tools
may be of poor quality and may sometimes lead to incorrect results. Users should be
especially careful when choosing to download toolboxes and utility functions.

1.5 Structures in the Book

1.5.1 Main Contents

This book systematically introduces the fundamentals related to numerical computa-
tional problems in the field of fractional calculus, provides readerswith directly usable
computer tools that can enhance their understanding of the content and improve the
manipuility of individual topics.

In 7 Chap. 1, a brief review of the development of fractional calculus and its
application areas is given. An explanation of why the fractional calculus perspective
on theworld is introduced through some real-world fractional-order phenomena, and
a summary of several internationally available MATLAB toolboxes for fractional
calculus and fractional-order control are presented. This book will make extensive
use of the FOTF Toolbox developed by the authors.

7 Chapter 2 focuses on the definition, properties, and computation of various
special functions commonly used in the field of fractional calculus, and provides a
foundation for introducing the definition and computation of fractional calculus.

7 Chapter 3 introduces various common definitions of fractional calculus, such
as the Cauchy integral formula, the Grünwald−Letnikov definition, the Riemann−
Liouville definition, and the Caputo definition; summarizes the relationships between
the definitions; and gives concise analytical and numerical operations. The chapter
takes the fractional-order integral as an example, its geometric interpretation is given.

7 Chapter 4 addresses the problem of numerical computation in fractional cal-
culus by proposing and implementing a series of numerical algorithms with high
accuracy, several orders of magnitude higher than conventional algorithms, which
can be considered as the basis of numerical computation for the subsequent contents
of the book. This chapter also explores a new path to efficiently derive solutions to
fractional-order derivative problems of higher orders.

7 Chapter 5 introduces filter approximation methods for fractional-order behav-
iors and discusses various continuous and discrete filter design methods, includ-
ing filter implementation methods for fractional-order operators, fractional-order
transfer functions (FOTFs), irrational transfer functions, and so on. An online
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implementation method for fractional-order derivative of unknown signals is given,
as well as suggestions for the selection of filter design parameters.

7 Chapter 6 introduces the format of linear FODEs, discusses the analytical and
numerical algorithms, proposes high-precision numerical solutions of linear FODEs
with zero and nonzero initial values, and gives the stability assessment methods of
linear fractional-order systems and irrational systems. In particular, this chapter
also systematically investigates the simulation method of irrational systems based
on numerical Laplace transform and its inverse, which can be extended to the study
of feedback control of irrational systems.

7 Chapter 7 discusses the numerical methods for nonlinear fractional-order sys-
tems, focusing mainly on the command-driven solution algorithm and MATLAB
implementation. Firstly, the numerical methods for explicit FODEs and fractional-
order state space equations are introduced, and the computer code of the traditional
numerical algorithm is given; in addition, a high-precision numerical method for non-
linear explicit FODEs is proposed and implemented, which significantly improves the
computational accuracy and efficiency of the algorithm.

7 Chapter 8 continues the discussion on the numerical methods for nonlinear
FODEs, focusing mainly on block diagram-based differential equation solving meth-
ods, which significantly extend the solution capabilities and improve the efficiency.
This chapter gives a brief introduction to the FOTFToolbox, introduces the practical
blocks that can be used for Simulink modeling and simulation, and presents a general
method based on integrator chains for modeling and solving the Riemann−Liouville
and the Caputo equations, and evaluates the accuracy and efficiency of the methods.
Suchmethods can theoretically be used to deal with the solution of nonlinear FODEs
with arbitrary complexity.

7 Chapter 9 introduces algorithms for solving special FODEs, including implicit
FODEs that aredifficult or even impossible to solve in the traditional sense, fractional-
order delay differential equations with nonzero history functions and boundary value
problems of FODEs, and so on. It also introduces numerical methods for solving
time-fractional partial differential equations. This chapter provides the ideas and
implementation for a comprehensive study about the solution of FODEs.

