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Foreword

Carolyn R. Bertozzi

I came of age as a scientist during a time when the boundaries between the historically separate fields of chemistry
and biology were being dismantled. The molecular biology revolution of the 1980s had brought newfound power to
the life scientist, allowing biological systems to be engineered and manipulated to answer questions about molecu-
lar mechanism, rather than simply observed. High-resolution microscopy and structural biology techniques offered
atomic views of biological molecules, complexes, and materials, bringing biology ever closer to the scale at which
chemists operate. At the same time, chemistry was powering biology at record pace: solid-phase peptide and oligonu-
cleotide synthesis were revolutionizing our understanding of these biomolecules’ structures and functions, and also
propelling advances in genome sequencing and engineering. The synthetic chemist’s ability to synthesize complex
natural products provided pharmacological tools that revealed the secrets of the cell, while analytical chemistry tech-
nologies, quite prominently mass spectrometry, provided unprecedented clarity on the molecular compositions of
biological samples. The notion that chemists could design molecules to probe or perturb a biological process was
becoming widely recognized among biologists, and likewise, historically intractable biological problems had become
compelling challenges for chemists. In retrospect, my training years (i.e. the late 1980s and early 1990s) were a fan-
tastic period for a young scientist to pursue research at the burgeoning interface of chemistry and biology!

Since those early days, I have watched the two fields coevolve to create the distinctive discipline we now call chem-
ical biology. This evolution was not without friction. In the early days, very few labs possessed depth of knowledge
and technical knowhow in both chemistry and biology. Indeed, it was the rare chemist who understood the needs of
biology and the rare biologist who understood the power of chemistry; getting the two together as collaborators was
key to progress in the field. Meanwhile, trainees who sought to develop skills in both disciplines were often misun-
derstood, or even worse, mischaracterized as “Jacks of all trades, masters of none.” Pioneers at this exciting interface
had to prove themselves separately as chemists and biologists while also creating the ethos of a distinctive new field.

Now, several decades into my own career as a chemical biologist, I am delighted to see our field playing a central role
across academia and industry. We are the glue that binds chemists and biologists together, the bilingual interpreters
that catalyze cross-pollination of ideas and technologies. And we make our own fundamental discoveries in biology
that are uniquely enabled by our chemical tools, while also developing biological tools for better, greener, chemical
processes. Many biopharma companies who were skeptical of our value a few decades back now host so-named chem-
ical biology groups that cut across platforms and therapeutic areas. Our superpowers as multidisciplinary scientists
are recognized, and we are rightfully in high demand.

While the professional practice of chemical biology has been codified, the mechanisms by which we train students
in this discipline continue to evolve. Many of us academics teach courses in chemical biology that are rather ad
hoc, often based on primary literature that happens to align with our interests. As the field has grown in scope and
participation, so has the need for more structured and comprehensive resources on which such courses can be based.
For this reason, I am delighted to celebrate this book, Advanced Chemical Biology, which covers a broad spectrum
of exciting concepts and technologies and captures both the historic, defining moments in the field as well as its
guiding principles. The topics cut across all the major biomolecule classes and highlight how chemical approaches
can power fundamental research as well as clinical translation. The text illustrates applications in various branches
of biology – neuroscience, immunology, cancer biology, and infectious disease – and showcases new therapeutic
modalities arising from our unique brand of molecular engineering. The book’s editors and contributors are leaders
in chemical biology, and they have done all of us a great service. This book will be a valuable resource for both
established chemical biologists and many future generations of trainees.
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Preface

The field of chemical biology is expanding at a rapid pace, with continued advances in chemical methodologies and
biological applications. The community of chemical biologists is also growing in number, with researchers now span-
ning a diverse set of backgrounds and interests. With this growth comes the need to train and educate newcomers to
the field. Chemical biology courses have sprouted at institutions around the globe, and most do not use a standard
text. We were motivated to fill this void, providing a book that is easily accessible to current and future generations of
chemical biologists. This is no easy task, considering the breadth of the discipline and its continued evolution. Some
unifying themes have emerged, though, that we hoped to capture in this book and provide a historical context for
their development. To realize our vision, we reached out to leaders in the field for their input on generating a resource
for the community. The end product is the compilation of the chapters between these covers.

