

Methodik zur Identifikation des Wärmeaufteilungskoeffizienten bei der Fräsbearbeitung dünnwandinger Werkstücke

Johannes Martin Löhe

Methodik zur Identifikation des Wärmeaufteilungskoeffizienten bei der Fräsbearbeitung dünnwandinger Werkstücke Forschungsberichte iwb Band 383

Ebook (PDF)-Ausgabe:

ISBN 978-3-8316-7737-5 Version: 1 vom 10.02.2023

Copyright© utzverlag 2023

Alternative Ausgabe: Softcover ISBN 978-3-8316-4997-6 Copyright© utzverlag 2023

Johannes Martin Löhe

Methodik zur Identifikation des Wärmeaufteilungskoeffizienten bei der Fräsbearbeitung dünnwandinger Werkstücke

Forschungsberichte iwb

Band 383

Zugl.: Diss., München, Techn. Univ., 2022

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das Werk ist urheberrechtlich geschützt. Sämtliche, auch auszugsweise Verwertungen bleiben vorbehalten

Copyright © utzverlag GmbH · 2023

ISBN 978-3-8316-4997-6

Printed in Germany utzverlag GmbH, München 089-277791-00 · www.utzverlag.de

Geleitwort der Herausgeber

Die Produktionstechnik ist in Zeiten globaler Herausforderungen, wie der Klimakrise, dem Mobilitätswandel und der Überalterung der Gesellschaft in westlichen Ländern, für eine nachhaltige Weiterentwicklung unserer Industriegesellschaft von zentraler Bedeutung. Der Einfluss eines Industriebetriebs auf die Umwelt und die Gesellschaft hängt dabei entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktionsverfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Organisation und Technik erlaubt es, alle Potenziale für den Unternehmenserfolg auszuschöpfen. Dabei muss größtes Augenmerk darauf gelegt werden, möglichst ressourcenschonend, effizient und resilient zu werden, um flexibel im volatilen Produktionsumfeld zu agieren.

Um in dem Spannungsfeld Nachhaltigkeit, Komplexität, Kosten, Zeit und Qualität bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und -systemen einerseits zu verringern und andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des *iwb* ist die ständige Verbesserung von Produktentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung der Anforderungen des Personals sowie von Nachhaltigkeitsaspekten entwickelt. Die dabei eingesetzten rechnergestützten und Künstliche-Intelligenzbasierten Methoden und die notwendige Steigerung des Automatisierungsgrades dürfen jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der optimalen Einbindung ökologischer und sozialer Aspekte in alle Planungs- und Entwicklungsprozesse spielen deshalb eine sehr wichtige Rolle.

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den Forschungsbereichen des *iwb*. Diese reichen von der Entwicklung von Produktionssystemen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen Fertigung und Montage. Die Steuerung und der Betrieb von Produktionssystemen, die Qualitätssicherung, die Verfügbarkeit und die Autonomie sind Querschnittsthemen hierfür. In den *iwb*-Forschungsberichten werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des Institutes veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer zwischen dem Hochschulbereich und den Anwendenden zu verbessern.

Rüdiger Daub Gunther Reinhart Michael Zäh

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Werkzeugmaschinen und Betriebswissenschaften (*iwb*) der Technischen Universität München (TUM).

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Michael F. Zäh und Herrn Prof. Dr.-Ing. Gunther Reinhart für die wertvolle Unterstützung und die wohlwollende Förderung meiner Arbeit sowie das mir entgegengebrachte Vertrauen während meiner Zeit am *iwb*. Herrn Prof. Dr.-Ing. Michael F. Zäh möchte ich zudem für die Möglichkeit zur Promotion, die Geduld und die hilfreiche Betreuung danken. Des Weiteren danke ich Herrn Prof. Dr.-Ing. Konrad Wegener, dem Inhaber des Lehrstuhls für Produktionstechnik und Werkzeugmaschinen an der ETH Zürich, für die Übernahme des Korreferates und die aufmerksame Durchsicht meiner Dissertation.

