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Preface

The book covers knowledge and results in theory, methodology and applications of Arti-
ficial Intelligence and Machine Learning in academia and industry. Nowadays, artificial
intelligence has been used in every company where intelligence elements are embedded
inside sensors, devices, machines, computers and networks. The chapters in this book
integrated approach toward global exchange of information on technological advances,
scientific innovations and the effectiveness of various regulatory programs toward AI
application inmedicine, biology, chemistry, financial, games, lawand engineering.Read-
ers can find AI application in industrial workplace safety, manufacturing systems, med-
ical imaging, biomedical engineering application, different computational paradigm,
COVID-19, liver tracking, drug delivery system and cost-effectiveness analysis. Real
examples from academia and industry give beyond state of the art for application of AI
and ML in different areas. These chapters are extended papers from the First Serbian
International Conference on Applied Artificial Intelligence (SICAAI), which was held
in Kragujevac, Serbia, on May 19–20, 2022 (www.aai2022.kg.ac.rs).

Nenad Filipovic

http://www.aai2022.kg.ac.rs/
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Jelena Živković and Ðor -de Ilić
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Ana Mirić and Nevena Milivojević
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Advances in the Use of Artificial Intelligence
and Sensor Technologies for Managing

Industrial Workplace Safety

Arso M. Vukićević1(B) and Miloš Petrović2

1 Faculty of Engineering, University of Kragujevac, 6 Sestre Janjić Street, 34000 Kragujevac,
Serbia

arso_kg@yahoo.com
2 School of Electrical Engineering, University of Belgrade, 73 Bulevar Kralja Aleksandra,

11000 Belgrade, Serbia
petrovic.milos@etf.bg.ac.rs

Abstract. With technological progress, workplace safety standards have
increased, so a growing scientific community focused on the application of tech-
nologies for improving workers’ safety and well-being. In this study, we review
recent advances in applying cloud technologies, artificial intelligence, and numer-
ous sensors to assess various problems in safety science, ranging from reporting
and management roles to improving the ergonomics of physical tasks. Particu-
larly, we review studies focused on applying or combining cloud technologies,
artificial intelligence, sensors, and robotics for studying or improving indus-
trial workplaces. The emphasis was on topics covered with our recent project
AI4WorkplaceSafety (http://ai4workplacesafety.com),wherewewere focused on:
1) developing a lightweight framework for easing the collection and management
of safety reports (related to unsafe acts and unsafe conditions). 2) Automating of
PPE compliance using computer vision, which represents specific cases of unsafe
acts. 3) Assessing and detecting unsafe acts related to pushing and pulling (typical
examples are workplaces in warehouses and transportation). 4) Finally, we briefly
presented amodular and adaptive laboratorymodel (industrial workstation) design
for a human–robot collaborative assembly task. It is concluded that ongoing tech-
nological progress and related multidisciplinary studies on this topic are expected
to result in a better understanding and prevention of workplace injuries.

Keywords: Artificial intelligence, workplace, safety, engineering.

1 Introduciton

Industry 4.0 (I4.0) is a term used to indicate the global industrial transformation driven
by rapid technological advances. According to the official Global Industry Classifi-
cation Standard (GICS), there are 11 sectors, 24 groups, 69 industries, and 158 sub-
industries [1]. Considering such diversity, it is nowadays more precise to talk about the
I4.0 branches; such are: Quality 4.0 [2], Maintenance 4.0 [3], and Safety 4.0 [4]. So far,
in many industrial branches, the major goal has been set towards automation which has

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Filipovic (Ed.): AAI 2022, LNNS 659, pp. 1–28, 2023.
https://doi.org/10.1007/978-3-031-29717-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29717-5_1&domain=pdf
http://ai4workplacesafety.com
https://doi.org/10.1007/978-3-031-29717-5_1
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brought tremendous progress in many manufacturing sectors (automotive, electronics
manufacturing, welding, etc.). However, it is shown that in practice there are still many
workplaces that cannot be adequately or fully automatized. Although there is a grow-
ing trend of supplementing laborious workplaces with (co)robots that can collaborate
with human operators [5] - authorities agree that the further evolution of technology and
industry will remain even more human-centered [6]. Thus, there is an increasing need
for technologies that could help in improving the well-being of human operators in an
industrial environment.

