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Preface

TheSixthConference onMechanisms, Transmissions andApplications,MeTrApp2023,
was organized by the Cobotics, Bio-Engineering & Robotics for Assistance (CoBRA)
Team of the Pprime Institute of theUniversity of Poitiers andwas held at the Futuroscope
Technopole, the CNAM-IFMI building, in the city of Poitiers, France, during the period
24–26 May 2023.

This conference constitutes the continuation of the MeTrApp conference tradition,
which was held for the first time in Timisoara, Romania, in 2011; the second time in
Bilbao, Spain, in 2013; the third time in Aachen, Germany, in 2015; the fourth time in
Trabzon, Turkey, in 2017; and the fifth time in Dalian, China, in 2019.

The International Federation for the Promotion ofMechanism andMachine Science,
IFToMM, has several technical committees, two of them being the technical committee
on linkages andmechanical controls and the technical committee onmicromachines.One
of themain efforts of these twocommittees is directed to promoting the interaction among
university professors and researchers, engineers that work in industry and postgraduate
students, with the purpose of testing hypotheses and sharing knowledge in the field of
machine theory. In this sense, this conference provides a highly suitable atmosphere to
achieve this target.

The contents of this conference are brought together in this book formed by a col-
lection of 38 peer-reviewed papers, dealing with important and up-to-date topics in the
field of mechanisms and robotics. The main areas covered in this conference are compu-
tational and experimental methods, cobots and human–robot interaction, mechatronics,
parallel manipulators, medical applications of mechanisms and robots, mechanism and
machine design, dynamics of mechanisms and mechanical transmissions.

A significant number of authors have contributed to the success of this conference.
The research papers included in this book are a compilation of relevant results developed
by active research groups from many universities and institutions all over the world
such as: Canada, China, Germany, Japan, India, Italy, Ireland, Kazakhstan, Mexico,
Netherlands, France, Poland, Romania, Russia, Taiwan, Tunisia, Turkey, Spain, UK,
USA and Vietnam.

We are grateful to the authors for their contributions and to all reviewers for their
critical and valuable recommendations.

We also acknowledge the support of the International Federation for the Promotion
of Mechanism andMachine Science (IFToMM, http://iftomm.net/). We thank the TC on
Linkages and Mechanical Controls and the TC on Micromachines of IFToMM, as well
as IFToMM France, the French Section of IFToMM, for their sponsorship.

We thank the University of Poitiers, in particular the Fundamental and Applied
Science Faculty, for its availability to host the MeTrApp2023 event.

The conference received generous support from local sponsors, namely the Uni-
versity of Poitiers, the Grand Poitiers, and the Nouvelle-Aquitaine region, which were
crucial to make this conference possible.

http://iftomm.net/
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A special recognition is also due to all members of the local organizing committee
for their continuous work during the preparation of the meeting.

Finally, we thank the publisher Springer and its editorial staff for accepting and help-
ing in the publication of this Proceedings volume within the book series on Mechanism
and Machine Science (MMS).

May 2023 Med Amine Laribi
Carl Nelson

Marco Ceccarelli
Saïd Zeghloul
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Mechanism Design for Robot in Italy:
Historical Backgrounds, Achievements,

and Challenges

Marco Ceccarelli

University of Rome Tor Vergata, 00133 Rome, Italy
marco.ceccarelli@uniroma2.it

Abstract. In the lecture past and modern achievements and results in Robot
Design are presented through significant examples in order to stress the variety
of solutions and creativity that the Italian community has provided and still
provides in terms of theory and practice of technological developments as well
as in terms of knowledge acquisition and formation of next generations.

Keywords: Robot Design � Mechanism Design � History of robotics � History
of MMS � Italian distinguished figures

1 Summary

Robots are designed and applied in more and more application field in helping or
substituting humans in their labour tasks and diary life. Achievements in Mechanism
Design for Robots are developed in theoretical, numerical, and design works that once
implemented in engineering practice or in science applications they contribute to
innovation or even they are innovation themselves both in technical-scientific and
social frames. Italian community has contributed and still give challenging solutions,
[1].

