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Preface

In the 16 years since the second edition of Statistics at Square Two was published, there 
have been many developments in statistical methodology and in methods of presenting 
statistics. MJC is pleased that his colleague Richard Jacques, who has considerable experi-
ence in more advanced statistical methods and teaching medical statistics to non- statisti-
cians, has joined him as a co-author. Most of the examples have been updated and two new 
chapters have been added on meta-analysis and on time series analysis. In addition, refer-
ence is made to the many checklists which have appeared since the last edition to enable 
better reporting of research.

This book is intended to build on the latest edition of Statistics at Square One.1 It is hoped 
to be a vade mecum for investigators who have undergone a basic statistics course, but need 
more advanced methods. It is also intended for readers and users of the medical literature, 
but is intended to be rather more than a simple “bluffer’s guide”. It is hoped that it will 
encourage the user to seek professional help when necessary. Important sections in each 
chapter are tips on reading and reporting about a particular technique; the book empha-
sises correct interpretation of results in the literature. Much advanced statistical method-
ology is used rather uncritically in medical research, and the data and code to check 
whether the methods are valid are often not provided when the investigators write up their 
results. This text will help readers of statistics in medical research engage in constructive 
critical review of the literature.

Since most researchers do not want to become statisticians, detailed explanations of the 
methodology will be avoided. However, equations of the models are given, since they 
show concisely what each model is assuming. We hope the book will prove useful to stu-
dents on postgraduate courses and for this reason there are a number of exercises with 
answers. For students on a more elementary course for health professionals we recom-
mend Walters et al.2

The choice of topics reflects what we feel are commonly encountered in the medical lit-
erature, based on many years of statistical refereeing. The linking theme is regression 
models and we cover multiple regression, logistic regression, Cox regression, random 
effects (mixed models), ordinal regression, Poisson regression, time series regression and 
meta-analysis. The predominant philosophy is frequentist, since this reflects the literature 
and what is available in most packages. However, a discussion on the uses of Bayesian 
methods is given in an Appendix 4. The huge amount of work on causal modelling is briefly 
referenced, but is generally beyond the scope of this book.



Preface  xii

Most of the concepts in statistical inference have been covered in Statistics at Square 
One.1 In order to keep this book short, reference will be made to the earlier book for basic 
concepts. All the analyses described in the book have been conducted in the free software 
R and the code is given to make the methods accessible to reserachers without commercial 
statistical packages.

We are grateful to Tommy Nyberg of the Biostatistics Unit, Cambridge for feedback on 
his survival paper and to our colleague, Jeremy Dawson, who read and commented on the 
final draft. Any remaining errors are our own.

Michael J. Campbell
Richard M. Jacques
Sheffield, June 2022

References

1 Campbell MJ. Statistics at Square One, 12th edn. Hoboken, NJ: Wiley-Blackwell, 2021.
2 Walters SJ, Campbell MJ, Machin D. Medical Statistics: A Textbook for the Health Sciences, 
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1

Models, Tests and Data

Summary

This chapter covers some of the basic concepts in statistical analysis, which are covered in 
greater depth in Statistics at Square One. It introduces the idea of a statistical model and 
then links it to statistical tests. The use of statistical models greatly expands the utility of 
statistical analysis. In particular, they allow the analyst to examine how a variety of vari-
ables may affect the result.

1.1 Types of Data

Data can be divided into two main types: quantitative and qualitative. Quantitative data tend 
to be either continuous variables that one can measure (such as height, weight or blood 
pressure) or discrete (such as numbers of children per family or numbers of attacks of asthma 
per child per month). Thus, count data are discrete and quantitative. Continuous variables 
are often described as having a Normal distribution, or being non-Normal. Having a Normal 
distribution means that if you plot a histogram of the data it would follow a particular 
“bell-shaped” curve. In practice, provided the data cluster about a single central point, and 
the distribution is symmetric about this point, it would be commonly considered close enough 
to Normal for most tests requiring Normality to be valid. Here one would expect the mean 
and median to be close. Non-Normal distributions tend to have asymmetric distributions 
(skewed) and the means and medians differ. Examples of non-Normally distributed variables 
include ages and salaries in a population. Sometimes the asymmetry is caused by outlying 
points that are in fact errors in the data and these need to be examined with care.