Fig. 1. Workflow of the digitalized management of unsafe conditions and unsafe events

1.1 Workplace Safety Management in SMEs

Risk and safety management is a broad topic [7], so the focus of this chapter will be
restricted to occupational safety and health (OSH). Briefly, the OSH scientists and pro-
fessionals aim to improve the safety, health, and welfare of people at work, with the end
goal to the number of production injuries and accidents down to zero. To reach this goal,
companies are focusing on proactive identification of the accidents’ precursors to prevent
accidents. According to Heinrich’s pyramid (Fig. 1), proactive identification of unsafe
conditions (UC) and unsafe acts (UA) have the biggest impact on safety [8]. Although
there are recommendations set by regulatory bodies and international standards, tradi-
tional management of workplace safety has shown to be a slow, subjective, and complex
task when it comes to industrial practice. In the rest of this chapter, the emphasis is put
on reviewing research studies that cover SMEs’ needs because of the fact that they gen-
erate most of the GDP and employment opportunities in developed countries. Moreover,
it is more likely that compact solutions proposed in the literature will be first applied
in SMEs on a smaller scale before being incorporated into enterprises’ ICT systems.
From the SMEs’ viewpoint, enterprise solutions frequently are too expensive, especially
when it comes to the incorporation of additional and/or nonstandard features specific to
their type and size of business [9]. In these terms, cloud technologies and compact web
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frameworks have shown the biggest potential to improve safety management, along with
computer vision techniques - as the recognition of UC/UA is a visual task.

Fig. 2. Workflow of the digitalized management of unsafe conditions and unsafe events [10]

1.2 The Importance of Timely and Objective Identification of UC/UA

With the progress of the Safety 4.0 paradigm, traditional paper and manual reporting are
being replaced with cloud-based applications and services run on smartphones and edge
devices. One such solution is the SafE-Tag, a minimalistic framework released with the
aim to enhance the collection of safety reports and delegation of corresponding tasks -
with the end goal of encouraging employees to proactively contribute and learn about
safety [10]. The graphical illustration of the concept proposed in the same study is given
in Fig. 2. The composing parts of the proposed solution are a) central cloud server and b)
remote mobile device - so that employees are allowed to collect and report UC and UA,
as well as to receive and respond to assigned tasks. Along with an efficient collection of
safety reports, the long-term benefit of digitalized safety reporting is to enable in-depth
analysis of safety performances by employing business intelligence.
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Fig. 3. Relation of workplace safety standards and PPE compliance

2 Misuse of PPE as the Use Case of Unsafe Acts

The Occupational Safety and Health Administration (OSHA) has proposed the five
levels of OSHA controls (Fig. 3): 1) elimination, 2) substitution, 3) engineering, 4)
administrative, and 5) use of personal protective equipment (PPE) [11]. In this sense, the
use of PPE may be considered a first-line barrier between employees and hazards when
applied. Despite the availability of PPEs, and corresponding PPE standardization and use
guidance, the industrial practice has shown that misuse of PPE still represents a serious
problem. Briefly, reports indicate that PPE misuse causes a number of injuries and large
losses to national economies [12]. This is explained by supervisors’ inability to timely
and objectively notice PPE non-use in large manufacturing halls where the number of
workers fluctuates [10]. Although PPEs are commonly stratified into four levels (A-D)
[13], in related studies PPEs are commonly split according to physiological functions
that they aim to protect. Initially proposed approaches are variants of radiomics-based
detection of helmets [14]. Recent studies are based on the use of convolutional neural
networks [15]. In terms of deep learning architectures used, the most frequently used
detectors are YOLOv3 [16, 17], Fast R-CNN [18]. In a recent study, Nagrath et al.
demonstrated the application of combining SSDandMobileNetV2 classifier forCovid19
mask detection [19].
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There is a high variability of PPEs concerning appearance and design. Therefore,
compliance of a head-mounted PPE is a very specific case. Moreover, sometimes it is
required for an employee to wear multiple PPEs simultaneously (e.g., hard hats, safety
glasses, safety masks, and earmuffs). Compared to previous studies that were running
multiple classifiers or multi-class classifiers for the head- mounted PPE and mainly
focused on hard hats and face masks, our goal was to assess the usage of object detectors
in a more efficient approach and perform comprehensive validation by accounting for
more PPE types that are relevant for wider industrial application of the computer vision-
based compliance of PPE (Fig. 4).