Overall, the Advanced Chemical Biology textbook showcases how chemical tools and molecular methods have been
used to gain insight into biological systems. The initial chapters highlight chemical biology in the context of the
central dogma: how molecular-level thinking has enabled numerous discoveries relevant to DNA, RNA, proteins, and
metabolites. Subsequent chapters feature transformative technologies developed within the community that continue
to enable new pursuits. The final section of the book illustrates the impact of chemical biology in the broader scientific
community, with examples from microbiology, immunology, neuroscience, drug discovery, and more. Collectively,
these chapters underscore the breadth of discovery enabled by chemical approaches and provide a historical backdrop
for the field.

Advanced Chemical Biology is designed for entry-level graduate students in chemical biology, although the text
will serve as an excellent resource for students in a variety of chemistry- and biology-related fields, in addition to
advanced undergraduates. Basic knowledge of organic chemistry and biochemistry, upon which much of chemical
biology builds, is assumed. The chapters are not intended to be in-depth reviews on the subject matter; rather, they
serve as basic primers for newcomers to the field. Each chapter begins with a brief introduction and historical context
for the topic. The bulk of each chapter is then devoted to presenting key concepts and developments within chemical
biology, drawing from a handful of landmark studies. Sample exam questions and slides for instructional use are also
included. Since each chapter topic is not covered in-depth, we expect that instructors will supplement the materials
in this book with additional examples and information to best suit their classes.

This textbook would not have been possible without the hard work and dedication of several individuals. We extend
our sincere thanks to the authors of each chapter, whose work on this project coincided with the COVID-19 pandemic.
Without their efforts and commitment, this book would have been impossible. We are also grateful to the team at
Wiley for helping us to navigate the development of a teaching text during a quite unprecedented time. Last, we
would like to thank the many colleagues and mentors who helped to spark our interests in the field and who continue
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to guide our paths. We hope that this book similarly captivates the next generation of trainees and inspires them to
continue to push the frontiers of chemical biology and scientific discovery.

11 July 2022 Howard C. Hang
Scripps Research Institute
La Jolla, CA 92037, USA

Matthew R. Pratt
University of Southern California
Los Angeles, CA 90089, USA

Jennifer A. Prescher
University of California, Irvine
Irvine, CA 92697, USA



xix

About the Companion Website

Advanced Chemical Biology: Chemical Dissection and Reprogramming of Biological Systems is accompanied by
a companion website:

www.wiley.com/go/hang

The website includes:

• Answers to Questions

Scan this QR code to visit the companion website.

http://www.wiley.com/go/hang




1

1

Introduction to Advanced Chemical Biology
Howard C. Hang1,2, Matthew R. Pratt3, and Jennifer A. Prescher4,5,6

1Scripps Research, Department of Immunology & Microbiology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
2Scripps Research, Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
3University of Southern California, Department of Chemistry, 3430 S. Vermont Ave, CA 92121, USA
4University of California Irvine, Department of Chemistry, 1120 Natural Sciences II, CA 92697, USA
5University of California Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall, CA 92697, USA
6University of California Irvine, Department of Pharmaceutical Sciences, 101 Theory Suite 100, CA 92697, USA

1.1 Introduction

As its name implies, the field of chemical biology
employs chemical principles to dissect mechanisms in
biology and potentially translate these discoveries into
therapeutic approaches for health and disease. Chemi-
cal biology as a field evolved from and merged different
specialized fields of investigation into a broader topic
that encompasses many areas of research. One could
argue that the origins of chemical biology date back
to the discovery, characterization, and synthesis of
small molecules to determine their mechanisms of
action and production for therapeutic applications.
Notably, studies in the late 1800s by Emil Fischer and
coworkers led to the synthesis of indoles, peptides,
and monosaccharides as well as their stereochemical
determination [1], which was highlighted by the Nobel
Prize in Chemistry in 1902. In addition, Paul Ehrlich
and coworkers developed arsphenamine (Salvarsan) as
antimicrobial treatment for syphilis in the early 1900s
and pioneered the concept of chemotherapy as a “magic
bullet” for disease treatment [2]. These two landmark
examples established the foundation for the synthesis of
small molecules, the determination of their structures
and mechanisms of action as well as their therapeutic
application. Many areas of chemistry and biology have
evolved from these pioneering studies and have culmi-
nated in our current perspective on chemical biology.
Notably, the design and synthesis of specific chemical
probes and homogeneous biomolecules lies at the heart
of chemical biology. It is also important to note that
the advances in chemical biology have been enabled
by many major areas of science such as physical and

Chemical

biology

Basic science

Technology

Medicine

Figure 1.1 Chemical biology is at the nexus of basic science,
medicine, and technology.

organic chemistry, biochemistry, structural biology, ana-
lytical chemistry as well as engineering and evolutionary
approaches (Figure 1.1), which we highlight below.