Note that it is a misnomer to talk of “non-parametric” data instead of non-Normally distributed 
data. Parameters belong to models, and what is meant by “non-parametric” data is data to which 
we cannot apply models, although as we shall see later, this is often a too limited view of statistical 
methods. An important feature of quantitative data is that you can deal with the numbers as 
 having real meaning, so for example you can take averages of the data. This is in contrast to 
qualitative data, where the numbers are often convenient labels and have no quantitative value.

Qualitative data tend to be categories, thus people are male or female, European, 
American or Japanese, they have a disease or are in good health and can be described as 
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nominal or categorical. If there are only two categories they are described as binary data. 
Sometimes the categories can be ordered, so for example a person can “get better”, “stay the 
same” or “get worse”. These are ordinal data. Often these will be scored, say, 1, 2, 3, but if 
you had two patients, one of whom got better and one of whom got worse, it makes no 
sense to say that on average they stayed the same (a statistician is someone with their head 
in the oven and their feet in the fridge, but on average they are comfortable!). The impor-
tant feature about ordinal data is that they can be ordered, but there is no obvious weight-
ing system. For example, it is unclear how to weight “healthy”, “ill” or “dead” as outcomes. 
(Often, as we shall see later, either scoring by giving consecutive whole numbers to the 
ordered categories and treating the ordinal variable as a quantitative variable or dichoto-
mising the variable and treating it as binary may work well.) Count data, such as numbers 
of children per family appear ordinal, but here the important feature is that arithmetic is 
possible (2.4 children per family is meaningful). This is sometimes described as having 
ratio properties. A family with four children has twice as many children as a family with 
two, but if we had an ordinal variable with four categories, say “strongly agree”, “agree”, 
“disagree” and “strongly disagree”, and scored them 1–4, we cannot say that “strongly dis-
agree”, scored 4, is twice “agree”, scored 2.

Qualitative data can also be formed by categorising continuous data. Thus, blood pressure 
is a continuous variable, but it can be split into “normotension” or “hypertension”. This 
often makes it easier to summarise, for example 10% of the population have hypertension 
is easier to comprehend than a statement giving the mean and standard deviation of blood 
pressure in the population, although from the latter one could deduce the former (and 
more besides). Note that qualitative data is not necessarily associated with qualitative 
research. Qualitative research is of rising importance and complements quantitative 
research. The name derives because it does not quantify measures, but rather identifies 
themes, often using interviews and focus groups.

It is a parody to suggest that statisticians prefer not to dichotomise data and researchers 
always do it, but there is a grain of truth in it. Decisions are often binary: treat or not treat. 
It helps to have a “cut-off”, for example treat with anti-hypertensive if diastolic blood 
pressure is >90 mmHg, although more experienced clinicians would take into account 
other factors related to the patient’s condition and use the cut-off as a point when their 
likelihood of treating increases. However, statisticians point out the loss of information 
when data are dichotomised, and are also suspicious of arbitrary cut-offs, which may have 
been chosen to present a conclusion desired by a researcher. Although there may be good 
reasons for a cut-off, they are often opaque, for example deaths from Covid are defined as 
deaths occurring within 30 days of a positive Covid test. Why 30 days, and not 4 weeks 
(which would be easier to implement) or 3 months? Clearly ten years is too long. In this 
case it probably matters little which period of time is chosen but it shows how cut-offs are 
often required and the justification may be lost.

1.2 Confounding, Mediation and Effect Modification

Much medical research can be simplified as an investigation of an input–output relation-
ship. The inputs, or explanatory variables, are thought to be related to the outcome or 
effect. We wish to investigate whether one or more of the input variables are plausibly 
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causally related to the effect. The relationship is complicated by other factors that are 
thought to be related to both the cause and the effect; these are confounding factors. A 
simple example would be the relationship between stress and high blood pressure. Does 
stress cause high blood pressure? Here the causal variable is a measure of stress, which we 
assume can be quantified either as a binary or continuous variable, and the outcome is a 
blood pressure measurement. A confounding factor might be gender; men may be more 
prone to stress, but they may also be more prone to high blood pressure. If gender is a con-
founding factor, a study would need to take gender into account. A more precise definition 
of a confounder states that a confounder should “not be on the causal pathway”. For 
example stress may cause people to drink more alcohol, and it is the increased alcohol con-
sumption which causes high blood pressure. In this case alcohol consumption is not a con-
founder, and is often termed a mediator.

Another type of variable is an effect modifier. Again, it is easier to explain using an 
example. It is possible that older people are more likely than younger people to suffer high 
blood pressure when stressed. Age is not a confounder if older people are not more likely 
to be stressed than younger people. However, if we had two populations with different age 
distributions our estimate of the effect of stress on blood pressure would be different in the 
two populations if we didn’t allow for age. Crudely, we wish to remove the effects of con-
founders, but study effect modifiers.