Fig. 4. The concept of AI-driven PPE compliance [20]

In this chapter, we review our recent study which proposed a generic procedure com-
posed of four steps (Fig. 5): 1) employee detection/identification of an in the workspace
(Fig. 5a); 2) pose estimation for detecting body landmark points (Fig. 5b); 3) use of the
pose landmark points to define regions of interest (ROI); and 4) classification of ROIs
(Fig. 5c).
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Fig. 5. Workflow of the proposed pose-aware PPE compliance [20]

Particularly, the procedure used HigherHRNet for pose estimation [21], which esti-
mates body landmark points by using the high-resolution representation provided by
HRNet [22]. The detected landmark points were used for defining regions of interest
(ROI) around five body parts (head, hands, upper body, legs, and whole body). Since the
PPE compliance was considered as a classification problem, previously cropped ROIs
were subjected for the various deep learning classification architectures MobileNetV2
[23], VGG19 [24], Dense-Net [25], Squeeze-Net [26], Inception_v3 [27], and ResNet
[28] - while the MobileNetV2 was the most optimal choice. Briefly, the MobileNetV2
is based on an inverted residual structure, where the input and output of the residual
block are thin bottleneck layers, while the intermediate expansion layer uses lightweight
depthwise convolutions to filter features as a source of non-linearity [23]. The authors
performed the transfer learning by using the model pre-trained on the ImageNet data
set [29]. The training was performed using the Adam optimization algorithm [30] with
the cross-entropy loss function and the following online augmentations: random rota-
tion (±30°), random flip, random crop, and Gaussian noise. The data set used in this
study was developed by combining web-mined images and public PPE datasets (from
the Roboflow hardhat train data set and the Pictor PPE data set). The metrics selected for
the evaluation and comparison of developedmodels were accuracy, precision, recall, and
f1 score. Considering the current privacy regulations and costs/complexity of using AI,
the solution is recommended for the use in controlled conditions, such as: 1) self-check
points (when users are asked to confirm their identity by using e.g., RFID card, while
AI is used solely for the PPE compliance but not for the purpose of identification and
tracking), and on 2) monitoring of particular workplaces/machines with high risk from
injuries (so that AI could ensure timely detection and mitigation of occurred risks). In
Fig. 6, we showed a couple of use cases [20].



Managing Industrial Workplace Safety 7

Fig. 6. Sample results of PPE compliance [20]

3 The Use of AI for Assessing the Safety of Pushing and Pulling
Activities

The focus of this section is onmanagingworkplace safety inworkplaces that involve tasks
of pushing and pulling (P&P), such as warehouses and transportation. Non-ergonomic
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P&P causes musculoskeletal disorders (MSD), including pain in the back, arms, neck,
etc. For employees, in addition to job loss (or forced retraining), MSD also has negative
long-term consequences in the form of permanent disabilities and inability to perform
everyday activities.

Fig. 7. Progress of the musculoskeletal disorders caused by repetitive non-ergonomics acts at a
workplace

Industrial practice recognizes two categories of a cargo P&P: 1) with wheel-based
tools (handcarts, forklifts, etc.) and 2) without wheels-based tools (rolling, sliding, and
pulling) [31]. This chapter is focused on the first group; however, the proposed methods
are applicable to the second group as well. Risks related to the P&P can be divided
into ergonomic (workplace-related) and individual (poor health habits or poor physical
conditions) [32]. The three key ergonomics risks, which are of interest for this study, are:
1) High frequency-repetition; 2) Excessive effort-overload; and 3) Incorrect (unnatural)
body posture. When a worker is exposed to these risks over time, fatigue of the human
body accumulates – and when the fatigue level overcomes the ability of the body to
recover, regenerate and adapt – MSDs and injuries occur (Fig. 7). The risk assessment
of P&P involves consideration of: 1) handcarts type and conditions; 2) weight of cargo;
2) operator’s body posture; 3) P&P path shape; 4) distance to be covered; 5) condition
of the floor; and 6) presence of obstacles. As may be noted, operators’ habits do not
directly determine most of these factors, or they do not change significantly over time.
For example, the condition of floors and equipment is in the charge of maintenance
engineers, process engineers are responsible for choosing the optimal route and mode
of transport, management and procurement are responsible for the optimal choice of the
type of handcrafts, etc. However, the position of the body during the P&P is extremely
subjective and it is not easy to be improved or monitored during working hours. The
current bottleneck of workplace safety practice is the assumption that a supervisor will
notice non- ergonomic handling of handcarts and timely warns operators – which is very
difficult to be managed manually. Accordingly, this study aimed to enhance this risk
assessment task and facilitate safety engineers’ precise preventive actions.
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Fig. 8. Experimental setup for P&P task
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Fig. 9. Experiment environment and P&P path