In order to test and evaluate the accuracy and the efficiency of the algorithms for
solving FODEs, Appendix A designs and proves some benchmark problems com-
posed of variousFODEs,which canbe used to fairly compare the accuracy, efficiency,
and other superiority of various numerical algorithms. Appendix B gives the common
special functions and Laplace transforms related to fractional calculus. Appendix C
lists the function tables of the FOTF Toolbox for the readers’ reference and review,
so that the readers can better use the FOTF Toolbox to complete the research in the
field of fractional-order systems.

1.5.2 Reading Suggestions

An important feature of this book is that each topic is supported byMATLAB codes
and models written by the authors, so that the reader can also better understand
the relevant contents of this book from the supporting codes. More importantly,
the reader can directly use these codes to solve relevant problems and even creatively
solve some unknownproblems thatmay be associatedwith them.TheFOTFToolbox
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provided in this book can solve basic problems in fractional calculus operations and
can be used throughout the process of modeling, analysis, and design of fractional-
order systems.

The FOTF Toolbox can be downloaded for free at the following URL.

7 http://cn.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox

This book can also be used as a textbook and reference book for general readers
to learn fractional calculus and fractional-order control. In particular, the following
study suggestions are given for reference to the following three groups of readers, i.e.,
control engineers who want to introduce fractional-order control methods into their
own research fields, general researchers who want to study fractional calculus and
fractional-order control systematically, and researchers in the field of mathematics
who want to study fractional calculus.

(1) For the control engineers who onlywant to introduce the concept of fractional-
order control in their practical applications, they can skip all the theoretical contents
of this book and only need to understand the basic definition of fractional calculus,
and then learn the direct calculation in fractional calculus—for known functions and
data, calculating directly by the functions of the MATLAB toolbox; for unknown
signals, reconstructing its fractional-order derivative and integral by the filters of the
MATLAB toolbox. Such readers should also learn themethods for solving linear and
nonlinear FODEs, especially those based on the Simulink environment. They should
also learn how to use the two classes FOTF and FOSS written by the authors and will
find the process ofmodeling and analyzing linear fractional-order systems as easy and
convenient as integer-order systems. With these tools as a basis, users can introduce
the concept of fractional calculus into their practical work as they wish and try out a
class of controllers that may yield better results.

(2) For non-mathematical researchers, they can make full use of the special writ-
ing format of this book, use the provided MATLAB program as the main tool to
systematically learn the necessary knowledge in the field of fractional calculus and
fractional-order control, and reproduce the results in the book to better understand
the relevant technical contents. Further, one can make full use of such tools to solve
similar problems directly, to investigate more complicated and unknown problems
creatively, and try to apply fractional-order systems theory to one’s own research field
to find more useful results. The proofs of the theorems can be skipped directly when
reading this book.

(3)For the researcherswithmathematical backgrounds, the proofs of the theorems
covered in this book are not very comprehensive. It is recommended to find the omit-
ted parts fromother relatedworks or to give the proofs by yourself. The programming
details and techniques given in this book are worthy of reference and learning. It is
recommended that such readers fully study the MATLAB programming techniques
in this book to improve their programming ability and increase the efficiency of their
code implementation. In addition, the authors sincerely hope that the computational
examples which are selected carefully in this book can be used as the comparisons for
such readers to test their algorithms. A set of benchmark problems for comparing
the performance of numerical algorithms for solving FODEs are also constructed in
Appendix A. These benchmark problems can be solved directly by the algorithms
given in the book, and many of them have already yielded numerical solutions with

http://cn.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox
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considerable accuracy and speed. In addition, the reusable codes and models in this
book can also reproduce the numerical solutions of these problems, and readers can
also write codes for their own or others’algorithms to find the results which are better
than those in this book in terms of speed, accuracy, and adaptability. Readers can
also develop their own benchmark problems to challenge the algorithms in this book.
As the old Chinese saying goes, “Try it to show you are a horse not a mule”, and only
through such fair comparisons and solutions canmeaningful progress be made in this
area of research in the right direction.

All the results in this book can be reproduced by the corresponding MATLAB
statements given in the book and the open-source FOTF Toolbox. It is believed that
readers can use this book and the toolbox to gain more knowledge in the field of
fractional calculus.
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