The concept and role of mechanism design in the structures and functionality of
robots is clarified in the scheme in Fig. 1 considering that a robot interacts with the
environment and with the object of the manipulative task in terms of movement and
force which require mechanical systems capable of transmitting motion and force, [2,
3]. The concept of innovation is summarized again in Fig. 1 in the complex multi-
disciplinary synergy of various actors among which the inventor and precisely the
mechanical designer is fundamental to start the development of innovative solutions.
The integration of these aspects is shown in the example of the flowchart which takes
into account some of the most influential topics in the design of a service robot, [4].

Figures 2, 3 and 4 show examples of personalities and emblematic inventions in the
development of robotics both in the past and in the present day. In particular, Fig. 2
refers to the Italian ingenuity during the Renaissance by engineers such as Mariano di
Jacopo, Francesco di Giorgio and Leonardo da Vinci with solutions of mechanisms that
can still today be considered of great interest in service robotics, [5–8].

https://orcid.org/0000-0001-9388-4391


Fig. 1. Schemes summarizing central role of mechanisms in robot design, [2, 3].

Fig. 2. Italian inventors and inventions in Mechanism Design at Renaissance, [5–8].
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Figure 3 summarizes the pioneering contribution of Professor Alberto Rovetta in
the early years of robotics in the aspects that made him famous for his ingenuity and
creativity in the development of robots with mechatronics integrated mechanical
designs, [9]. Finally, Fig. 4 shows examples from the direct experience of the author
and his collaborators in developing a motion assistance system for the functionality and
rehabilitation of the elbow using cable-driven manipulator systems with innovative
solutions relating to aspects of creativity supported by the experience and expertise in
the kinematics of parallel manipulators, [10, 11].

The above can be summarized in the fact that ingenuity and creativity in the design
of robots as based on solutions for mechanical systems and in particular the mecha-
nisms, is undoubtedly dictated by a prior knowledge of the issues concerning the
problem under invention but also from a personal attitude for conceiving and inves-
tigating innovative solutions both in terms of new solutions and adaptations and
improvements of existing solutions. In these aspects, Italians both in the past and in the
present day demonstrate that they have these capacities for creativity and ingenuity in
the design of mechanisms for robots as a combination of experience and knowledge
with an attitude for conceiving solutions dictated by their own personal creativity.

Fig. 3. Alberto Rovetta: portrait and pioneering achievements in Robotics, [9]

4 M. Ceccarelli



2 References

1. Ceccarelli, M.: Short history of mechanics of machinery in Italy. In: Cuzzolin, N.
(ed.) Proceedings of 5th Italian Conference on History of Engineering, pp. 87–102
(2014) (in Italian)

2. Ceccarelli, M.: Innovation challenges for mechanism design. Mech. Machine
Theory 125, 94–100 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.11.
026

3. Ceccarelli, M.: Challenges for mechanism design in robotics. In: Arakelian, V.,
Wenger, P. (eds.) ROMANSY 22 – Robot Design, Dynamics and Control. CISM
International Centre for Mechanical Sciences, vol, 584, pp.1–9. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-78963-7_1

4. Ceccarelli, M.: Fundamentals of Mechanics of Robotic Manipulation. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-90848-5

5. Ceccarelli, M.: Renaissance of Machines in Italy: from Brunelleschi to Galilei
Through Francesco di Giorgio and Leonardo. Mech. Mach. Theory 43, 1530–1542
(2008). https://doi.org/10.1016/j.mechmachtheory.2008.01.001

6. Ceccarelli, M.: Contributions of Francesco di Giorgio in Mechanism Design,
Anales de Ingeniería Mecánica, Año 21, UNED, Madrid, pp. 352–362, Septiembre
2018. SSN: 0212-5072

Fig. 4. Examples of creative design solution in motion assistance at LARM2, [10, 11]

Mechanism Design for Robot in Italy 5

https://doi.org/10.1016/j.mechmachtheory.2017.11.026
https://doi.org/10.1016/j.mechmachtheory.2017.11.026
https://doi.org/10.1007/978-3-319-78963-7_1
https://doi.org/10.1007/978-3-030-90848-5
https://doi.org/10.1016/j.mechmachtheory.2008.01.001


7. Ceccarelli, M.: Contributions of Mariano di Jacopo (il Taccola) in Mechanism
Design, Anales de Ingeniería Mecánica, Año 22, Jaén, Octubre 2021, 06_008.
SSN: 0212-5072