Allen Mitarbeiterinnen und Mitarbeitern des Institutes sowie allen Studierenden, die mich bei der Erstellung meiner Arbeit unterstützt und begleitet haben, möchte ich für die schöne und bereichernde Zeit meinen Dank aussprechen. Besonders hervorheben möchte ich hierbei Herrn Dr.-Ing. Andreas Hees, Herrn Prof. Dr.-Ing. Mirko Langhorst und Herrn Prof. Dr.-Ing. Marc Lotz, die nicht nur durch wertvolle fachliche Diskussionen und ihre kritische Durchsicht zur erfolgreichen Fertigstellung dieser Arbeit beigetragen haben, sondern mich auch als Freunde auf dem Weg zur Promotion begleitet und motiviert haben. Dankend erwähnen möchte ich auch Frau Stephanie Hees, die im richtigen Augenblick die richtigen Worte fand.

Schließlich bedanke ich mich bei meiner Familie, besonders bei meinen Eltern, Margit und Thomas, für die bedingungslose Unterstützung auf meinem Lebensweg. Ohne sie wäre diese Promotion nicht möglich gewesen. Bei meinen Schwiegereltern, Marianne und Martin, bedanke ich mich für den durch ihre fortwährende Hilfe ermöglichten Freiraum. Der größte Dank gilt meiner Frau Katharina, die mir durch ihren uneingeschränkten Rückhalt die Zeit und Kraft für dieses Promotionsvorhaben gegeben hat und mich in den Höhen und Tiefen dieses Vorhabens begleitet und motiviert hat. Ihr und unseren Kindern widme ich diese Arbeit.

Inhaltsverzeichnis

Ve			er Formelzeichen	V V
				XIII
			e Formelzeichen	XVII
	Sym	iboie ui	nd Operatoren	AVII
Ve	erzeic	hnis de	er Abkürzungen	XIX
Ve	erzeic	hnis ve	erwendeter Softwarepakete	XXI
1	Einl	eitung		1
	1.1	Allger	meines	1
	1.2	Eingre	enzung des Betrachtungsrahmens	4
	1.3	Aufba	nu der weiteren Kapitel	5
2	Gru	ndlage	en und Stand der Wissenschaft	9
	2.1		meines	9
	2.2	_	rozess	9
		2.2.1	Charakterisierung	9
		2.2.2	Thermische Wirkmechanismen	12
		2.2.3		16
	2.3	Mode	llierungsansätze der Wirkmechanismen und der	
		Prozes	ssauswirkungen	20
		2.3.1	Allgemeines	20
		2.3.2	Analytische Modellierung	22
		2.3.3	Numerische Modellierung	23
		2.3.4	Empirische und semi-analytische Modellierung	25
		2.3.5	Hybride Modellierung	27
	2.4	Mode	llkalibrierung	29
		2.4.1	Allgemeines	29
		2.4.2	Erhebung der Messgrößen	29
		2.4.3	Anforderungen an die Versuchsbeschaffenheit	31
	2.5	Ansät	ze zur Verringerung von Prozessauswirkungen	32
		2.5.1	Allgemeines	32
		2.5.2	Reduktionsmaßnahmen	33
		2.5.3	Kompensationsmaßnahmen	34

Inhaltsverzeichnis

	2.6	Zusar	mmenfassung und Fazit	35
3	Han	dlungs	sbedarfe und Zielsetzung	37
	3.1		tung der Handlungsbedarfe	37
	3.2		ler Arbeit	38
4	Arb	eitshyı	pothese	41
	4.1		ulierung	41
	4.2		ellierung	41
	4.3		ibilisierung	45
		4.3.1	Temperaturen	45
		4.3.2	Deformationen	49
	4.4	Fazit	und Kapitelüberleitung	51
5	Met	hodik	zur Identifikation des Wärmeaufteilungskoeffizienten	53
	5.1	Übers	sicht über die Methodik	53
	5.2	Bestai	ndteile der Methodik im Überblick	54
		5.2.1	Methode 1: Empirische Ermittlung der thermisch	
			bedingten Deformationen	54
		5.2.2	Methode 2: Simulation der thermisch bedingten	
			Deformationen	55
		5.2.3	Methode 3: Lösung des inversen	
			Wärmeexpansionsproblems	56
	5.3		chsbedingungen	57
	5.4	Fazit	und Kapitelüberleitung	62
6	Met	hode 1	: Empirische Ermittlung der thermisch bedingten	
	Def	ormati	onen	63
	6.1		sicht über die Methode	63
	6.2	In-Pro	ocess-Messung der Deformationen	64
		6.2.1	Versuchsaufbau	64
		6.2.2	Analyse potenzieller Störeinflüsse	68
		6.2.3	Versuchsplanung	72
		6.2.4	Exemplarische Anwendung und Diskussion	72
	6.3	Signa	lseparierung	75
		6.3.1	Analyse des Prozesses	75
		6.3.2	Voraussetzungen	77
		6.3.3	Algorithmus	79
		6.3.4	Exemplarische Anwendung und Diskussion	80
	6.4	Fazit	und Kapitelüberleitung	83