Figure 8 and Fig. 9 show the experiment environment and pushing and pulling path
used in the study [33] and our ongoing study. Asmay be noted, it is composed of complex
turnovers and push/pull maneuverings. In the recent study [33], we aimed to use force
IoT sensors to measure P&P force for various participants. Sample force diagrams are
shown in Fig. 10, where different colors were used to separate left- and right-hand forces.
From this sample diagram, there are considerable differences in signals measured from
the left and right hand, as well as for vertical and horizontal components of forces.



Managing Industrial Workplace Safety 11

Fig. 10. Pushing and pulling forces for experiments performed in study [33]

3.1 Workplace Musculoskeletal Disorders and Injuries

There is an increasing need to improve the interface between human operators and
new technologies while ensuring the implementation of the highest workplace safety
standards and well-being of human operators in an industrial environment. Besides,
new workplace safety standards declared zero injuries as an ultimate goal. To achieve
this challenge, safety science and ergonomics aim to design and improve workplaces by
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minimizing discomfort, exertion, and stress and eliminating hazards and risks of injuries
[34].

Previous studies showed that non-ergonomic execution of repetitive and physical
tasks is among the major causes of work-related musculoskeletal disorders (WMSDs)
[35]. It is important to emphasize the difference between difficulties in detecting and
managing unsafe acts and unsafe conditions. For example, the misplaced tools, missing
PPE, and unclear floors, represent typical unsafe conditions that can be instantly detected
and mitigated [20, 36]. Contrary to that, unsafe acts that may be related toWMSDs need
to be considered repetitive events resulting in accumulated negative effects [37]. The
practice has shown that timely and objective detection of unsafe acts is essential to
prevent WMSDs, and their accompanying negative consequences (disabilities and the
inability to perform everyday activities) [38]. The costs and consequences ofWMSDs are
studied by international organizations such as World Health Organization [39] - which
reports indicate that ~ 126.6 million adults in the US have a musculoskeletal disorder;
while similar reports related to the EU population indicate that 33% of workers have
unnatural body postures for > 25% of their working time [40].

Inmanufacturing halls, the key effort in implementing and follow-up of safety recom-
mendations are performed by onsite safety managers and safety supervisors. Their roles
are related to workplace monitoring with the aim of managing the worker’s actions and
to detects their distinctions from safety recommendations. However, the practice (large
manufacturing halls and the number of employees that move across) has shown that the
manual supervision of workers is ineffective and expensive. As a solution, a series of
initiatives tend to propose computerized tools to automate or improve the detection of
unsafe acts in both in-lab and industrial environments. The studies presented here are
mainly focused on analyzing the task of pushing and pulling (P&P) handcarts, which
was chosen as a representative, highly dynamic task whose variants are present in many
industries (transportation, warehouses, healthcare, etc.). Another interesting task that
will be covered is collaborative polishing with the help of a collaborative robot.

