Mechanisms and Machine Science

Med Amine Laribi
Carl A. Nelson
Marco Ceccarelli
Saïd Zeghloul Editors

New Advances in Mechanisms, Transmissions and Applications
 Proceedings of the Sixth MeTrApp Conference 2023

Mechanisms and Machine Science

Series Editor

Marco Ceccarelli ©, Department of Industrial Engineering, University of Rome Tor Vergata, Roma, Italy

Advisory Editors

Sunil K. Agrawal, Department of Mechanical Engineering, Columbia University, New York, NY, USA
Burkhard Corves, RWTH Aachen University, Aachen, Germany
Victor Glazunov, Mechanical Engineering Research Institute, Moscow, Russia
Alfonso Hernández, University of the Basque Country, Bilbao, Spain
Tian Huang, Tianjin University, Tianjin, China
Juan Carlos Jauregui Correa (1), Universidad Autonoma de Queretaro, Queretaro, Mexico
Yukio Takeda, Tokyo Institute of Technology, Tokyo, Japan

This book series establishes a well-defined forum for monographs, edited Books, and proceedings on mechanical engineering with particular emphasis on MMS (Mechanism and Machine Science). The final goal is the publication of research that shows the development of mechanical engineering and particularly MMS in all technical aspects, even in very recent assessments. Published works share an approach by which technical details and formulation are discussed, and discuss modern formalisms with the aim to circulate research and technical achievements for use in professional, research, academic, and teaching activities.

This technical approach is an essential characteristic of the series. By discussing technical details and formulations in terms of modern formalisms, the possibility is created not only to show technical developments but also to explain achievements for technical teaching and research activity today and for the future.

The book series is intended to collect technical views on developments of the broad field of MMS in a unique frame that can be seen in its totality as an Encyclopaedia of MMS but with the additional purpose of archiving and teaching MMS achievements. Therefore, the book series will be of use not only for researchers and teachers in Mechanical Engineering but also for professionals and students for their formation and future work.

The series is promoted under the auspices of International Federation for the Promotion of Mechanism and Machine Science (IFToMM).

Prospective authors and editors can contact Mr. Pierpaolo Riva (publishing editor, Springer) at: pierpaolo.riva@ springer.com

Indexed by SCOPUS and Google Scholar.

Med Amine Laribi • Carl A. Nelson • Marco Ceccarelli • Saïd Zeghloul Editors

New Advances

in Mechanisms, Transmissions and Applications

Proceedings of the Sixth MeTrApp

Conference 2023

Editors
Med Amine Laribi
SP2MI - Site du Futuroscope
University of Poitiers
Poitiers Cedex 9, France
Marco Ceccarelli (
Department of Industrial Engineering
University of Rome Tor Vergata
Rome, Italy

Carl A. Nelson
College of Engineering
University of Nebraska-Lincoln
Lincoln, NE, USA
Saïd Zeghloul
SP2MI - Site du Futuroscope
University of Poitiers
Poitiers Cedex 9, France

ISSN 2211-0984
ISSN 2211-0992 (electronic)
Mechanisms and Machine Science
ISBN 978-3-031-29814-1 ISBN 978-3-031-29815-8 (eBook)
https://doi.org/10.1007/978-3-031-29815-8
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preface

The Sixth Conference on Mechanisms, Transmissions and Applications, MeTrApp 2023, was organized by the Cobotics, Bio-Engineering \& Robotics for Assistance (CoBRA) Team of the Pprime Institute of the University of Poitiers and was held at the Futuroscope Technopole, the CNAM-IFMI building, in the city of Poitiers, France, during the period 24-26 May 2023.

This conference constitutes the continuation of the MeTrApp conference tradition, which was held for the first time in Timisoara, Romania, in 2011; the second time in Bilbao, Spain, in 2013; the third time in Aachen, Germany, in 2015; the fourth time in Trabzon, Turkey, in 2017; and the fifth time in Dalian, China, in 2019.

The International Federation for the Promotion of Mechanism and Machine Science, IFToMM, has several technical committees, two of them being the technical committee on linkages and mechanical controls and the technical committee on micromachines. One of the main efforts of these two committees is directed to promoting the interaction among university professors and researchers, engineers that work in industry and postgraduate students, with the purpose of testing hypotheses and sharing knowledge in the field of machine theory. In this sense, this conference provides a highly suitable atmosphere to achieve this target.

The contents of this conference are brought together in this book formed by a collection of 38 peer-reviewed papers, dealing with important and up-to-date topics in the field of mechanisms and robotics. The main areas covered in this conference are computational and experimental methods, cobots and human-robot interaction, mechatronics, parallel manipulators, medical applications of mechanisms and robots, mechanism and machine design, dynamics of mechanisms and mechanical transmissions.