7	Met	hode 2: Simulation der thermisch bedingten Deformationen .	85				
	7.1	Übersicht über die Methode	85				
	7.2	Anforderungen an Modellierung und Simulation	86				
	7.3	Modellierung	88				
		7.3.1 Definition der Modellform	88				
		7.3.2 Definition des Strukturmodells	89				
		7.3.3 Definition der Prozesswärmequelle	94				
		7.3.4 Ansatz der Randbedingungen	96				
	7.4	Simulation	97				
		7.4.1 Allgemeines	97				
		7.4.2 Ablaufstruktur	97				
		7.4.3 Umsetzungsumgebung	101				
		7.4.4 Exemplarische Anwendung und Diskussion	103				
	7.5	Fazit und Kapitelüberleitung	105				
8		hode 3: Lösung des inversen Wärmeexpansionsproblems	107				
	8.1	Übersicht über die Methode	107				
	8.2	Erstellung der Ersatzmodelle	108				
	8.3						
		Wärmeexpansionsproblems	110				
	8.4	1 0					
	8.5	Fazit und Kapitelüberleitung	113				
9		vendung und Bewertung der Methodik zur Identifikation des					
		meaufteilungskoeffizienten	115				
	9.1	Allgemeines	115				
	9.2	Anwendung	115				
		9.2.1 Erstellung des empirischen Ersatzmodells	115				
		9.2.2 Erstellung des simulationsbasierten Ersatzmodells	119				
		9.2.3 Lösung des inversen Wärmeexpansionsproblems	121				
	9.3	Bewertung	125				
		9.3.1 Modellgüte	125				
		9.3.2 Modellgültigkeit	127				
	9.4	Vergleich	131				
	9.5	Fazit	133				
10		ammenfassung und Ausblick	135				
		Zusammenfassung	135				
	10.2	Ausblick	138				
Ve	rzeic	hnis betreuter Studienarbeiten	139				

Inhaltsverzeichnis

Lit	teratu	ırverzeichnis	141	
A	Anh	ang	161	
	A.1	Zerspankraftmodell	161	
		A.1.1 Allgemeines	161	
		A.1.2 Empirische Ermittlung der Zerspankräfte	161	
		A.1.3 Modellbildung	163	
	A.2	Funktionsweise des 1D-LDV		
	A.3	Versuchsplan der Deformationsmessungen		
	A.4	Herleitung des skalierten Gewichtungsfaktors η_e		

Verzeichnis der Formelzeichen

Lateinische Formelzeichen

Größe	Einheit	Bezeichnung
а	$m^2 s^{-1}$	Temperaturleitfähigkeit
a_e	mm	Arbeitseingriff
a_i	-	Gewichtungsfaktor innerhalb einer Zielfunktion (Optimierungsproblem)
a_p	mm	Schnitttiefe
A_e	mm^2	Inhalt der Elementfläche e
A_{Ψ_F}	mm^2	Flächeninhalt des von der Schneidkante im Zeitinkrement Δt überstrichenen Bereiches
b_{nB}	mm	Breite der Stegstruktur nach der Bearbeitung
b_r	mm	Breite des Rückversatzes der Stegstruktur
b_{vB}	mm	Breite der Stegstruktur vor der Bearbeitung
b_W	mm	Breite des Werkstücks
В	-	Wärmeaufteilungskoeffizient der Wärmeströme innerhalb der Zerspanungszone, wobei $B=1$ für einen vollständigen Übergang in das Werkstück und $B=0$ für einen vollständigen Übergang in den Span und das Werkzeug steht; der Wärmeaufteilungskoeffizient steht somit für den Anteil der Wärme, die in das Werkstück fließt
С	ms^{-1}	Lichtgeschwindigkeit
$c_{i,k}$	-	Konstanten des Regressionsansatzes für die Ersatzmodelle; die Zählvariable i kennzeichnet die linearen Anteile.