3.2 Computer Vision, Deep Learning and Workplace Safety

Detection and recognition of objects and (unsafe) actions is a well-studied topic in the
field of computer vision, which has recently rapidly evolved with the breakthrough of
deep learning [41]. In this section, we review studies in which computer-vision tech-
niques were used to recognize unsafe acts in industrial environments. In a study by
Han et al., a computer vision framework was proposed to identify critical unsafe behav-
ior in construction, specifically ladder climbing [42]. Three actions were considered
ascending, descending, and reaching far to a side (unsafe act). The detection of unsafe
actions was performed by combining the results of both 2D pose estimation and 3D
reconstruction and using the motion templates and skeleton models. The number of cor-
rectly detected actions was further enhanced with a more detailed human skeletal model
(with more joints) applying the same methodology [43]. Another approach for safety
assessment of ladder climbing tasks was presented, considering dynamic behavior as a
static posture and using a mathematical model of the human skeleton to identify unsafe
behaviors based on value ranges of joint parameters [44, 45]. Classification of postures
regarding human back, arms, and legs (and their three levels - straight, bent, and bent
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heavily) were employed to ensure ergonomic posture recognition [46]. An RGB camera
was used to capture skeleton motions, view-invariant features in 2D skeleton motions
were selected, and the function that approximates the relationship between real-world
3D angles/lengths and the corresponding projected 2D angles/lengths was defined. Risk
assessment for several outdoor jobs was performed using OpenPose [47] outputs and
computing Rapid Upper Limb Assessment (RULA) scores from snapshots and digital
videos. Monitoring construction workers is not a new concept, and procedures for detec-
tion that localize construction workers in video frames and initialize tracking have been
developed [48]. Some authors suggested that applications of deep learning, even though
more complex, could provide satisfactory results in the field of safety management. Seo
et al. offered a comprehensive review of systems for safety monitoring on construc-
tion sites, categorized previous studies into groups, and emphasized research challenges
[49]. A new hybrid deep learning model (CNN + LSTM) for automatic recognition of
workers’ unsafe actions was developed [50]. The approach was experimentally validated
in several scenarios on the task of ladder climbing, where a combination of CNN and
LSTM adequately examined spatial and temporal information. An improved CNN that
integrates red–green–blue, optical flow, and gray image streams for activity assessment
in construction are proposed [51]. It was tested on a dataset of real-world construction
videos containing actions of walking, transporting, and steel banding. To prevent work-
ers from falling from heights in construction, Fang et al. developed an algorithm using
a faster region-based CNN for detecting the presence of workers and a deep CNN for
determining if they are wearing a safety harness [52]. An interesting framework for risk
management of railway stations generalizable to a wide range of locations and some
additional types of risks was presented [53]. CNN was applied as a supervised machine
learning model to automatically extract and classify risky behaviors (fall, slip, and trip)
in the stations.

Fig. 11. EMG measuring equipment and selected arm muscles
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3.3 The Use of Sensors for Analyzing Workplace Safety

As an alternative to computer vision, there are numerousmethods for safetymanagement
and recognition of human activities using sensor data. Yan et al. proposed a wearable
Inertial Measurement Units (WIMU), a based warning system for construction work-
ers that guarantees self-awareness and self- management of risk factors that lead to
WMSDs of the lower back and neck without disturbing their operations [54]. A smart-
phone application processes real- time data (quaternion data transferred into angles of
flexion, extension, lateral bending, and rotation) captured by the IMU sensors fastened
to the back of a safety helmet and the upper part of the back. Yang et al. presented
a computationally efficient method for activity recognition as a lightweight classifica-
tion using activity theory for representing everyday human activities, radiofrequency
identification (RFID) sensor data, and penalized Naive Bayes classifier [55]. Hofmann
et al. used ordinary smartphone sensor data and LSTM for human activity recognition
and detection of wasteful motion in production processes [56]. The activities considered
werewalking, standing, sitting, and jogging, and the reported accuracies for each activity
were above 98%. Ordóñez et al. proposed a deep framework for activity recognition -
DeepConvLSTM (convolutional and LSTM recurrent units) suitable for homogeneous
sensor modalities and multimodal wearable sensors [57].

EMG has the potential to guide our understanding of motor control and provide
knowledge of the underlying physiological processes determining force control. It opens
the possibility of acquiring insight into muscle activity (load) and better interpreting
overexertion, thus preventing the threat of WMSDs and enhancing industrial workplace
safety. Even though this idea is not new [58, 59], the scientific fields of biomechanics and
biomedical engineering still need to be further investigated, and more effort needs to be
put into analyzing industrial task execution. Detailed instructions for EMGmeasurement
methodology have already been presented and widely used [60, 61].