A significant number of authors have contributed to the success of this conference. The research papers included in this book are a compilation of relevant results developed by active research groups from many universities and institutions all over the world such as: Canada, China, Germany, Japan, India, Italy, Ireland, Kazakhstan, Mexico, Netherlands, France, Poland, Romania, Russia, Taiwan, Tunisia, Turkey, Spain, UK, USA and Vietnam.

We are grateful to the authors for their contributions and to all reviewers for their critical and valuable recommendations.

We also acknowledge the support of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM, http://iftomm.net/). We thank the TC on Linkages and Mechanical Controls and the TC on Micromachines of IFToMM, as well as IFToMM France, the French Section of IFToMM, for their sponsorship.

We thank the University of Poitiers, in particular the Fundamental and Applied Science Faculty, for its availability to host the MeTrApp2023 event.

The conference received generous support from local sponsors, namely the University of Poitiers, the Grand Poitiers, and the Nouvelle-Aquitaine region, which were crucial to make this conference possible.

A special recognition is also due to all members of the local organizing committee for their continuous work during the preparation of the meeting.

Finally, we thank the publisher Springer and its editorial staff for accepting and helping in the publication of this Proceedings volume within the book series on Mechanism and Machine Science (MMS).

May 2023
Med Amine Laribi
Carl Nelson
Marco Ceccarelli
Saïd Zeghloul

Organization

Program Committee Chairs

Antonov, Anton	
Araque Isidro, Jorge Enrique	University of Rome Tor Vergata, Industrial Engineering, Rome, Italy
Artem, Voloshkin	BSTU named after V.G. Shukhov, Belgorod, Russia
Baigunchekov, Zhumadil	Al-Farabi Kazakh National University, Research and Education Centre "Digital Technologies and Robotics", Almaty, Republic of Kazakhstan
Bäsel, Uwe	HTWK Leipzig, University of Applied Sciences, Faculty of Engineering, Leipzig, Germany
Castejon Sisamon, Cristina	
Corves, Burkhard	
Cafolla, Daniele	IRCCS Neuromed, Biomechatronics Unit, Pozzilli, Italy
Castillo, Eduardo	
Ceccarelli, Marco	University of Rome Tor Vergata, Rome, Italy
Contreras Calderon, María Guadalupe	Instituto Politécnico Nacional, CICATA-Qro., Querétaro, México
Doiron, Nikos	Université de Moncton, Mechanical Engineering, Moncton, Canada
Essomba, Térence	National Central University, Taoyuan City, Taiwan
Fomin, Alexey	Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russia
Gallant, Andre	Université de Moncton, Génie mécanique, Moncton, Canada
Garrosa, María	Universidad Carlos III de Madrid, Mechanical Engineering, Leganés, Spain
Gasparetto, Alessandro	
Gokhan, Kiper	İzmir Institute of Technology, Department Mechanical Engineering, İzmir, Türkiye
Hao, Guangbo	
Ionut, Geonea	University of Craiova, Craiova, Romania
Laribi, Med Amine	University of Poitiers, France
M. Mohan Kumar	

Makino, Koji

Mohan, Santhakumar
Nelson, Carl
Nguyen, Vu Linh
Petuya, Victor
Quaglia, Giuseppe
Riva, Pierpaolo
Russo, Matteo
Rybak, Larisa
Sandoval, Yamile
Sandoval, Juan
Su, Hang
Sun, Xiao
Takeda, Yukio
Tarnita, Daniela
Terada, Hidetsugu
Thomas, Mervin
Van der Wijk, V.
Wenger, Philippe
Ye, Siyuan
Zeghloul, Saïd
Urizar, Monica

University of Yamanashi, Mechatronics, Kofu, Japan

University of Nebraska-Lincoln, Lincoln, USA
VinUniversity, College of Engineering and Computer Science, Hanoi, Vietnam
.
.

University of Rome Tor Vergata, Roma, Italia
Belgorod State Technological University named after V.G. Shukhov, Belgorod, Russia
CONACYT-IPN, Mechatronics, Querétaro, México

University of Yamanashi, Department of Mechatronics, Kofu, Yamanashi, Japan
Tokyo Institute of Technology, Mechanical Engineering, Tokyo, Japan
University of Craiova, Faculty of Mechanics, Applied Mechanics, Craiova, Romania
University of Yamanashi, Graduate school of Engineering, Kofu, Japan
Indian Institute of Technology Palakkad, Mechanical Engineering, Palakkad, India
Delft University of Technology, Delft, Netherlands

University College Cork, School of Engineering and Architecture, Cork, Ireland
University of Poitiers, France