Größe	Einheit	Bezeichnung
c _{ij,k}	-	Konstanten des Regressionsansatzes für die Ersatzmodelle; die Zählvariablen i und j (wobei $i \leq j$) kennzeichnen die wechselwirkenden und quadratischen Anteile.
c_p	$\rm Jkg^{-1}K^{-1}$	spezifische Wärmekapazität
$c_{0,\Delta 21}$	μm	Differenzwert der unabhängigen Variablen zwischen dem empirischen (1) und dem simulationsbasierten (2) Regressionsansatz
d_F	mm	Durchmesser des Fräswerkzeugs
d_{ij}	-	Konstanten der Koeffizientenmatrix Γ
f	Hz	Frequenz
f_S	Hz	Abtastfrequenz
f_z	mm	Vorschub pro Zahn
f_0	Hz	Grundfrequenz einer Lichtwelle
f_{Δ}	Hz	Frequenzverschiebung aus dem Doppler-Effekt
$F_{a,s}$	N	axiale Zerspankraftkomponente im Scheibenelement s
F_c	N	Schnittkraft
$F_{c,s}$	N	Schnittkraft im Scheibenelement s
F_f	N	Vorschubkraft
$F_{f,s}$	N	Vorschubkraft im Scheibenelement s
$F_{r,s}$	N	radiale Zerspankraftkomponente im Scheibenelement s
$F_{t,s}$	N	tangentiale Zerspankraftkomponente im Scheibenelement s
F_{x}	N	Zerspankraft in <i>x</i> -Richtung
F_y	N	Zerspankraft in <i>y</i> -Richtung
G_e	-	Gewichtungsfaktor der Wärmestromdichte an der Elementfläche e im Modell der Prozesswärmequelle
h_c	mm	Spanungsdicke
$h_{c,e}$	mm	Spanungsdicke an der Elementfläche \emph{e}
$h_{c,max}$	mm	maximale Spanungsdicke

Größe	Einheit	Bezeichnung
h_k	mm	über der Spannfläche auskragende Höhe des Werkstücks
h_{sp}	mm	Spandicke
h_{S,K_i}	mm	Höhe eines dreieckigen Flächenelements (Seitenfläche eines Tetraeder) am i -ten Knoten K_i (mit $i = 1, 2, 3$)
h_{T,K_i}	mm	Höhe eines Tetraederelements am i -ten Knoten K_i (mit $i = 1, 2, 3, 4$)
h_W	mm	Höhe des Werkstücks
$h_{z,s}$	mm	Dicke des Scheibenelements s
I(s)	$\mathrm{W}\mathrm{m}^{-2}$	überlagerte Strahlungsintensität zweier Strahlen bei einer Differenz des jeweils zurückgelegten Wegs
I_1	Wm^{-2}	Strahlungsintensität des Referenzstrahls
I_2	Wm^{-2}	Strahlungsintensität des Messstrahls
J	-	Wert der Zielfunktioin eines Optimierungsproblems
k_i	-	Konstanten des Regressionsmodells der Zerspankraftkomponenten (mit $i = 0, 1, 2,$)
K_a	Nmm^{-1}	Zerspankraftkoeffizient der axialen Komponente
K_i	-	Bezeichnung des i-ten Knotens
K_q	-	verallgemeinerter Zerspankraftkoeffizient (mit $q = t, r, a$)
K_r	-	Zerspankraftkoeffizient der radialen Komponente
K_t	-	Zerspankraftkoeffizient der tangentialen Komponente
K	-	Korrelationsmatrix; $k=1$ steht für die Werte aus dem empirisch gewonnenen Modell, $k=2$ für die Werte aus dem simulationsbasierten Modell.
l_F	mm	Schneidenlänge am Fräswerkzeug
l_{FB}	mm	Länge der Fräsbahn
l_W	mm	Länge des Werkstücks
l_{Φ}	mm	Länge der Scherfläche
m	-	Ersatzvariable