An important start in the analysis of data is to determine which variables are outputs 
and which variables are inputs, and of the latter which do we wish to investigate as 
causal, and which are confounders or effect modifiers. Of course, depending on the 
question, a variable might serve as any of these. In a survey of the effects of smoking on 
chronic bronchitis, smoking is a causal variable. In a clinical trial to examine the effects 
of cognitive behavioural therapy on smoking habit, smoking is an outcome. In the above 
study of stress and high blood pressure, smoking may also be a confounder.

A common error is to decide which of the variables are confounders by doing signifi-
cance tests. One might see in a paper: “only variables that were significantly related to 
the output were included in the model.” One issue with this is it makes it more difficult 
to repeat the research; a different researcher may get a different set of confounders. In 
later chapters we will discuss how this could go under the name of “stepwise” regression. 
We emphasise that significance tests are not a good method of choosing the variable to 
go in a model.

In summary, before any analysis is done, and preferably in the original protocol, the 
investigator should decide on the causal, outcome and confounder variables. An explora-
tion of how variables relate in a model is given in Section 1.10.

1.3 Causal Inference

Causal inference is a new area of statistics that examines the relationship between a puta-
tive cause and an outcome. A useful and simple method of displaying a causal model is 
with a Direct Acyclic Graph (DAG).1 They can be used to explain the definitions given in 
the previous section. There are two key features to DAGs: (1) they show direct relationships 
using lines and arrows and are usually read from left to right and (2) they don’t allow 
feedback, that is, you can’t get back to where you started following the arrows.
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We start with a cause, which might be an exposure (E) or a treatment (T). This is related 
to an outcome (O) or disease (D) but often just denoted Y. Confounders (C) are variables 
related to both E and Y which may change the relationship between E and Y. In randomised 
trials, we can in theory remove the relationship between C and T by randomisation, so 
making causal inference is easier. For observational studies, we remove the link between C 
and T using models, but models are not reality and we may have omitted to measure key 
variables, so confounding and bias may still exist after modelling.

Figure 1.1 shows a simple example. We want to estimate the relationship between an 
exposure (E) and an outcome (O). C1 and C2 are confounders in that they may affect one 
another and they both affect E and O. Note that the direction of the arrows means that nei-
ther C1 nor C2 are affected by E or O. Thus, E could be stress as measured by the Perceived 
Stress Scale (PSS) and O could be high blood pressure. Then C1 could be age and C2 eth-
nicity. Although age and ethnicity are not causally related, in the UK ethnic minorities 
tend to be younger than the rest of the population. Older people and ethnic minorities may 
have more stress and have higher blood pressure for reasons other than stress. Thus, in a 
population that includes a wide range of ages and ethnicities we need to allow for these 
variable when considering whether stress causes high blood pressure.

An important condition for a variable to be a confounder is that it is not on the direct 
casual path. This is shown in Figure 1.2, where an intermediate variable (IM) is on the 
causal path between E and O. An example might be that stress causes people to drink 
alcohol and alcohol is the actual cause of high blood pressure. To control for alcohol, 
one might look at two models with different levels of drinking. One might fit a model 
with and without the intermediate factor, to see how the relationship between E and 
O changes.

C2

C1

E O

Figure 1.1 A DAG showing confounding.

C2

E IM

C1

O

Figure 1.2 A DAG showing an intermediate variable (IM).
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One use of DAGs is to identify what is known as Berkson’s bias. This is where the 
arrows are reversed going to one particular variable, and so they collide at this vari-
able; this variable is called a collider (see Figure 1.3). This is the situation where having 
both O and E increases your chance of the collider. To extend the stress example, a 
hospital may run a cardiovascular clinic and so the investigators might choose cases of 
high blood pressure from the clinic and controls as people not in the clinic. However, 
stress may cause symptoms of cardiovascular disease and so stressed people are more 
likely to attend the clinic, which sets up a spurious association between stress and high 
blood pressure.

In general, allowing for confounders in models gives a better estimate of the strength of 
a causal relationship, whereas allowing for IMs and colliders does not and so it is important 
to identify which are which. DAGs are a qualitative way of expressing relationships, and 
one doesn’t often see them in publications. They also have their limitations, such as in 
displaying effect modifiers.2 Relationships can also depend on how a variable is coded, 
such as an absolute risk or a relative risk. Statistical models are useful for actually quanti-
fying and clarifying these relationships.