Contents

Keynote
Mechanism Design for Robot in Italy: Historical Backgrounds, Achievements, and Challenges 7
Marco Ceccarelli
Computational and Experimental Methods
Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator 15
Alexander Titov and Marco Ceccarelli
Experimental Validation of a Variable Stiffness Joint with Antagonistic Springs 23
Maria Guadalupe Contreras-Calderón, Juan Sandoval, Marc Arsicault, Eduardo Castillo-Castañeda, and Med Amine Laribi
Analysis of Fractional-Order on the Nonlinear Characteristic of Rotating Module 32
Jin Xie, Jianhua Sun, and Zhaohui Liu
Design of a Compact Motion Tracking Device with a Remote Center of Motion Dedicated to Laparoscopic Surgery 42
Siwar Bouzid, Abdelbadiâ Chaker, Marc Arsicault, Sami Bennour, and Med Amine Laribi
Development of a Virtual Reality Simulator for Robotic Assisted Surgery 52
Florin Covaciu, Iulia Pop, Bogdan Gherman, Adrian Pisla, Calin Vaida, Nadim Al Hajjar, and Doina Pisla
Cobots and Human-Robot Interaction
Torso Motion Monitoring with an IMU Set-Up 65
Michela Sgrosso, Marco Ceccarelli, Matteo Russo, Maria Garrosa Solana, and Daniele Cafolla
A Kinematic Analysis of a New LARMbot Torso Design 74
Wenshuo Gao, Matteo Russo, and Marco Ceccarelli
Kinematic Model and Numerical Evaluation of an Origami-Inspired Soft Pneumatic Actuator 82
Karina G. Velazquez-Flores, Ditzia S. Garcia-Morales,
X. Yamile Sandoval-Castro, Eduardo Castillo-Castaneda, and Annika Raatz
Throwing Capabilities of Manipulators 91
André Gallant and Clément Gosselin
Increasing the Payload of a 7DOF Cobot 101
Nikos Doiron and André Gallant
Kinematic and Static Modelling of a New Two-Degree-of-Freedom Cable Operated Joint 111
Isaac John, Santhakumar Mohan, and Philippe Wenger
Parallel Manipulators
Conceptual Design and Kinematic Analysis of a 1T2R Parallel Manipulator 127
Isaac John, Santhakumar Mohan, and A. P. Sudheer
Simulation-Based Comparative Study and Selection of Real-Time Controller for 3-PRRR Cartesian Parallel Manipulator 138
Mervin Joe Thomas, Santhakumar Mohan, Victoria Perevuznik, and Larisa Rybak
Stiffness Performance Analysis of a Delta Robot with Variable-Stiffness Joints 152
Carl Nelson, Laurence Nouaille, and Gérard Poisson
Velocity Analysis of a 5-DOF Hybrid Manipulator 161
Anton Antonov and Alexey Fomin
Working Mode Study of a New Spherical Parallel Manipulator with an Unlimited Self Rotation Capability 171
Chaima Lahdiri, Houssem Saafi, and Abdelfattah Mlika
Design and Balancing of a Novel 2R1T Manipulator with Remote Center of Motion 180
Tuğrul Yılmaz and Gökhan Kiper
Kinematic Analysis of the 3-U(RPRGR)RU Parallel Robot 189
Alexandru Oarcea, Elida-Gabriela Tulcan, and Erwin-Christian Lovasz
Medical Applications of Mechanisms and Robots
Kinematics and Design of a New Leg Exoskeleton for Human Motion Assistance 199
Geonea Ionut, Nicolae Dumitru, Cristian Copilusi, Laura Grigorie, and Daniela Tarnita
Development a Measurement Device for Each Finger Force Based on a Jamar Hand Dynamometer 209
Koji Makino, Zentaro Asahara, Lu Zhao, and Hidetsugu Terada
Development of a Reconfigurable Planar Cable-Driven Parallel Robot Combined with a Visual Servoing Module for Upper Limb Rehabilitation 219
Gianni Missineo, Ferdaws Ennaiem, Juan Sandoval, Giuseppe Carbone, and Med Amine Laribi
Lateral Support Mechanisms for Smart Walkers to Prevent Sideways Rollover 229
Nurdan Bilgin, Tolga Tutkan, Yılmaz Can Er, and Emre Nayır
Mechanism and Machine Design
Novel Design of an Orthogonal-Axis Type Precession Motion Ball Reducer 243
Hidetsugu Terada, Koji Makino, Xiao Sun, Kazuyoshi Ishida, Yuma Wada, and Manabu Nagai
Comparison of Methods of Finite Element Analysis in the Design of Mobile Robot Modules 254
Artem Voloshkin, Elena Gaponenko, Larisa Rybak, and Victoria Perevuznik
Modelling of a Tubular Kirigami (RC-kiri) with Outside Lamina Emergent Torsional Joints 264
Siyuan Ye, Pengyuan Zhao, Shiyao Li, Fatemeh Kavousi, and Guangbo Hao
Structural-Parametric Synthesis of the Planar Four-Bar and Six-Bar Function Generators with Revolute Joints 277
Zhumadil Baigunchekov, Med Amine Laribi, Giuseppe Carbone, Azamat Mustafa, Berik Sagitzhanov, and Nurdaulet Dosmagambet
Design and Modelisation of a 6 Degree of Freedom Interface with Repositionable Centre of Rotation 286
Alizée Koszulinski, Juan Sandoval, and Med Amine Laribi
Use of Serial Planar Linkages for an Augmented R-CUBE Mechanism with Six Degrees of Freedom 297
Terence Essomba, Yu-Wen Wu, and Med Amine Laribi
Functional Design of an Articulated Reconfigurable Mechanism for Electronic Parking Brake Systems 306
Giuseppe Quaglia, Fortunato Pepe, and Giovanni Colucci
Dynamics of Mechanisms
A Family of Functions for Dwell-Rise-Dwell Motions 319
Uwe Bäsel
Resonant Oscillations of a Nonideal Gyroscopic Rotor System with Nonlinear Restoring and Damping Characteristics 329
Zharilkassin Iskakov, Nutpulla Jamalov, Azizbek Abduraimov, and Akmaral Kalybaeva
Dynamic Simulation of Gyroscopic Rigid Rotor with Anisotropy of Elastic Support Restoring and Damping Characteristics 339
Zharilkassin Iskakov, Azizbek Abduraimov, and Aziz Kamal
Principal Vectors for Spatial Dynamical Analysis by Fischer 349
Svenja Stutzmann and Volkert van der Wijk
Dynamic Modelling of a Geometrically Non-uniform Elastic Beam to Mimic Snake Swimming Undulation 359
Elie Gautreau, Xavier Bonnet, Marc Arsicault, and Med Amine Laribi
Mechanical Transmissions
Helical Gear Contact Simulations and Their Applications in Automotive Transmission Systems 371
Ken Mao
A Novel Adjustable Constant-Force Mechanism Based on Spring and Gear Transmission 382
Vu Linh Nguyen
Design Proposal for Thumb Rehabilitator Using Cams 392
Araceli Zapatero-Gutiérrez, Eduardo Castillo-Castañeda, and Med Amine Laribi
Performance Analysis of a Mechanism-Driven Joint 404
Jorge Enrique Araque-Isidro, Marco Ceccarelli, and Daniele Cafolla
Correction to: Velocity Analysis of a 5-DOF Hybrid Manipulator C1
Anton Antonov and Alexey Fomin
Author Index 413