Größe	Einheit	Bezeichnung
n	\min^{-1}	Drehzahl des Fräswerkzeugs
n_e	-	Anzahl der mit der Fläche Ψ_F kongruenten Elementflächen
n_{ZS}	-	Anzahl der Zeitschritte eines Simulationsdurchlaufs aufgrund der Zeitschrittweite Δt
n_{ϑ}	-	Dämpfungsfaktor der Amplitude einer Temperaturschwankung über die Eindringtiefe in einen Körper
N_{th}	-	thermische Kennzahl
N_x	μmN^{-1}	Nachgiebigkeit in der x -Richtung am TCP der Werkzeugmaschine
N_y	μmN^{-1}	Nachgiebigkeit in der y -Richtung am TCP der Werkzeugmaschine
P_{c}	W	Schnittleistung
P_f	W	Vorschubleistung
P_i	-	Bezeichnung eines Punktes (mit $i = 1, 2, 3,$)
P_m	W	gesamte in der Prozesszone umgesetzte mechanische Leistung
\dot{q}_{abs}	$\mathrm{W}\mathrm{mm}^{-2}$	Wärmestromdichte des abstrahierten Prozesses
ġw,e	$\mathrm{W}\mathrm{mm}^{-2}$	Anteil der Wärmestromdichte, der vom Werkstück an der Elementfläche e absorbiert wird
$ar{q}_W$	W mm ⁻²	zwischen zwei aufeinanderfolgenden Zeitschritten gemittelter Anteil der Wärmestromdichte, der vom Werkstück absorbiert wird
\dot{Q}_m	W	Wärmestrom aus der gesamten Prozesszone
\dot{Q}_{Rest}	W	Anteil des Wärmestroms aus der Prozesszone, der nicht vom Werkstück absorbiert wird
\dot{Q}_W	W	Anteil des Wärmestroms aus der Prozesszone, der vom Werkstück absorbiert wird
Ō̈́w	W	zwischen zwei aufeinanderfolgenden Zeitschritten gemittelter Anteil des Wärmestroms, der vom Werkstück absorbiert wird

Größe	Einheit	Bezeichnung
Ċw,е	W	Anteil des Wärmestroms aus der Prozesszone, der vom Werkstück an der Elementfläche \emph{e} absorbiert wird
r	-	Verhältnis von Spanungsdicke h_c zu Spandicke h_{sp} (Inverse der Spanstauchung)
r_{ij}	-	Korrelationskoeffizient der Korrelationsmatrix
$r_{n,H}$	μm	Radius der gerundeten Hauptschneide
R^2	-	Bestimmtheitsmaß
R_{adj}^2	-	adjustiertes Bestimmtheitsmaß
R_m	Nmm^{-2}	Zugfestigkeit des Werkstoffs
S	m	Weglängendifferenz zwischen einem Referenzstrahl und einem Messstrahl
S_e	-	Skalierungsfaktor der Wärmestromdichte an der Elementfläche e im Modell der Prozesswärmequelle
t	S	Zeitvariable
Δt	S	Zeitschrittweite der zeitlichen Diskretisierung in der Simulation
t_{Ende}	S	Zeitpunkt des Werkzeugaustritts aus dem Werkstück
t_{FB}	s	Zeitdauer, die das Werkzeug zum Zurücklegen der Fräsbahnlänge l_{FB} zwischen den Zeitpunkten t_{Start} und t_{Ende} benötigt
t_i	S	Zeitpunkt des <i>i</i> -ten Inkrements oder <i>i</i> -ter betrachteter Zeitpunkt
$t_{1,j}$	S	Eintrittszeitpunkt der Hauptschneide in das Werkstück für den <i>j</i> -ten Zahneingriff
$t_{2,j}$	S	Zeitpunkt des maximalen Eingriffs der Hauptschneide für den <i>j</i> -ten Zahneingriff
t _{3,j}	S	Austrittszeitpunkt des letzten Teils der Hauptschneide aus dem Werkstück für den <i>j</i> -ten Zahneingriff
$t_k^{igathered}$	S	Zeitpunkt des globalen Maximums der kumulierten Deformation

