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The beginning of wisdom is this:

Get wisdom, and whatever else you get, get insight.
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Foreword by Ravi Bapna

onverting data into an asset is the new business imperative facing modern

managers. Each day the gap between what analytics capabilities make pos-
sible and companies’ absorptive capacity of creating value from such capabilities
increases. In many ways, data is the new gold—and mining this gold to create
business value in today’s context of a highly networked and digital society requires
a skillset that we haven’t traditionally delivered in business or statistics or engi-
neering programs on their own. For those businesses and organizations that feel
overwhelmed by today’s Big Data, the phrase you ain’t seen nothing yet comes to
mind. Yesterday’s three major sources of Big Data—the 20+ years of investment
in enterprise systems (ERP, CRM, SCM, etc.), the three billion plus people on
the online social grid, and the close to five billion people carrying increasingly
sophisticated mobile devices—are going to be dwarfed by tomorrow’s smarter
physical ecosystems fueled by the Internet of Things (IoT) movement.

The idea that we can use sensors to connect physical objects such as homes,
automobiles, roads, and even garbage bins and streetlights to digitally optimized
systems of governance goes hand in glove with bigger data and the need for
deeper analytical capabilities. We are not far away from a smart refrigerator
sensing that you are short on, say, eggs, populating your grocery store’s mobile
app’s shopping list, and arranging a Task Rabbit to do a grocery run for you.
Or the refrigerator negotiating a deal with an Uber driver to deliver an evening
meal to you. Nor are we far away from sensors embedded in roads and vehicles
that can compute traffic congestion, track roadway wear and tear, record vehicle
use, and factor these into dynamic usage-based pricing, insurance rates, and even
taxation. This brave new world is going to be fueled by analytics and the ability
to harness data for competitive advantage.

Business Analytics is an emerging discipline that is going to help us ride this
new wave. This new Business Analytics discipline requires individuals who are
grounded in the fundamentals of business such that they know the right ques-
tions to ask; who have the ability to harness, store, and optimally process vast
datasets from a variety of structured and unstructured sources; and who can then
use an array of techniques from machine learning and statistics to uncover new
insights for decision-making. Such individuals are a rare commodity today, but
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their creation has been the focus of this book for a decade now. This book’s
forte is that it relies on explaining the core set of concepts required for today’s
business analytics professionals using real-world data-rich cases in a hands-on
manner, without sacrificing academic rigor. It provides a modern-day founda-
tion for Business Analytics, the notion of linking the 2’s to the y’s of interest in
a predictive sense. I say this with the confidence of someone who was probably
the first adopter of the zeroth edition of this book (Spring 2006 at the Indian
School of Business).

The updated R version is much awaited. R is used by a wide variety
of instructors in our MS-Business Analytics program. The open-innovation
paradigm used by R is one key part of the analytics perfect storm, the other
components being the advances in computing and the business appetite for data-
driven decision-making.

The new addition also covers causal analytics as experimentation (often called
A/B testing in the industry), which is now becoming mainstream in the tech
companies. Further, the authors have added a new chapter on Responsible Data
Science, a new part on AutoML, more on deep learning and beefed up deep
learning examples in the text mining and forecasting chapters. These updates
make this new edition “state of the art” with respect to modern business analytics
and Al

I look forward to using the book in multiple fora, in executive education,
in MBA classrooms, in MS-Business Analytics programs, and in Data Science
bootcamps. I trust you will too!

RAVI BAPNA
Carlson School of Management, University of Minnesota, 2022



Foreword by Gareth James

he field of statistics has existed in one form or another for 200 years and by
T the second half of the 20th century, had evolved into a well-respected and
essential academic discipline. However, its prominence expanded rapidly in the
1990s with the explosion of new, and enormous, data sources. For the first part
of this century, much of this attention was focused on biological applications,
in particular, genetics data generated as a result of the sequencing of the human
genome. However, the last decade has seen a dramatic increase in the availability
of data in the business disciplines and a corresponding interest in business-related
statistical applications.

The impact has been profound. Fifteen years ago, when I was able to attract
a full class of MBA students to my new statistical learning elective, my colleagues
were astonished because our department struggled to fill most electives. Today,
we offer a Masters in Business Analytics, which is the largest specialized masters
program in the school and has application volume rivaling those of our MBA
programs. Our department’s faculty size and course offerings have increased
dramatically, yet the MBA students are still complaining that the classes are all
full. Google’s chiet economist, Hal Varian, was indeed correct in 2009 when he
stated that “the sexy job in the next 10 years will be statisticians.”

This demand is driven by a simple, but undeniable, fact. Business analyt-
ics solutions have produced significant and measurable improvements in business
performance, on multiple dimensions, and in numerous settings, and as a result,
there is a tremendous demand for individuals with the requisite skill set. How-
ever, training students in these skills is challenging given that, in addition to
the obvious required knowledge of statistical methods, they need to understand
business-related issues, possess strong communication skills, and be comfortable
dealing with multiple computational packages. Most statistics texts concentrate
on abstract training in classical methods, without much emphasis on practical,
let alone business, applications.

This book has by far the most comprehensive review of business analytics
methods that I have ever seen, covering everything from classical approaches
such as linear and logistic regression to modern methods like neural networks,
bagging and boosting, and even much more business-specific procedures such
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as social network analysis and text mining. If not the bible, it is at the least
a definitive manual on the subject. However, just as important as the list of
topics, is the way that they are all presented in an applied fashion using business
applications. Indeed the last chapter is entirely dedicated to 10 separate cases
where business analytics approaches can be applied.

In this latest edition, the authors have added an important new dimension
in the form of the R software package. Easily the most widely used and influ-
ential open source statistical software, R has become the go-to tool for such
purposes. With literally hundreds of freely available add-on packages, R can
be used for almost any business analytics related problem. The book provides
detailed descriptions and code involving applications of R in numerous business
settings, ensuring that the reader will actually be able to apply their knowledge
to real-life problems.