Keynote

Mechanism Design for Robot in Italy: Historical Backgrounds, Achievements, and Challenges

Marco Ceccarelli (D)
University of Rome Tor Vergata, 00133 Rome, Italy
marco.ceccarelli@uniroma2.it

Abstract

In the lecture past and modern achievements and results in Robot Design are presented through significant examples in order to stress the variety of solutions and creativity that the Italian community has provided and still provides in terms of theory and practice of technological developments as well as in terms of knowledge acquisition and formation of next generations.

Keywords: Robot Design • Mechanism Design • History of robotics • History of MMS • Italian distinguished figures

1 Summary

Robots are designed and applied in more and more application field in helping or substituting humans in their labour tasks and diary life. Achievements in Mechanism Design for Robots are developed in theoretical, numerical, and design works that once implemented in engineering practice or in science applications they contribute to innovation or even they are innovation themselves both in technical-scientific and social frames. Italian community has contributed and still give challenging solutions, [1].

The concept and role of mechanism design in the structures and functionality of robots is clarified in the scheme in Fig. 1 considering that a robot interacts with the environment and with the object of the manipulative task in terms of movement and force which require mechanical systems capable of transmitting motion and force, [2, 3]. The concept of innovation is summarized again in Fig. 1 in the complex multidisciplinary synergy of various actors among which the inventor and precisely the mechanical designer is fundamental to start the development of innovative solutions. The integration of these aspects is shown in the example of the flowchart which takes into account some of the most influential topics in the design of a service robot, [4].

Figures 2, 3 and 4 show examples of personalities and emblematic inventions in the development of robotics both in the past and in the present day. In particular, Fig. 2 refers to the Italian ingenuity during the Renaissance by engineers such as Mariano di Jacopo, Francesco di Giorgio and Leonardo da Vinci with solutions of mechanisms that can still today be considered of great interest in service robotics, [5-8].

Fig. 1. Schemes summarizing central role of mechanisms in robot design, $[2,3]$.

Fig. 2. Italian inventors and inventions in Mechanism Design at Renaissance, [5-8].

Figure 3 summarizes the pioneering contribution of Professor Alberto Rovetta in the early years of robotics in the aspects that made him famous for his ingenuity and creativity in the development of robots with mechatronics integrated mechanical designs, [9]. Finally, Fig. 4 shows examples from the direct experience of the author and his collaborators in developing a motion assistance system for the functionality and rehabilitation of the elbow using cable-driven manipulator systems with innovative solutions relating to aspects of creativity supported by the experience and expertise in the kinematics of parallel manipulators, [10, 11].