8. Ceccarelli, M.: Contributions of Leonardo da Vinci in mechanisms design. In:
Proceedings of XXI Spanish National Congress of Mechanical Engineering,
Universidad de Elche, pp. 459–466, November 2016. ISBN 78-84-16024-37-7

9. Ceccarelli, M., Rovetta, C.: Alberto Rovetta (1940–2020). In: Ceccarelli, M.,
Gasparetto, A. (eds.) Distinguished Figures in Mechanism and Machine Science.
History of Mechanism and Machine Science, vol. 41, pp. 163–182. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-18288-4_6

10. Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M.A., Urizar, M.: Design
and experimental characterization of L-CADEL v2, an assistive device for elbow
motion. Sensors 21, 5149 (2021). https://doi.org/10.3390/s21155149

11. Ceccarelli, M., Bottin, M., Russo, M., Rosati, G., Laribi, M.A., Petuya, V.:
Requirements and solutions for motion limb assistance of COVID-19 patients.
Robotics 11(2), 45 (2022). https://doi.org/10.3390/robotics11020045

6 M. Ceccarelli

https://doi.org/10.1007/978-3-031-18288-4_6
https://doi.org/10.3390/s21155149
https://doi.org/10.3390/robotics11020045


Mechanism Design for Robot in Italy: Historical
Backgrounds, Achievements, and Challenges

Marco Ceccarelli(B)

University of Rome Tor Vergata, 00133 Rome, Italy
marco.ceccarelli@uniroma2.it

Abstract. In the lecture past and modern achievements and results in Robot
Design are presented through significant examples in order to stress the vari-
ety of solutions and creativity that the Italian community has provided and still
provides in terms of theory and practice of technological developments as well as
in terms of knowledge acquisition and formation of next generations.

Keywords: Robot Design ·Mechanism Design · History of Robotics · History
of MMS · Italian Distinguished Figures

1 Summary

Robots are designed and applied in more and more application field in helping or substi-
tuting humans in their labour tasks and diary life. Achievements in Mechanism Design
for Robots are developed in theoretical, numerical, and design works that once imple-
mented in engineering practice or in science applications they contribute to innovation
or even they are innovation themselves both in technical-scientific and social frames.
Italian community has contributed and still give challenging solutions [1].

The concept and role of mechanism design in the structures and functionality of
robots is clarified in the scheme in Fig. 1 considering that a robot interacts with the
environment and with the object of the manipulative task in terms of movement and
force which require mechanical systems capable of transmitting motion and force [2,
3]. The concept of innovation is summarized again in Fig. 1 in the complex multidisci-
plinary synergy of various actors amongwhich the inventor and precisely themechanical
designer is fundamental to start the development of innovative solutions. The integration
of these aspects is shown in the example of the flowchart which takes into account some
of the most influential topics in the design of a service robot [4].

Figures 2–4 show examples of personalities and emblematic inventions in the devel-
opment of robotics both in the past and in the present day. In particular, Fig. 2 refers to
the Italian ingenuity during the Renaissance by engineers such as Mariano di Jacopo,
Francesco di Giorgio and Leonardo da Vinci with solutions of mechanisms that can still
today be considered of great interest in service robotics [5–8].

Figure 3 summarizes the pioneering contribution of Professor Alberto Rovetta in the
early years of robotics in the aspects that made him famous for his ingenuity and creativ-
ity in the development of robots with mechatronics integrated mechanical designs [9].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. A. Laribi et al. (Eds.): MeTrApp 2023, MMS 124, pp. 7–11, 2023.
https://doi.org/10.1007/978-3-031-29815-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29815-8_1&domain=pdf
http://orcid.org/0000-0001-9388-4391
https://doi.org/10.1007/978-3-031-29815-8_1


8 M. Ceccarelli

Fig. 1. Schemes summarizing central role of mechanisms in robot design [2, 3].

Fig. 2. Italian inventors and inventions in Mechanism Design at Renaissance [5–8].
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Fig. 3. Alberto Rovetta: portrait and pioneering achievements in Robotics [9]

Finally, Fig. 4 shows examples from the direct experience of the author and his collabo-
rators in developing a motion assistance system for the functionality and rehabilitation
of the elbow using cable-driven manipulator systems with innovative solutions relating
to aspects of creativity supported by the experience and expertise in the kinematics of
parallel manipulators [10, 11].