1.4 Statistical Models

The relationship between inputs and outputs can be described by a mathematical model 
that relates the inputs, which we have described earlier with causal variables, con-
founders and effect modifiers (often called “independent variables” and denoted by X), 
with the output (often called “dependent variable” and denoted by Y). Thus, in the stress 
and blood pressure example above, we denote blood pressure by Y, and stress and gender 
are both X variables. Here the X does not distinguish between confounding and cau-
sality. We wish to know if stress is still a good predictor of blood pressure when we know 
an individual’s gender. To do this we need to assume that gender and stress combine in 
some way to affect blood pressure. As discussed in Statistics at Square One, we describe 
the models at a population level. We take samples to get estimates of the population 
values. In general we will refer to population values using Greek letters and estimates 
using Roman letters.

The most commonly used models are known as “linear models”. They assume that the X 
variables combine in a linear fashion to predict Y. Thus, if X1 and X2 are the two independent 

Collider

O

C2

E

Figure 1.3 A DAG showing a collider.
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variables we assume that an equation of the form β0 + β1X1 + β2X2 is the best predictor of 
Y where β0, β1 and β2 are constants and are known as parameters of the model. The method 
often used for estimating the parameters is known as regression and so these are the regres-
sion parameters. The estimates are often referred to as the “regression coefficients”. Slightly 
misleadingly, the X variables do not need to be independent of each other so another con-
founder in the stress/blood pressure relationship might be employment, and age and 
employment are related, so for example older people are more likely to be retired. This can 
be seen in Figure 1.1, where confounding variables may be linked. Another problem with 
the term “linear” is that it may include interactions, so the model may be of the form 
β0 + β1X1 + β2X2 + β3X1X2. An effect modifier, described in the previous section, may be 
modelled as an interaction between a possible cause X1 and a possible confounder X2.

Of course, no model can predict the Y variable perfectly and the model acknowledges 
this by incorporating an error term. These linear models are appropriate when the outcome 
variable is continuous. The wonderful aspect of these models is that they can be general-
ised so that the modelling procedure is similar for many different situations, such as when 
the outcome is non-Normal or discrete. Thus, different areas of statistics, such as t-tests and 
chi-squared tests are unified and dealt with in a similar manner using a method known as 
“generalised linear models”.

When we have taken a sample, we can estimate the parameters of the model, and get a 
fit to the data. A simple description of the way that data relate to the model is given by 
Chatfield.3

DATA = FIT + RESIDUAL

The FIT is what is obtained from the model given the predictor variables. The RESIDUAL 
is the difference between the DATA and the FIT. For the linear model the residual is an 
estimate of the error term. For a generalised linear model this is not strictly the case, but the 
residual is useful for diagnosing poor fitting models, as we shall see later.

Models are used for two main purposes, estimation and prediction. For example we may 
wish to estimate the effect of stress on blood pressure, or predict what the lung function of 
an individual is given their age, height and gender.

Do not forget, however, that models are simply an approximation to reality. “All models 
are wrong, but some are useful.”

The subsequent chapters describe different models where the dependent variable takes 
different forms: continuous, binary, a survival time, a count and ordinal and when the 
values are correlated such as when they are clustered or measurements are repeated on the 
same unit. A more advanced text covering similar material is that by Frank Harrell.4 The 
rest of this chapter is a quick review of the basics covered in Statistics at Square One.

1.5 Results of Fitting Models

Models are fitted to data using a variety of methods. The oldest is the method of least 
squares, which finds values for the parameters that minimise the sum of the squared resid-
uals. Another is maximum likelihood, which finds the values of the parameters that gives 
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the highest likelihood of the data given the parameter estimates (see Appendix 2 for more 
details). For Normally distributed data the least squares method is also the maximum 
likelihood method. The output from a computer package will be an estimate of the param-
eter with an estimate of its variability (the standard error or SE). There will usually be a 
p-value and a confidence interval (CI) for the parameter. A further option is to use a robust 
standard error, or a bootstrap standard error, which are less dependent on the model 
assumptions and are described in Appendix 3. There will also be some measures as to 
whether the model is a good fit to the data.