The above can be summarized in the fact that ingenuity and creativity in the design of robots as based on solutions for mechanical systems and in particular the mechanisms, is undoubtedly dictated by a prior knowledge of the issues concerning the problem under invention but also from a personal attitude for conceiving and investigating innovative solutions both in terms of new solutions and adaptations and improvements of existing solutions. In these aspects, Italians both in the past and in the present day demonstrate that they have these capacities for creativity and ingenuity in the design of mechanisms for robots as a combination of experience and knowledge with an attitude for conceiving solutions dictated by their own personal creativity.

Fig. 3. Alberto Rovetta: portrait and pioneering achievements in Robotics, [9]

Fig. 4. Examples of creative design solution in motion assistance at LARM2, [10, 11]

2 References

1. Ceccarelli, M.: Short history of mechanics of machinery in Italy. In: Cuzzolin, N. (ed.) Proceedings of 5th Italian Conference on History of Engineering, pp. 87-102 (2014) (in Italian)
2. Ceccarelli, M.: Innovation challenges for mechanism design. Mech. Machine Theory 125, 94-100 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11. 026
3. Ceccarelli, M.: Challenges for mechanism design in robotics. In: Arakelian, V., Wenger, P. (eds.) ROMANSY 22 - Robot Design, Dynamics and Control. CISM International Centre for Mechanical Sciences, vol, 584, pp.1-9. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78963-7_1
4. Ceccarelli, M.: Fundamentals of Mechanics of Robotic Manipulation. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90848-5
5. Ceccarelli, M.: Renaissance of Machines in Italy: from Brunelleschi to Galilei Through Francesco di Giorgio and Leonardo. Mech. Mach. Theory 43, 1530-1542 (2008). https://doi.org/10.1016/j.mechmachtheory.2008.01.001
6. Ceccarelli, M.: Contributions of Francesco di Giorgio in Mechanism Design, Anales de Ingeniería Mecánica, Año 21, UNED, Madrid, pp. 352-362, Septiembre 2018. SSN: 0212-5072
7. Ceccarelli, M.: Contributions of Mariano di Jacopo (il Taccola) in Mechanism Design, Anales de Ingeniería Mecánica, Año 22, Jaén, Octubre 2021, 06_008. SSN: 0212-5072
8. Ceccarelli, M.: Contributions of Leonardo da Vinci in mechanisms design. In: Proceedings of XXI Spanish National Congress of Mechanical Engineering, Universidad de Elche, pp. 459-466, November 2016. ISBN 78-84-16024-37-7
9. Ceccarelli, M., Rovetta, C.: Alberto Rovetta (1940-2020). In: Ceccarelli, M., Gasparetto, A. (eds.) Distinguished Figures in Mechanism and Machine Science. History of Mechanism and Machine Science, vol. 41, pp. 163-182. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18288-4_6
10. Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M.A., Urizar, M.: Design and experimental characterization of L-CADEL v2, an assistive device for elbow motion. Sensors 21, 5149 (2021). https://doi.org/10.3390/s21155149
11. Ceccarelli, M., Bottin, M., Russo, M., Rosati, G., Laribi, M.A., Petuya, V.: Requirements and solutions for motion limb assistance of COVID-19 patients. Robotics 11(2), 45 (2022). https://doi.org/10.3390/robotics11020045

Mechanism Design for Robot in Italy: Historical Backgrounds, Achievements, and Challenges

Marco Ceccarelli ${ }^{(\boxtimes)}$ (1)
University of Rome Tor Vergata, 00133 Rome, Italy
marco. ceccarelli@uniroma2.it

Abstract

In the lecture past and modern achievements and results in Robot Design are presented through significant examples in order to stress the variety of solutions and creativity that the Italian community has provided and still provides in terms of theory and practice of technological developments as well as in terms of knowledge acquisition and formation of next generations.

Keywords: Robot Design • Mechanism Design • History of Robotics • History of MMS • Italian Distinguished Figures

1 Summary

Robots are designed and applied in more and more application field in helping or substituting humans in their labour tasks and diary life. Achievements in Mechanism Design for Robots are developed in theoretical, numerical, and design works that once implemented in engineering practice or in science applications they contribute to innovation or even they are innovation themselves both in technical-scientific and social frames. Italian community has contributed and still give challenging solutions [1].

The concept and role of mechanism design in the structures and functionality of robots is clarified in the scheme in Fig. 1 considering that a robot interacts with the environment and with the object of the manipulative task in terms of movement and force which require mechanical systems capable of transmitting motion and force [2, 3]. The concept of innovation is summarized again in Fig. 1 in the complex multidisciplinary synergy of various actors among which the inventor and precisely the mechanical designer is fundamental to start the development of innovative solutions. The integration of these aspects is shown in the example of the flowchart which takes into account some of the most influential topics in the design of a service robot [4].