EMG sensors were utilized, as a primary tool, in many recent studies that tried to
analyze and assess the risk levels of WMSDs. An extensive study (more than 100 work-
ers with and without a history of chronic pain) was conducted, testing lumbar paraspinal
muscles as a predictor of low-back pain (LBP) risk [62]. The same participants were
reevaluated two years later, and by examining some EMG variables, it was possible
to successfully identify a subgroup of subjects with a higher risk of back pain. In-lab
experiment on the risk assessment of non-fatal, cumulative musculoskeletal low back
disorders among roofers was presented [63]. The effect of working on uneven rooftops,
differentworking postures (stoop and kneeling), facing direction, andworking frequency
was evaluated using EMG measurements and 3D human motion data. An analysis of
experienced and inexperienced rodworkers using EMG sensors and Xsens MTx Xbus
systemwas conducted to examine the factors that affect the risk of developing lower back
musculoskeletal disorders [64]. Working strategies of the two groups were compared,
with the accent on levels of back moments L4/L5 and the time spent in an upright and
flexed posture. A novel wearable wireless system capable of real- time assessment of
the muscular efforts and postures of the human upper limb for WMSD diagnosis was
proposed [65]. This real-time system that combines IMU and EMG sensors was tested
on the task of repetitive object lifting and dropping, and the risk was estimated based
on Rapid Upper Limb Assessment (RULA) and the Strain Index (SI). A biomechanical
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analysis was conducted in the solid waste collection industry investigating five occu-
pational LBP risk factors for three techniques of waste collection, throwing and three
garbage bag masses [66]. LBP risk factors were computed using a full-body muscu-
loskeletal model in OpenSim, where muscle activity was estimated in two ways: using
EMG electrodes (more accurate) and the conventional static optimization method.

Fig. 12. VIBE architecture for 3D pose estimation from monocular images [33, 67]

3.4 The Use of 3D Pose Estimation and Human Body Models

The experimentswere recordedusing fourDAHUAIPC-HFW2831TP-ZS8MPWDRIR
Bullet IP cameras with a DAHUAPFS3010-8ET-96 8port Fast Ethernet PoE switch. The
host PC had an 1151 Intel Core i3-8100 3.6-GHz 6-MB BOX CPU. In our experiments,
the Video Inference for Body Pose and Shape Estimation (VIBE) architecture [67] is
used to solve the 3D pose reconstruction problem in an adversarial manner. VIBE is a
video pose and shape estimation method. The first step of VIBE is a pose generator that
extracts image features from video input using a pretrained CNN. Temporal encoder
- bidirectional Gated Recurrent Units (GRU) processes these features to make use of
the sequential nature of human motion, thus incorporating information from past and
future frames which is beneficial when the body of the person is occluded or its pose
is ambiguous in a particular frame. Then, the regressor predicts the parameters of the
Skinned Multi-Person Linear (SMPL) body model [68] for the whole input sequence at
each time instance to obtain realistic and kinematically plausible 3D body shapes and
poses (motions). SMPL parametric model delivers a detailed 3D mesh of a human body
composed of Quad4 elements with N = 6890 vertices and K = 23 joints. The SMPL
model is composed of 82 parameters �, which are divided into: 1) pose parameters θ

∈ R72 (rotation of the 23 body landmark points), and 2) shape parameters β ∈ R10 (the
first 10 coefficients of a PCA space).
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Fig. 13. SMPL model with ergonomic parameters
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Accordingly, the SMPL model is a differentiable function, M(θ, β) ∈ R6890×3. The
motion discriminator has the task of deciding whether the generated sequence of poses
corresponds to a realistic or fake sequence. It uses a stack of GRU layers to process poses
sequentially. Then the self-attention mechanism dynamically aggregates and amplifies
the contribution of important frames. The motion discriminator is trained on AMASS
database (~11,000 movements of ~ 300 subjects) [69], and it takes predicted pose
sequences along with pose sequences from AMASS. If the motion discriminator cannot
spot the difference between predicted poses and the poses generated fromAMASS, then
the predicted motion is realistic (adversarial approach).

From the reconstructed SMPL pose, we chose 17 landmark points and computed
a series of 13 parameters (divided into three groups) that were used to assess P&P
ergonomics (Fig. 13) [33]:

• Leg parameters - the angle of the left knee ψL(�1, 2, 3), the angle of the right knee
ψR(�4, 5, 6), the angle of the left lower leg and the vertical axis ξL(�1, 2, Z), and
the angle of the right lower leg and the vertical axis ξR(�4, 5, Z);

• Spine parameters - the angle of spine φ(�15, 16, 17), the angle of the spine and the
vertical axis ϕ(�17, 15, Z), the vertical distance between landmark points 1 and 3 τ|1,
3|Z, the vertical distance between points 1 and 17 υ|1, 17|Z, and the angle of torsion
between the shoulder and the hips ω (�13, 14, 12, 9);

• Arm parameters - the angle of the left elbow χL(�10, 11, 12), the angle of the right
elbow χR(�7, 8, 9), the angle between the left upper arm and the torso εL(�13, 9,
8), and the angle between the right upper arm and the torso εR(�14, 12, 11).