1.2 Enabled by Synthetic
and Physical Organic Chemistry

The ability of chemists to understand reactivity of
molecules and exploit these principles for synthesis
has been transformative for science [3] and underlies
much of the innovations in chemical biology [4, 5]
(Figure 1.2). Indeed, innovations in organic chemistry

Advanced Chemical Biology: Chemical Dissection and Reprogramming of Biological Systems, First Edition.
Edited by Howard C. Hang, Matthew R. Pratt, and Jennifer A. Prescher.
© 2023 WILEY-VCH GmbH. Published 2023 by WILEY-VCH GmbH.
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   products

• Insights into mechanisms of

  action
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Figure 1.2 Impact of synthetic and physical organic chemistry on chemical biology. (a) Retrosynthetic analysis of complex
natural product such as rapamycin. Source: Nicolaou et al. [6]/American Chemical Society. (b) Improved bioorthogonal reactions
such as strain-promoted azide-alkyne cycloaddition [7] as well as new chromophores such as silicon rhodamine [8].

have greatly facilitated the synthesis of complex nat-
ural products (Figure 1.2a), small-molecule probes,
and macromolecules for fundamental studies and
therapeutic applications [4, 5]. For example, efficient
methods for the chemical synthesis of nucleic acids
have revolutionized molecular biology [9], facilitated
the development of highly sensitive diagnostic meth-
ods [10], and supported the generation of precise
vaccines [11] (Chapter 2). Moreover, the synthesis of
short oligonucleotides has enabled structure–function
studies, the rapid cloning of genes (Chapter 2) [10],
and efficient programmable genome engineering [12]
(Chapter 6). Likewise, the chemical synthesis of pep-
tides [13], proteins [14, 15], and glycans [16, 17] have
also provided important access to these biomolecules
for structure–activity studies as well as the genera-
tion of diagnostics and therapeutics (Chapters 7, 8,
13, 15, 17, 24, 26, and 30). Of note, the site-specific
installation of biophysical probes and posttransla-
tional modifications onto peptides and proteins has
revealed fundamental principles of protein folding,
structure, and function (Chapters 7, 8, and 15). Alterna-
tively, the synthesis of glycans has yielded homogeneous
materials to explore their function as well as important
imaging and diagnostic agents such as fluorine-18-2-
fluoro-2-deoxy-D-glucose (F18-FDG) (Chapter 13).

Beyond the synthesis of biomolecules, advances
in physical organic chemistry such as the hard–soft
acid–base and molecular orbital theories (Figure 1.2b)

[18] have led to the development of new chemical
reactions and probes to explore biology. For example,
understanding the relative reactivity of amino acid side
chains with different chemotypes has yielded efficient
bioconjugation methods for modifying native proteins
(Chapter 14). Alternatively, the development of chem-
ical reactions that are orthogonal to the endogenous
reactivity in cells and yet compatible with biological
conditions has afforded a variety of “bioorthogonal”
reactions for the modification of diverse biomolecules
and small molecules with unique functionality
(Figure 1.2b) (Chapter 16). Moreover, understanding
the stereo-electronic effects of chemical modifications
on chromophores has yielded a wide range of imaging
reagents for visualizing many biological processes in
cells and animals (Figure 1.2b) (Chapters 17 and 18).
These chromophores can also be tuned to bind different
metals to explore their abundance and dynamics in bio-
logical systems (Chapter 19). Furthermore, the unique
reactivity of different chemotypes can be harnessed for
selective profiling of various redox states (Chapter 20)
and biochemical activities of proteins (Chapter 21).