Figures 2-4 show examples of personalities and emblematic inventions in the development of robotics both in the past and in the present day. In particular, Fig. 2 refers to the Italian ingenuity during the Renaissance by engineers such as Mariano di Jacopo, Francesco di Giorgio and Leonardo da Vinci with solutions of mechanisms that can still today be considered of great interest in service robotics [5-8].

Figure 3 summarizes the pioneering contribution of Professor Alberto Rovetta in the early years of robotics in the aspects that made him famous for his ingenuity and creativity in the development of robots with mechatronics integrated mechanical designs [9].

Fig. 1. Schemes summarizing central role of mechanisms in robot design $[2,3]$.

Fig. 2. Italian inventors and inventions in Mechanism Design at Renaissance [5-8].

Fig. 3. Alberto Rovetta: portrait and pioneering achievements in Robotics [9]

Finally, Fig. 4 shows examples from the direct experience of the author and his collaborators in developing a motion assistance system for the functionality and rehabilitation of the elbow using cable-driven manipulator systems with innovative solutions relating to aspects of creativity supported by the experience and expertise in the kinematics of parallel manipulators [10, 11].

The above can be summarized in the fact that ingenuity and creativity in the design of robots as based on solutions for mechanical systems and in particular the mechanisms, is undoubtedly dictated by a prior knowledge of the issues concerning the problem under invention but also from a personal attitude for conceiving and investigating innovative solutions both in terms of new solutions and adaptations and improvements of existing solutions. In these aspects, Italians both in the past and in the present day demonstrate that they have these capacities for creativity and ingenuity in the design of mechanisms for robots as a combination of experience and knowledge with an attitude for conceiving solutions dictated by their own personal creativity.

Fig. 4. Examples of creative design solution in motion assistance at LARM2 [10, 11]

References

1. Ceccarelli M.: Short history of mechanics of machinery in Italy. In: Proceedings of 5th Italian Conference on History of Engineering, Ed Cuzzolin, Napoli, pp. 87-102 (2014). (in Italian)
2. Ceccarelli, M.: Innovation challenges for mechanism design. Mech. Mach. Theory 125, 94100 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11.026
3. Ceccarelli, M.: Challenges for mechanism design in robotics. In: Arakelian, V., Wenger, P. (eds.) ROMANSY 22 - Robot Design, Dynamics and Control. CICMS, vol. 584, pp. 1-8. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78963-7_1
4. Ceccarelli M.: Fundamentals of Mechanics of Robotic Manipulation. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90848-5
5. Ceccarelli, M.: Renaissance of Machines in Italy: from Brunelleschi to Galilei through Francesco di Giorgio and Leonardo. Mech. Mach. Theory 43, 1530-1542 (2008). https:// doi.org/10.1016/j.mechmachtheory.2008.01.001
6. Ceccarelli M.: Contributions of Francesco di Giorgio in Mechanism Design, Anales de Ingeniería Mecánica, Año 21, UNED, Madrid, Septiembre, pp. 352-362. SSN: 0212-5072 (2018)
7. Ceccarelli M.: Contributions of Mariano di Jacopo (il Taccola) in Mechanism Design, Anales de Ingeniería Mecánica, Año 22, Jaén, Octubre, 06_008. SSN: 0212-5072 (2021)
8. Ceccarelli M.: Contributions of Leonardo da Vinci in Mechanisms Design, Proceedings of XXI Spanish National Congress of Mechanical Engineering, Universidad de Elche, November, pp. 459-466 (2016). ISBN 78-84-16024-37-7
9. Ceccarelli M., Rovetta C., Rovetta, A.: (1940-2020). In: Distinguished Figures in Mechanism and Machine Science - Part 5: Legacy and Contribution of the IFToMM Community, pp. 163182. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18288-4_6
10. Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M.A., Urizar, M.: Design and experimental characterization of L-CADEL v2, an assistive device for elbow motion. Sensors 21, 5149 (2021). https://doi.org/10.3390/s21155149
11. Ceccarelli, M., Bottin, M., Russo, M., Rosati, G., Laribi, M.A., Petuya, V.: Requirements and solutions for motion limb assistance of COVID-19 patients. Robotics 11(2), 45 (2022). https://doi.org/10.3390/robotics11020045

Computational and Experimental Methods

Design and Performance Characterization of a Gripper End-Effector for a Space Berthing Manipulator

Alexander Titov ${ }^{(\boxed{ }(\mathbb{)}}$ (D) and Marco Ceccarelli (D)
LARM2 Laboratory of Robot Mechatronics, University of Rome Tor Vergata, Rome, Italy
aleksandr.titov@students.uniroma2.eu, marco. ceccarelli@uniroma2.eu

Abstract

In this paper the task of berthing is presented with a suitable endeffector design. A geometry-based gripper is designed to capture microsatellites CubeSat on their ribs. To minimize the volume, one d.o.f.-mechanism is designed with a foldable structure. The workability of the design is tested by dynamic simulation to find and check the limitations of the construction.