I would strongly recommend this book. I'm confident that it will be an
indispensable tool for any MBA or business analytics course.

GARETH JAMES
Goizueta Business School, Emory University, 2022



Preface to the Second R Edition

his textbook first appeared in early 2007 and has been used by numerous
T students and practitioners and in many courses, including our own expe-
rience teaching this material both online and in person for more than 15 years.
The first edition, based on the Excel add-in Analytic Solver Data Mining (pre-
viously XLMiner), was followed by two more Analytic Solver editions, a JMP
edition, an R edition, a Python edition, a RapidMiner edition, and now this
new R edition, with its companion website, www.dataminingbook.com.

This new R edition, which relies on the free and open source R software,
presents output from R, as well as the code used to produce that output, includ-
ing specification of a variety of packages and functions. Unlike computer-
science or statistics-oriented textbooks, the focus in this book is on machine
learning concepts and how to implement the associated algorithms in R. We
assume a basic familiarity with R.

For this new R edition, a new co-author, Peter Gedeck, comes on board
bringing extensive data science experience in business.

The new edition provides significant updates both in terms of R and in
terms of new topics and content. In addition to updating R code and routines
that have changed or become available since the first edition, the new edition
provides the following:

* A stronger focus on model selection using cross-validation with the use
of the caret package

 Streamlined data preprocessing using tidyverse style
* Data visualization using ggplot

* Names of R packages, functions, and arguments are highlighted in the
text, for easy readability.

This edition also incorporates updates and new material based on feedback
from instructors teaching MBA, MS, undergraduate, diploma, and executive
courses, and from their students. Importantly, this edition includes several new
topics:

XXI11
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* A dedicated section on deep learning in Chapter 11, with additional deep
learning examples in text mining (Chapter 21) and time series forecasting
(Chapter 19).

* A new chapter on Responsible Data Science (Chapter 22) covering topics
of fairness, transparency, model cards and datasheets, legal considerations,
and more, with an illustrative example.

* The Performance Evaluation exposition in Chapter 5 was expanded to
include further metrics (precision and recall, F1).

* A new chapter on Generating, Comparing, and Combining Multiple Mod-
els (Chapter 13) that covers ensembles, AutoML, and explaining model
predictions.

* A new chapter dedicated to Interventions and User Feedback (Chapter 14),
that covers A/B tests, uplift modeling, and reinforcement learning.

* A new case (Loan Approval) that touches on regulatory and ethical issues.

A note about the book’s title: The first two editions of the book used
the title Data Mining for Business Intelligence. Business intelligence today refers
mainly to reporting and data visualization (“what is happening now”), while
business analytics has taken over the “advanced analytics,” which include pre-
dictive analytics and data mining. Later editions were therefore renamed
Data Mining for Business Analytics. However, the recent Al transformation
has made the term machine learning more popularly associated with the meth-
ods in this textbook. In this new edition, we therefore use the updated
terms Machine Learning and Business Analytics.

Since the appearance of the (Analytic Solver-based) second edition, the land-
scape of the courses using the textbook has greatly expanded: whereas initially
the book was used mainly in semester-long elective MBA-level courses, it is now
used in a variety of courses in business analytics degrees and certificate programs,
ranging from undergraduate programs to postgraduate and executive education
programs. Courses in such programs also vary in their duration and coverage. In
many cases, this textbook is used across multiple courses. The book is designed to
continue supporting the general “predictive analytics” or “data mining” course
as well as supporting a set of courses in dedicated business analytics programs.

A general “business analytics,” “predictive analytics,” or “machine learning”
course, common in MBA and undergraduate programs as a one-semester elec-
tive, would cover Parts I-III, and choose a subset of methods from Parts IV
and V. Instructors can choose to use cases as team assignments, class discussions,
or projects. For a two-semester course, Part VII might be considered, and we
recommend introducing Part VIII (Data Analytics).

For a set of courses in a dedicated business analytics program, here are a few
courses that have been using our book:
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Predictive Analytics—Supervised Learning: In a dedicated business analytics
program, the topic of predictive analytics is typically instructed across a set
of courses. The first course would cover Parts I-1II, and instructors typically
choose a subset of methods from Part IV according to the course length. We
recommend including Part VIII: Data Analytics.

Predictive Analytics—Unsupervised Learning: This course introduces data
exploration and visualization, dimension reduction, mining relationships,
and clustering (Parts II and VI). If this course follows the Predictive
Analytics: Supervised Learning course, then it is useful to examine exam-
ples and approaches that integrate unsupervised and supervised learning,
such as Part VIII on Data Analytics.

Forecasting Analytics: A dedicated course on time series forecasting would rely
on Part VL.

Advanced Analytics: A course that integrates the learnings from predictive
analytics (supervised and unsupervised learning) can focus on Part VIII: Data
Analytics, where social network analytics and text mining are introduced,
and responsible data science is discussed. Such a course might also include
Chapter 13, Generating, Comparing, and Combining Multiple Models
from Part IV, as well as Part V, which covers experiments, uplift model-
ing, and reinforcement learning. Some instructors choose to use the cases
(Chapter 23) in such a course.

In all courses, we strongly recommend including a project component,
where data are either collected by students according to their interest or pro-
vided by the instructor (e.g., from the many machine learning competition
datasets available). From our experience and other instructors’ experience, such
projects enhance the learning and provide students with an excellent opportu-
nity to understand the strengths of machine learning and the challenges that arise
in the process.

GALIT SHMUELI, PETER C. BRUCE, PETER GEDECK, INBAL YAHAV, AND NITIN R.
PATEL
2022
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