In addition to reaction and probe development, the
total synthesis of complex natural products and their
analogs has afforded important reagents to determine
their molecular targets and mechanisms of action
[19], which has led to more precise therapeutics for
human diseases. A landmark example of these studies
is the discovery, synthesis (Figure 1.2a), and target
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identification of rapamycin, which revealed mam-
malian target of rapamycin (mTOR) [20, 21], as a key
kinase that regulates cellular growth and metabolism
(Chapter 25). Although rapamycin from Streptomyces
hygroscopicus was originally explored as an anti-fungal
agent, it exhibited potent immunosuppressive activity
on T cells and was ultimately approved by the Federal
Drug Administration (FDA) to mitigate the side effects
of organ transplantation (Chapter 4). The subsequent
characterization of mTOR as the mechanistic target
of rapamycin [20, 21] and the discovery of its phos-
phatidylinositol 3-kinase-related kinase activity led to
the development of more specific and potent mTOR
kinase inhibitors to treat cancer and other metabolic
diseases in humans (Chapter 30).

1.3 Guided by Biochemistry
and Structural Biology

The design and development of specific chemical
probes to perturb and visualize biological systems has
been guided by innovations in biochemistry [22] and
structural biology (Figure 1.3) [25, 26]. For example, the
study of enzyme reaction mechanisms [22] allowed
the development of specific chemical probes for
activity-based protein profiling (ABPP) (Figure 1.3a)
(Chapter 21). Alternatively, the advances in X-ray

crystallography have allowed structure-based design
of important small-molecule probes and therapeu-
tics (Figure 1.3b). Moreover, the design of orthogonal
“bump-and-hole” enzyme–substrate pairs (Chapter 22)
was facilitated by X-ray structures of different enzymes
and protein families. In addition, structural studies of
large multi-domain protein complexes such as polyke-
tide synthases (PKSs) have helped to deconvolute the
biosynthesis of natural products and provided new
opportunities to engineer these pathways (Chapter 24).
More recently, advances in cryo-electron microscopy
have shed light on the structures of membrane pro-
teins and larger complexes [27], which has enabled the
design and development of additional chemical probes
and therapeutics. Furthermore, the establishment of
robust protein structure prediction methods has pro-
vided important computational tools for exploring small
molecule–protein interactions as well as de novo design
of novel proteins with diverse functions [28].

1.4 Enhanced by Engineering
and Evolution

As chemists and biologists began to understand
the structure and function of biomolecules, this
collaboration allowed the design of novel systems with
improved or new functions (Figure 1.4). For example,
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Figure 1.3 Impact of biochemistry and structural biology on chemical biology. (a) Understanding enzyme reaction mechanisms
has afforded activity-based probes such as FP-biotin. Source: Liu et al. [23]/The National Academy of Sciences. (b) Structural
biology and computational methods have enabled structure-based design of selective chemical probes and therapeutics such
as HIV-1 protease inhibitor. Source: Swain et al. [24]/The National Academy of Sciences.
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Figure 1.4 Examples of engineering and evolutionary approaches in chemical biology. (a) Advances in protein engineering have
enabled the design and development of proteins with novel activity such as catalytic antibodies for stereoselective Diels–Alder
reaction. Source: Adapted from Gouverneur et al. [29]. (b) Directed evolution has also afforded proteins with novel functions
such as P450 enzymes with cyclopropanation activity. Source: Adapted from Coelho et al. [30].

protein-engineering methods were employed to gen-
erate catalytic antibodies that could execute chemical
reactions like natural enzymes or entirely new reactions
(Figure 1.4a) (Chapter 28). Alternatively, directed evo-
lution approaches combining random mutagenesis in
combination with high-throughput selection or screen-
ing methods were developed to identify unpredicted
and novel protein variants with unique or improved
properties (Figure 1.4b) (Chapter 9). Of note, protein
engineering and directed evolution approaches have
been employed to establish genetic codon expansion for
the site-specific incorporation of non-canonical amino
acids with unique reactivity into specific proteins and
whole organisms (Chapter 15). Beyond these synthetic
biology examples, protein engineering and directed
evolution approaches have also been instrumental
in generating fluorescent proteins (Chapter 17) and
reporter enzymes (Chapter 18) with improved cellular
and in vivo imaging properties.