1.6 Significance Tests

Significance tests such as the chi-squared test and the t-test, and the interpretation of 
p-values were described in Statistics at Square One. The usual format of statistical sig-
nificance testing is to set up a null hypothesis and then collect data. Using the null hy-
pothesis, we test if the observed data are consistent with the null hypothesis. As an 
example, consider a randomised clinical trial to compare a new diet with a standard diet 
to reduce weight in obese patients. The null hypothesis is that there is no difference bet-
ween the two treatments in weight changes of the patients. The outcome is the difference 
in the mean weight after the two treatments. We can calculate the probability of getting 
the observed mean difference (or one more extreme), if the null hypothesis of no 
difference in the two diets is true. If this probability (the p-value) is sufficiently small we 
reject the null hypothesis and assume that the new diet differs from the standard. The 
usual method of doing this is to divide the mean difference in weight in the two diet 
groups by the estimated SE of the difference and compare this ratio to either a t-distri-
bution (small sample) or a Normal distribution (large sample).

The test as described above is known as Student’s t-test, but the form of the test, whereby 
an estimate is divided by its SE and compared to a Normal distribution, is known as a Wald 
test or a z-test.

There are, in fact, a large number of different types of statistical test. For Normally dis-
tributed data, they usually give the same p-values, but for other types of data they can give 
different results. In the medical literature there are three different tests that are com-
monly used, and it is important to be aware of the basis of their construction and their 
differences. These tests are known as the Wald test, the score test and the likelihood ratio 
test. For non-Normally distributed data, they can give different p-values, although usually 
the results converge as the data set increases in size. The basis for these three tests is 
described in Appendix 2.

In recent times there has been much controversy over significance tests.5 They appear to 
answer a complex question with a simple answer, and as a consequence are often misused 
and misinterpreted. In particular, a non-significant p-value is supposed to indicate a lack of 
an effect, and a significant p-value to indicate an important effect. These misconceptions 
are discussed extensively in Statistics at Square One. The authors of this book believe they 
are still useful and so we will use them. It is one of our goals that this book will help reduce 
their misuse.
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1.7 Confidence Intervals

One problem with statistical tests is that the p-value depends on the size of the data set. 
With a large enough data set, it would be almost always possible to prove that two treat-
ments differed significantly, albeit by small amounts. It is important to present the results 
of an analysis with an estimate of the mean effect, and a measure of precision, such as a CI.6 
To understand a CI we need to consider the difference between a population and a sample. 
A population is a group to whom we make generalisations, such as patients with diabetes 
or middle-aged men. Populations have parameters, such as the mean HbA1c in people with 
diabetes or the mean blood pressure in middle-aged men. Models are used to model popu-
lations and so the parameters in a model are population parameters. We take samples to get 
estimates for model parameters. We cannot expect the estimate of a model parameter to be 
exactly equal to the true model parameter, but as the sample gets larger we would expect 
the estimate to get closer to the true value, and a CI about the estimate helps to quantify 
this. A 95% CI for a population mean implies that if we took 100 samples of a fixed size, and 
calculated the mean and 95% CI for each, then we would expect 95 of the intervals to 
include the true population parameter. The way they are commonly understood from a 
single sample is that there is a 95% chance that the population parameter is in the 95% CI. 
Another way of interpreting a CI is to say it is a set of values of the null hypothesis, from 
which the observed data would not be statistically significant. This points out that just as 
there are three commonly used methods to find p-values, there are also a number of differ-
ent methods to find CIs, and the method should be stated.6

In the diet trial example given above, the CI will measure how precisely we can estimate 
the effect of the new diet. If in fact the new diet were no different from the old, we would 
expect the CI for the effect measure to contain 0.

Cynics sometimes say that a CI is often used as a proxy for a significance test, that is, the 
writer simply reports whether the CI includes the null hypothesis. However, using CIs 
emphasises estimation rather than tests and we believe this is the important goal of anal-
ysis, that is, it is better to say being vaccinated reduces your risk of catching Covid by a 
factor of 95% (95% CI 90.3 to 97.6) than to simply say vaccination protects you from Covid 
(P < 0.001).7

CIs are also useful in non-inferiority studies, where one might want to show that two 
treatments are effectively equivalent, but perhaps one has fewer side effects than the other. 
Here one has to specify a non-inferiority margin, and conclude non-inferiority if the CI 
does not include the margin but does include a difference of zero. The concepts of null and 
alternative hypotheses are reversed and so require careful thought. Further discussion is 
given, for example, by Hahn.8

1.8 Statistical Tests Using Models

A t-test compares the mean values of a continuous variable in two groups. This can be writ-
ten as a linear model. In the example of the trial of two diets given above, weight after 
treatment was the continuous variable. Here the primary predictor variable X is Diet, 