Größe	Einheit	Bezeichnung
t_m^{\blacktriangle}	S	Zeitpunkt des globalen Maximums der mechanisch bedingten Deformation
$t_{\scriptscriptstyle S}^{lack}$	S	Zeitpunkt des globalen Maximums der statischen Deformation
t_{SEF}	S	Zeitdauer zwischen zwei aufeinanderfolgenden Zahneintritten
t_{Start}	S	Zeitpunkt des Werkzeugeintritts in das Werkstück
t_{th}^{lack}	S	Zeitpunkt des globalen Maximums der thermisch bedingten Deformation
t_0	S	Schwankungsdauer einer Periode
Δt_{j+1}	s	Zeitdauer zwischen dem Austritt eines Zahns z_i des Werkzeugs und dem Eintritt des darauffolgenden Zahns z_{i+1}
$\Delta t_{12,j}$	S	Zeitdauer zwischen den Zeitpunkten $t_{1,j}$ und $t_{2,j}$ des j -ten Zahneingriffs
$\Delta t_{23,j}$	S	Zeitdauer zwischen den Zeitpunkten $t_{2,j}$ und $t_{3,j}$ des j -ten Zahneingriffs
$ar{t}_{\circlearrowright}$	S	mittlere Dauer pro Simulationsdurchlauf eines Inkrements
T	°C	Temperaturwert
Î	°C	prädizierter Temperaturwert
\hat{T}_k	°C	prädizierter charakteristischer Temperaturwert an einem definierten Punkt; $k=1$ steht für die Werte aus dem empirisch gewonnenen Modell, $k=2$ für die Werte aus dem simulationsbasierten Modell.
T_{P_1}	°C	Temperatur in einem Punkt P_1
$ar{T}_{P_1}$	°C	mittlere Temperatur in einem Punkt P_1
T_{P_2}	°C	Temperatur in einem Punkt P_2
$ar{T}_{P_2}$	°C	mittlere Temperatur in einem Punkt P_2
T_{P_3}	°C	Temperatur in einem Punkt P ₃
$\Delta T_{P_1P_2}$	K	Temperatur differenz zwischen den Punkten P_1 und P_2
$\Delta \bar{T}_{P_1 P_2}$	K	mittlere Temperaturdifferenz zwischen den Punkten P_1 und P_2

Größe	Einheit	Bezeichnung
$\hat{T}_{\Delta 21}$	K	Differenz der prädizierten Temperaturwerte des empirischen Modells (1) und des simulationsbasierten Modells (2)
$u_{x,i}$	mm	Deformation des i -ten Knotens (K_i) in x -Richtung
$u_{y,k}^{\blacktriangle}$	μm	Wert des globalen Maximums der kumulierten Deformation
$u_{y,k,j}^{\triangle}$	μm	Wert des lokalen Maximums der kumulierten Deformation des <i>j</i> -ten Zahneingriffs
$u_{y,m}$	μm	mechanisch bedingte Deformation
$u_{y,m}^{\blacktriangle}$	μm	Wert des globalen Maximums der mechanisch bedingten Deformation
$u_{y,s}^{\blacktriangle}$	μm	Wert des globalen Maximums der statischen Deformation
$u_{y,th}$	μm	thermisch bedingte Deformation
$u_{y,th}^{\blacktriangle}$	μm	Wert des globalen Maximums der thermisch bedingten Deformation
$u_{y,th,j}^{\nabla}$	μm	Wert des lokalen Minimums der thermisch bedingten Deformation (Mittenwert auf den einzelnen Basisniveaus) des <i>j</i> -ten Zahneingriffs
$\hat{u}_{y,th,k}$	μm	charakteristische thermisch bedingte Deformation an einem definierten Punkt; $k=1$ steht für die Werte aus dem empirisch gewonnenen Modell, $k=2$ für die Werte aus dem simulationsbasierten Modell.
$\hat{u}_{y,th,Mess}$	μm	prädizierte thermisch bedingte Deformation aus einem Ersatzmodell der gemessenen Werte
$\hat{u}_{y,th,Sim}$	μm	prädizierte thermisch bedingte Deformation aus einem Ersatzmodell der simulierten Werte
$\hat{u}_{y,th,\Delta 21}$	μm	Differenz der prädizierten Deformationen des empirischen Modells (1) und des simulationsbasierten Modells (2)
$u_{y,i}$	mm	Deformation des i -ten Knotens (K_i) in y -Richtung
u_{y,P_1}	μm	Deformation des Punkts P_1 in y -Richtung
\bar{u}_{y,P_1}	μm	mittlere Deformation des Punkts P_1 in y -Richtung
$u_{z,i}$	mm	Deformation des i -ten Knotens (K_i) in z -Richtung