1.5 Expanded by Analytical
Chemistry and “Omics” Technologies

Chemical biology has also been significantly enabled
and expanded upon with improved analytical methods
and instrumentation (Figure 1.5). The development of
rapid and inexpensive nucleic acid sequencing methods
has been transformative for illuminating the genome

of many organisms and has allowed comparative
genomics of healthy and disease states (Figure 1.5)
(Chapters 2–6). The extension of these methods to
single cell analyses has revealed spatial and tempo-
ral phenotypes of diverse biological processes and is
revolutionizing biology and medicine [31]. In parallel,
the advances in mass spectrometry [32] and nuclear
magnetic resonance spectroscopy [33] have greatly
improved the detection and structural characterization
of macromolecules and metabolites (Figure 1.5). For
example, the high-throughput fragmentation and detec-
tion peptides by mass spectrometry along with accurate
computational assembly methods have facilitated the
large-scale comparative analysis of proteins [32] and
their posttranslational modifications (Chapter 12). In
addition, the union of mass spectrometry with chemical
affinity probes and ABPP (Chapter 21) has facilitated
the identification of small molecule–protein targets
for improved pharmacology and drug development
(Chapters 26 and 30). Furthermore, these significant
advances in analytical chemistry have allowed the
large-scale comparative analysis of cellular metabolites
(Chapter 10) and lipids (Chapter 11) in cells, tissues, and
whole organisms as well as complex natural products
(Chapter 23). Collectively, these large-scale methods
for analyzing the genome, transcriptome, proteome,
and metabolome of cells and organisms are providing
important methods for dissecting complex biology
systems and diseases.
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Figure 1.5 Impact of analytical chemistry and large-scale methods on chemical biology. (a) Better analytical methods have
allowed improved detection of biomolecules for metabolomics and proteomics. (b) Enhanced nucleic acid detection and
sequencing methods have significantly expanded the scope and impact of genomics.

1.6 Impact on Biological Discovery
and Drug Development

Innovations in chemical biology have illuminated spe-
cific areas of biology and are fueling the development of
new therapeutics. Since the original discovery of peni-
cillin [34], chemical approaches and new probes have
helped to elucidate fundamental biosynthetic pathways
in bacteria and have facilitated the development of new
antibiotics (Chapter 25). Likewise, chemical biology
approaches have aided in the dissection of complex
signaling pathways in eukaryotic cells and the deter-
mination of mechanisms of action and resistance for
new small-molecule drug candidates (Chapter 26).
Chemical biology has also helped to uncover impor-
tant developmental pathways in whole organisms and
characterize detrimental side effects of drug molecules
(Chapter 27). Since the birth of immunology as field,
chemistry has played a key role in establishing the
principles of the adaptive immune response and has
also afforded new tools for large-scale immune profiling
as well as the next generation of adjuvant molecules
(Chapter 28). Neuroscience has also benefitted from
the advances in chemical biology, as the engineering
of novel protein–ligand pairs has afforded methods for
cell-specific perturbations and imaging in vivo, which

has been instrumental in deconstructing neuronal
circuits and modulating animal behavior (Chapter 29).
Finally, the multitude of chemical biology approaches to
discover novel bioactive small molecules and elucidate
their mechanisms of action has greatly improved the
overall pipeline for drug discovery (Chapter 30).

1.7 Outlook

We have been fortunate to witness and participate in the
evolution of chemical biology as a multi-disciplinary
field that integrates different fields of basic science to
understand biology and disease. We greatly appreciate
the remarkable contributions of the chapter authors
and are grateful for their insightful perspectives on each
area of chemical biology, which we hope will be helpful
and inspire the next generation of scientists. As we look
forward to the future, remarkable advances in synthetic
chemistry continue to provide access to more complex
molecules for investigation, while new and improved
instrumentation from analytical chemistry will allow for
more sensitive and high-throughput analyses of diverse
biomolecules. Excitingly, machine-learning and artifi-
cial intelligence methods have already begun to provide
new approaches to design and synthesize biomolecules
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more efficiently and with novel properties [35]. The
union of these advances with “omics” technologies
should provide new opportunities to realize the promise
of personalized medicine for different diseases. As we
achieve new milestones in chemistry and biology for

global health, we hope that new innovations in chemical
biology will continue to expand beyond human health
and provide key solutions for other major challenges
facing our planet, including food security, energy
production, and climate change.

References

1 Kunz, H. (2002). Emil Fischer – unequalled clas-
sicist, master of organic chemistry research, and
inspired trailblazer of biological chemistry. Angew.
Chem. Int. Ed. 41 (23): 4439–4451.

2 Stern, F. (2004). Paul Ehrlich: the founder of
chemotherapy. Angew. Chem. Int. Ed. 43 (33):
4254–4261.

3 Corey, E.J. and Cheng X-m (1989). The Logic of
Chemical Synthesis. New York: Wiley, 436 pages.

4 Schreiber, S.L., Kotz, J.D., Li, M. et al. (2015).
Advancing biological understanding and therapeutics
discovery with small-molecule probes. Cell 161 (6):
1252–1265.