Keywords: Space Robotics • On-Orbit Service Robotics • Space Berthing • CubeSats • Grippers

1 Introduction

The increasing amount of the satellites on orbit creates problems for the space discovering [1]. Malfunctioning due to absence of energy or components disability turns the satellite into space debris. Uncontrollable flight can cause collisions with other satellites. In the worst case, an uncontrollable chain reaction of collisions, which is called Kessler syndrome [2], can happen. To solve this problem, projects are undergoing for investigating design solutions of proper space robotic systems. The Engineering Test Satellite VII (ETS-VII) [3] demonstrated autonomous rendezvous and capturing technologies for cooperative space target. Target satellite was equipped by the markers, transponders, and reflectors to help the chaser satellite approach and capture it by the end-effectors. A malfunctioning satellite is a non-cooperative target, and usually it is not considered to be captured. German Space Agency presented the concept of the satellite [4] for transferring the non-cooperative space target from geostationary to graveyard orbit.

As in the general description from [5], a berthing task contains several stages considering attaching the interfaces installed on the manipulator and in the aimed satellite called chaser. This scheme is widely used for most operations in the International Space Station (ISS). Examples of on-orbit service robots, such as Canadarm [6], Canadarm2 [7] with Dextre [8], European Robotic Arm [9], and Japan Experimental Module Remote Manipulator System [10] use latch interfaces for connection to objects, move and replace them. Therefore, one of the requirements for any space objects to be manipulated is the availability of a compatible attachment port. Not all the satellites are designed with this
port available. In this case, geometry-based grasping can be convenient. The class of the microsatellites CubeSat [11] has a standardized parallelepiped geometry with durable ribs, which are suitable for grasping by a robot end-effector. One of the formulations of the grasping problem for the tumbling target is outlined in [12].

In this work, the requirements for the end-effector are formulated in terms of grasping parallelepiped shaped targets, such as CubeSat microsatellites. According to the requirements, a novel design is proposed in the paper and its basic performance is evaluated via simulation for an operation characterization.

2 Task and Requirements

To define the task clearly, the scheme of all possible ways of mating is presented in Fig. 1. Key points can help to clarify and choose the right way of mating. Typical discovered object, or target, is the CubeSat satellite. According to the type, it has a form of a cube or a parallelepiped from $100 \times 100 \times 100 \mathrm{~mm}$ to $226.3 \times 226.3 \times 366 \mathrm{~mm}$. With such a small size, it is assumed not to have any docking or berthing ports, as for the docking [13] or berthing task [14]. On the other hand, CubeSat's geometry allows to attach and fix it on the surface of a larger satellite, which can be named as "base". It is possible to fix multiple targets on the base.

Fig. 1. A flowchart for mating strategy with the target satellite

CubeSats are designed with durable ribs, which can be used for grasping. Grasping by the ribs has another advantage, such as alignment, which is useful to define the position of an object regarding the coordinate system of the end-effector and to place CubeSat in the geometry-based berthing port on the base.

CubeSat can be assumed as a passive object. The capturing task can be described as for cooperative or non-cooperative target, as in [3] and [4]. These projects did not consider the multiple targets fixture. If to adopt an end-effector for a specific target, it is possible to improve it in terms of grasping, mass, and volume.

General requirements for design of the end-effector for berthing task can be represented in the following parameters:

- Geometry-based grasping of targets with dimensions from $100 \times 100 \mathrm{~mm}$ (CubeSat 1U) to $226.3 \times 226.3 \mathrm{~mm}$ (CubeSat 12U)
- Alignment of targets
- Minimization of impact when grasping
- Force feedback to ensure a continuous contact during grasping
- Minimization of the mass and inertial characteristics
- Minimization of the volume of the end-effector when folding

3 A Proposed Solution

It is necessary to look at the geometry aspect of the grasping process, or how the fingers contact the ribs of the target. The planar task for a target profile 6 U is presented in Fig. 2. Grasping area is defined by the corner profile of fingers $\mathrm{A}_{\mathrm{g} 1} \mathrm{~A}_{\mathrm{g} 0} \mathrm{~A}_{\mathrm{g} 2} \mathrm{~B}_{\mathrm{g} 2} \mathrm{~B}_{\mathrm{g} 0} \mathrm{~B}_{\mathrm{g} 1}$, or $\left.<\mathrm{A}_{\mathrm{g}} \mathrm{B}_{\mathrm{g}}\right\rangle$. The main grasping axis is $\mathrm{A}_{\mathrm{g} 0} \mathrm{~B}_{\mathrm{g} 0}$ with the maximal length $\mathrm{L}_{\text {open }}$. The angle $\mathrm{A}_{\mathrm{g} 1} \mathrm{~A}_{\mathrm{g} 0} \mathrm{~A}_{\mathrm{g} 2}$ is equal 90 deg, length $\mathrm{A}_{\mathrm{g} 1} \mathrm{~A}_{\mathrm{g} 0}$ is equal to $\mathrm{A}_{\mathrm{g} 2} \mathrm{~A}_{\mathrm{g} 0}$, so the width of the grasping area $\mathrm{H}_{\mathrm{c}}=\sqrt{2 \cdot\left(A_{g 1} A_{g 0}\right)^{2}}$. The target can be grasped only if one of its diagonals is fully placed inside the grasping area. This condition can be written as