The above can be summarized in the fact that ingenuity and creativity in the design of
robots as based on solutions for mechanical systems and in particular the mechanisms, is
undoubtedly dictated by a prior knowledge of the issues concerning the problem under
invention but also from a personal attitude for conceiving and investigating innovative
solutions both in terms of new solutions and adaptations and improvements of existing
solutions. In these aspects, Italians both in the past and in the present day demonstrate
that they have these capacities for creativity and ingenuity in the design of mechanisms
for robots as a combination of experience and knowledge with an attitude for conceiving
solutions dictated by their own personal creativity.
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Fig. 4. Examples of creative design solution in motion assistance at LARM2 [10, 11]
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of a Gripper End-Effector for a Space Berthing
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Abstract. In this paper the task of berthing is presented with a suitable end-
effector design. A geometry-based gripper is designed to capture microsatellites
CubeSat on their ribs. To minimize the volume, one d.o.f.-mechanism is designed
with a foldable structure. The workability of the design is tested by dynamic
simulation to find and check the limitations of the construction.

Keywords: Space Robotics · On-Orbit Service Robotics · Space Berthing ·
CubeSats · Grippers

1 Introduction

The increasing amount of the satellites on orbit creates problems for the space discov-
ering [1]. Malfunctioning due to absence of energy or components disability turns the
satellite into space debris. Uncontrollable flight can cause collisions with other satellites.
In the worst case, an uncontrollable chain reaction of collisions, which is called Kessler
syndrome [2], can happen. To solve this problem, projects are undergoing for investi-
gating design solutions of proper space robotic systems. The Engineering Test Satellite
VII (ETS-VII) [3] demonstrated autonomous rendezvous and capturing technologies
for cooperative space target. Target satellite was equipped by the markers, transponders,
and reflectors to help the chaser satellite approach and capture it by the end-effectors. A
malfunctioning satellite is a non-cooperative target, and usually it is not considered to be
captured. German SpaceAgency presented the concept of the satellite [4] for transferring
the non-cooperative space target from geostationary to graveyard orbit.

As in the general description from [5], a berthing task contains several stages con-
sidering attaching the interfaces installed on the manipulator and in the aimed satellite
called chaser. This scheme is widely used for most operations in the International Space
Station (ISS). Examples of on-orbit service robots, such as Canadarm [6], Canadarm2 [7]
with Dextre [8], European Robotic Arm [9], and Japan Experimental Module Remote
Manipulator System [10] use latch interfaces for connection to objects, move and replace
them. Therefore, one of the requirements for any space objects to be manipulated is the
availability of a compatible attachment port. Not all the satellites are designed with this
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port available. In this case, geometry-based grasping can be convenient. The class of the
microsatellites CubeSat [11] has a standardized parallelepiped geometry with durable
ribs, which are suitable for grasping by a robot end-effector. One of the formulations of
the grasping problem for the tumbling target is outlined in [12].

In thiswork, the requirements for the end-effector are formulated in terms of grasping
parallelepiped shaped targets, such as CubeSat microsatellites. According to the require-
ments, a novel design is proposed in the paper and its basic performance is evaluated
via simulation for an operation characterization.

2 Task and Requirements

To define the task clearly, the scheme of all possible ways ofmating is presented in Fig. 1.
Key points can help to clarify and choose the right way of mating. Typical discovered
object, or target, is the CubeSat satellite. According to the type, it has a form of a cube
or a parallelepiped from 100× 100× 100 mm to 226.3× 226.3× 366 mm.With such a
small size, it is assumed not to have any docking or berthing ports, as for the docking [13]
or berthing task [14]. On the other hand, CubeSat’s geometry allows to attach and fix it
on the surface of a larger satellite, which can be named as “base”. It is possible to fix
multiple targets on the base.

Fig. 1. A flowchart for mating strategy with the target satellite

CubeSats are designedwith durable ribs,which can be used for grasping.Grasping by
the ribs has another advantage, such as alignment, which is useful to define the position
of an object regarding the coordinate system of the end-effector and to place CubeSat
in the geometry-based berthing port on the base.