5 Schreiber, S., Kapoor, T.M., Gn, W., and Wiley, I.
(2007). Chemical Biology: From Small Molecules
to Systems Biology and Drug Design. Weinheim:
Wiley-VCH.

6 Nicolaou, K.C., Chakraborty, T.K., Piscopio, A.D.
et al. (1993). Total synthesis of rapamycin. J. Am.
Chem. Soc. 115 (10): 4419–4420.

7 Agard, N.J., Prescher, J.A., and Bertozzi, C.R. (2004).
A strain-promoted [3+2] azide-alkyne cycloaddition
for covalent modification of biomolecules in living
systems. J. Am. Chem. Soc. 126 (46): 15046–15047.

8 Koide, Y., Urano, Y., Hanaoka, K. et al. (2011).
Evolution of group 14 rhodamines as platforms
for near-infrared fluorescence probes utilizing
Photoinduced electron transfer. ACS Chem. Biol.
6 (6): 600–608.

9 Caruthers, M.H. (2013). The chemical synthesis of
DNA/RNA: our gift to science. J. Biol. Chem. 288 (2):
1420–1427.

10 Mullis, K., Faloona, F., Scharf, S. et al. (1986).
Specific enzymatic amplification of DNA in vitro:
the polymerase chain reaction. Cold Spring Harbor
Symp. Quant. Biol. 51 (Pt 1): 263–273.

11 Sahin, U., Kariko, K., and Tureci, O. (2014).
mRNA-based therapeutics – developing a new
class of drugs. Nat. Rev. Drug Discovery 13 (10):
759–780.

12 Doudna, J.A. (2020). The promise and challenge
of therapeutic genome editing. Nature 578 (7794):
229–236.

13 Merrifield, B. (1986). Solid phase synthesis. Science
232 (4748): 341–347.

14 Thompson, R.E. and Muir, T.W. (2020). Chemoenzy-
matic semisynthesis of proteins. Chem. Rev. 120 (6):
3051–3126.

15 Dawson, P.E. and Kent, S.B. (2000). Synthesis of
native proteins by chemical ligation. Annu. Rev.
Biochem. 69: 923–960.

16 Pardo-Vargas, A., Delbianco, M., and Seeberger, P.H.
(2018). Automated glycan assembly as an enabling
technology. Curr. Opin. Chem. Biol. 46: 48–55.

17 Cheng, C.W., Wu, C.Y., Hsu, W.L., and Wong, C.H.
(2020). Programmable one-pot synthesis of oligosac-
charides. Biochemistry 59 (34): 3078–3088.

18 Anslyn, E.V. and Dougherty, D.A. (2006). Modern
Physical Organic Chemistry. Sausalito, CA: University
Science.

19 Nicolaou, K.C., Snyder, S.A., and Corey, E.J. (2003).
Classics in Total Synthesis. Weinheim: Wiley-VCH,
xix, 639 pages: ill p.

20 Schreiber, S.L. (1991). Chemistry and biology of
the immunophilins and their immunosuppressive
ligands. Science 251 (4991): 283–287.

21 Sabatini, D.M. (2017). Twenty-five years of mTOR:
uncovering the link from nutrients to growth. Proc.
Natl. Acad. Sci. U.S.A. 114 (45): 11818–11825.

22 Fersht, A. (1999). Structure and Mechanism in Pro-
tein Science: A Guide to Enzyme Catalysis and Protein
Folding. New York: W.H. Freeman, xxi, 631 pages:
illustrations p.

23 Liu, Y., Patricelli, M.P., and Cravatt, B.F. (1999).
Activity-based protein profiling: the serine
hydrolases. Proc. Natl. Acad. Sci. U.S.A. 96 (26):
14694–14699.

24 Swain, A.L., Miller, M.M., Green, J. et al. (1990).
X-ray crystallographic structure of a complex
between a synthetic protease of human immun-
odeficiency virus 1 and a substrate-based hydrox-
yethylamine inhibitor. Proc. Natl. Acad. Sci. U.S.A.
87 (22): 8805–8809.

25 Hendrickson, W.A. (1991). Determination of macro-
molecular structures from anomalous diffraction of
synchrotron radiation. Science 254 (5028): 51–58.