$$
\mathrm{A}_{\mathrm{t} 0} \in\left\langle\mathrm{~A}_{\mathrm{g}} \mathrm{~B}_{\mathrm{g}}\right\rangle \bigcap B_{\mathrm{t} 0} \in\left\langle\mathrm{~A}_{\mathrm{g}} \mathrm{~B}_{\mathrm{g}}\right\rangle
$$

Fig. 2. A design scheme for grasping a rectangle-profile target type 6 U
Δx and Δy are the linear misalignments of the target are measured as the distance between centres. β is the angular misalignment between a diagonal of the target and the main grasping axis. The diagonal of a target is defined as d_{t}. The grasping condition can also be written as

$$
\Delta \mathrm{y}+\frac{\mathrm{d}_{\mathrm{t}}}{2} \sin \beta<\frac{\mathrm{H}_{\mathrm{c}}}{2}
$$

For a rectangle-profile target, γ is an inclination angle, which shows a difference between square and rectangle diagonals. To align 6 U target profile in fingertips of an end-effector, fingertips should be able to rotate to angle $\pm \gamma$ around $\mathrm{A}_{\mathrm{g} 0}$ and $\mathrm{B}_{\mathrm{g} 0}$, respectively. For 6 U target, measured $\gamma=21.8^{\circ}$.

To grasp all mentioned types of targets, distance between fingertips of end-effector was defined in the following way. According to Fig. 3, grasping is provided by the fingertips, only two dimensions are needed. The dimensions of the smallest target are $100 \times 100 \mathrm{~mm}$, the biggest one is $226.3 \times 226.3 \mathrm{~mm}$. Diagonals for the square or rectangle bodies are calculated with the Pythagorean theorem. The smallest diagonal is 141.4 mm , the biggest one is 320.0 mm . The distance between fingertips should be more
than the biggest diagonal. It is assumed as 5% more than biggest diagonal or 336 mm . For this case, $\mathrm{L}_{\max }=\mathrm{l}_{0}+\mathrm{h}$, where $\mathrm{l}_{0}=\mathrm{l}_{1}+\mathrm{l}_{2}$. Length $\mathrm{h}=25 \mathrm{~mm}$ is a gap between rotational joint, which is connected to the finger, to its fingertip. $\mathrm{D} / 2$ is the half of the diagonal of the target. To grasp the smallest object, distance $\mathrm{L}_{\text {min }}$ is assumed 1% less than diagonal of the smallest target or 140 mm . In this position, $\alpha=90^{\circ}$. To calculate the lengths l_{1} and l_{2}, the equation system is presented as

$$
\left\{\begin{array}{c}
\mathrm{l}_{1}+\mathrm{l}_{2}=\mathrm{L}_{\max }-h \\
\mathrm{l}_{1}^{2}+\left(\mathrm{L}_{\min }-\mathrm{h}\right)^{2}=\mathrm{l}_{2}^{2}
\end{array}\right.
$$

According to this equation system, length $1_{1}=64.4 \mathrm{~mm}$ and $1_{2}=78.6 \mathrm{~mm}$.
To grasp targets with all listed dimensions, the rotation angle α is calculated by using cosine rule.

Fig. 3. Kinematic scheme of the end-effector

Knowing $1_{1}, 1_{2}, 1_{0}$, angle α is calculated by following equation:

$$
\alpha=\cos ^{-1} \frac{1_{0}^{2}+1_{1}^{2}-1_{2}^{2}}{2 \cdot 1_{0} \cdot 1_{1}}
$$

For CubeSat $12 \mathrm{U}, 6 \mathrm{U}$, and $1 \mathrm{U}, \alpha$ is equal to $23.4^{\circ}, 53.5^{\circ}$, and 90°, respectively.

4 A CAD Design

Following the requirements, the novel mechanism of the end-effector has been designed. The main movement is grasping the parallelepiped body. It is assumed the grasping should be carried out by the ribs of the target. Three dimensions of the target profiles are proposed: two square forms 100 mm and 226.3 mm , and a rectangular form $100 \times$ 226.3 mm . To grasp these forms, the end-effector is implemented as a double slider-crank mechanism with L-shaped fingertips, as in Figs. 2 and 3. The translational synchronized movement of fingers executes the grasping. The movements of the end-effector fingers are coplanar with the diagonals of these profiles. The mechanism design with the target type of 12 U is presented in Fig. 4. To show the components, target is presented half transparent.