CubeSat can be assumed as a passive object. The capturing task can be described
as for cooperative or non-cooperative target, as in [3] and [4]. These projects did not
consider the multiple targets fixture. If to adopt an end-effector for a specific target, it is
possible to improve it in terms of grasping, mass, and volume.

General requirements for design of the end-effector for berthing task can be
represented in the following parameters:

• Geometry-based grasping of targets with dimensions from 100 × 100 mm (Cube-
Sat 1U) to 226.3 × 226.3 mm (CubeSat 12U)

• Alignment of targets
• Minimization of impact when grasping
• Force feedback to ensure a continuous contact during grasping
• Minimization of the mass and inertial characteristics
• Minimization of the volume of the end-effector when folding
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3 A Proposed Solution

It is necessary to look at the geometry aspect of the grasping process, or how the fingers
contact the ribs of the target. The planar task for a target profile 6U is presented in
Fig. 2. Grasping area is defined by the corner profile of fingers Ag1Ag0Ag2Bg2Bg0Bg1,
or < AgBg >. The main grasping axis is Ag0Bg0 with the maximal length Lopen. The
angle Ag1Ag0Ag2 is equal 90 deg, length Ag1Ag0 is equal to Ag2Ag0, so the width of

the grasping area Hc =
√
2 · (Ag1Ag0)

2. The target can be grasped only if one of its
diagonals is fully placed inside the grasping area. This condition can be written as

At0 ∈ 〈AgBg〉
⋂

Bt0 ∈ 〈AgBg〉

Fig. 2. A design scheme for grasping a rectangle-profile target type 6U

�x and �y are the linear misalignments of the target are measured as the distance
between centres. β is the angular misalignment between a diagonal of the target and the
main grasping axis. The diagonal of a target is defined as dt. The grasping condition can
also be written as

�y + dt
2
sinβ <

Hc

2

For a rectangle-profile target, γ is an inclination angle, which shows a difference between
square and rectangle diagonals. To align 6U target profile in fingertips of an end-effector,
fingertips should be able to rotate to angle ± γ around Ag0 and Bg0, respectively. For
6U target, measured γ = 21.8°.

To grasp all mentioned types of targets, distance between fingertips of end-effector
was defined in the following way. According to Fig. 3, grasping is provided by the
fingertips, only two dimensions are needed. The dimensions of the smallest target are
100 × 100 mm, the biggest one is 226.3 × 226.3 mm. Diagonals for the square or
rectangle bodies are calculated with the Pythagorean theorem. The smallest diagonal is
141.4 mm, the biggest one is 320.0 mm. The distance between fingertips should be more
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than the biggest diagonal. It is assumed as 5% more than biggest diagonal or 336 mm.
For this case, Lmax = l0 + h, where l0 = l1 + l2. Length h = 25 mm is a gap between
rotational joint, which is connected to the finger, to its fingertip. D/2 is the half of the
diagonal of the target. To grasp the smallest object, distance Lmin is assumed 1% less
than diagonal of the smallest target or 140 mm. In this position, α = 90°. To calculate
the lengths l1 and l2, the equation system is presented as

{
l1 + l2 = Lmax − h

l21 + (Lmin − h)2 = l22

According to this equation system, length l1 = 64.4 mm and l2 = 78.6 mm.
To grasp targets with all listed dimensions, the rotation angle α is calculated by using

cosine rule.

Fig. 3. Kinematic scheme of the end-effector

Knowing l1, l2, l0, angle α is calculated by following equation:

α = cos−1 l
2
0 + l21 − l22
2 · l0 · l1

For CubeSat 12U, 6U, and 1U, α is equal to 23.4°, 53.5°, and 90°, respectively.

4 A CAD Design

Following the requirements, the novel mechanism of the end-effector has been designed.
The main movement is grasping the parallelepiped body. It is assumed the grasping
should be carried out by the ribs of the target. Three dimensions of the target profiles
are proposed: two square forms 100 mm and 226.3 mm, and a rectangular form 100 ×
226.3mm.To grasp these forms, the end-effector is implemented as a double slider-crank
mechanism with L-shaped fingertips, as in Figs. 2 and 3. The translational synchronized
movement of fingers executes the grasping. The movements of the end-effector fingers
are coplanar with the diagonals of these profiles. The mechanism design with the target
type of 12U is presented in Fig. 4. To show the components, target is presented half
transparent.