Fig. 14. Concept for MeshCNN pose classification

The polygonal meshes provide an efficient, non-uniform representation that approx-
imates surfaces via 2D polygons in 3D space, explicitly capturing both shape surface
and topology [70].MeshCNN is a deep convolutional neural network designed explicitly
for triangular meshes [71]. It comprises customized convolution and pooling operations
tailored to operate with the 3D mesh edges. Convolutions process edges accounting
for mesh geodesic connections, while the pooling layers preserve the surface topology
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through the edge collapse.MeshCNNspatially adapts and learnswhich edges to collapse,
unlike classic edge collapse, which removes edges to minimize geometric distortion.
Through the successive call of mesh convolution and pooling, the network iteratively
generates valid mesh connectivity by learning to preserve and expand important features
and discard and collapse redundant ones. The idea is to use 3D pose estimation algo-
rithms, extract a realistic 3D model of a human body, and perform a classification to
safe and unsafe acts using irregular structures directly as inputs of a deep neural network
(Fig. 14).

Fig. 15. Collaborative robot and its laboratory setup

4 Assessment of the Human–Robot Collaborative Polishing Task
by Using EMG Sensors and 3D Pose Estimation

Our recent study presented amethod to improve human–robot collaboration in the indus-
trial setting [72]. The proposed method can be a tool to enhance ergonomics during
complex dynamic interactions between a human and a robot, and it can enable the
worker to be replaced by a collaborative robot capable of achieving workers’ level of
performance. The inspiration came from the vision of the factories of the future, where
humans and robots will work alongside. This goal is still far away, and more analy-
ses are required from the perspective of collaborative robot control, motion planning,
safety, and ergonomics. Previous studies focused on numerous aspects of human–robot
collaboration, and a unique framework is proposed for robot adaptation to human motor
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fatigue in collaborative industrial tasks [73]. KUKA Lightweight Robot was equipped
with a Pisa/IIT Softhand and controlled in hybrid force/impedance mode, and EMG
measurements were providing information about muscle activity. In order to improve
ergonomics, several configurations for collaborative power tooling tasks were tested
using an MVN Biomech suit (Xsens Technologies BV) and a Kistler force plate [74].
Conclusions about preferable human poses were obtained based on the analysis of over-
loading joint torques and muscle activities. The same group of authors introduced the
joint compressive forces to enhance the previously proposed model more precisely [75].
Finally, to account for multiple potential contributors to WMSDs, the set of ergonomic
indexes are defined, and more extensive experiments were conducted in a laboratory
setting [76]. None of the aforementioned solutions incorporated knowledge from the
field of computer vision nor performed 3D pose estimation using conventional cameras.

Fig. 16. Four different task configurations adopted by human co-worker

In our previous work, we conducted a laboratory study for human ergonomics moni-
toring and improvement in a human–robot collaborative polishing task. The data regard-
ing the human whole-body motion, the force exerted on the working piece, and the
human muscle activities were recorded through the experimental sessions to investigate
the trend of human muscular activity and its correlation with body posture configu-
rations and acting force during the collaborative task. Each subject was instructed to
adopt four different body postures (Fig. 16) and to perform the polishing task (using a
1.2 kg polisher) in each configuration for 2 min, exerting a constant force of 10 N and
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20 N, respectively. For the analysis of human muscle activity, dominant muscles for the
polishing task were selected: Biceps Brachii (BB), Triceps Brachii (TB), Anterior Del-
toid (AD), and Posterior Deltoid (PD), and four EMG surface electrodes (Trigno Avanti
sensors by Delsys) were placed on the subject’s skin (Fig. 11). The EMG signals were
processed following the samemethodology described in detail in our previouswork [77].
The robot (Franka Emika Panda Robot (Fig. 15)) was controlled in impedance mode,
and its task was to bring the board to the human and place it in different positions and
orientations in the workspace for each experimental session. The board was provided
with a force torque sensor to measure the interaction force between the tool and the
working piece.

Fig. 17. The concept of the proposed solution - laboratory setting with robot and EMG sensors
setup; and SMPL model with selected postural angles

The3Dpose reconstructionswere obtainedbyusing theVIBEdeep learning architec-
ture, and the poseswere representedwith the SkinnedMulti-Person Linear (SMPL) para-
metric bodymodel. Following the previous study [33],we extracted a series of ergonomic
parameters and selected two postural angles that are important collaborative polishing
task -χR and εR, defined on the SMPLmodel with key points 7–8-9 and 8–9-13, respec-
tively (Fig. 17). Furthermore, human arm manipulability w = √

det(J (q)J (q)T ) [78]
was taken into account.

The results indicated that for this collaborative task, muscles with dominant activity
are the Anterior Deltoid and Biceps Brachii, while the activity of Triceps Brachii and
Posterior Deltoid is almost insignificant (below 10% of maximal voluntary contraction
for all configurations). Configurations 2 and 3 have overall higher muscle activity than
configurations 1 and 4. A similar result can be found in previous work on this topic [74].
With the increase of exerted force, a notable increase, especially in Anterior Deltoid
and to some degree in Biceps Brachii activity is observed. Configuration 2 provides the
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lowest arm manipulability capacity, which affects task productivity and makes it even
less preferable than configuration 3. To conclude, preferable poses that are safe and
ergonomic and should be adopted by a human coworker in the collaborative polishing
task are configuration 1 and configuration 4. The results of 3D pose estimation, more
precisely the estimation of two considered postural angles, suggest that there is a potential
for successful pose differentiation that opens the possibility of performing accurate pose
classification of these four configurations. Pose classification can lead to the adaptation
of the robot behavior to assist and guide the human partner to conduct the collaborative
task with less effort and in a more ergonomic way.

Fig. 18. mBrainTrain EEG measurement devices [81]

5 The Use of EEG for Workplace Safety Assessment

In the late 1920 s, Hans Berger, a German psychiatrist, invented the electroencephalo-
gram (EEG) to assess the electrical activity of the cerebral cortex. Briefly, EEG is a
recording method of the macroscopic electrical activity of the surface layer of the brain
using smallmetal discs (electrodes) attached to the scalp [79]. Recently, a lot of effortwas
put into investigating the use of EEG in the industry (as it can reveal other useful informa-
tion, e.g., emotions [80]) - opening a new scientific discipline called neuroergonomics.
Monitoring workers’ attention and brain cognitive activity during repetitive tasks has
been studied using EEG. The potential of EEG to measure the cognitive workload of
human operators in the chemical process control room was evaluated [82], and a multi-
feature EEG- based workload metric with detailed insight into the evolution of the oper-
ator’s mental models during training was developed [83]. Deep learning algorithms were
used to investigate goal-directed context-dependent and context-independent behavioral
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patterns as neurological terms and goal-directed decision-making based on a correlation
of brain regions’ activity [84]. Detection of cognitive overload in highly controlled, spe-
cially designed tasks was also explored [85]. In order to develop future fatigue counter-
measures and reduce fatigue-related accidents, EEG frequency bands and four different
algorithms were used to detect fatigue [86].

5.1 Development of Modular and Adaptive Laboratory Set-Up
for Neuroergonomic and Human–Robot Interaction Research

Our recent study presented a modular and adaptive laboratory model (industrial work-
station) design for a human–robot collaborative assembly task [87]. The goal was to
analyze the task from the perspective of neuroergonomics and human- robot interaction:
to explore current industrial workers’ problems, including performance, well-being, and
injuries, and to create a solution that meets the operator’s anatomical, physiological, and
biomechanical characteristics. The workstation (Fig. 19) was comprised of several spe-
cific components: Poka–Yoke system (six lines that supply six different components),
collaborative robot station, EEG system (EASYCAP GmbH, Wörthsee, Germany and
SMARTING, mBrainTrain, Serbia (Fig. 18a)), EMG sensors (biosignalsplux muscle-
BAN), and touchscreen PC screen. Initial conclusions were that it is possible to improve
the physical, cognitive, and organizational aspects, thus increasing workers’ productiv-
ity and efficiency through transforming standard workplaces into the workplaces of the
future by applying ergonomic research laboratory experimental set-up.

Fig. 19. Lab Streaming Layer integration of key measurement set-up elements [87]


