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𝜎 Stefan–Boltzmann constant [5.67× 10−8 W m−2K−4]
Σ surface tilt angle [rad]
𝜏 transmissivity [−]
𝜏 time [s]
𝜙 solar azimuth [rad]
Φ equivalence ratio [−]
𝜓 surface azimuth [rad]
𝜔 specific humidity [kg kg−1]
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About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/lemort/thermal

This website includes:

● EES files

http://www.wiley.com/go/lemort/thermal
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Introduction

1 Genesis

The paternity of the automobile is still debated between several inventors among whom are
Francesco di Giorgio Martin (1470), Roberto Valturio (1472), or Leonardo da Vinci whose sketches
can be found in the Codex Atlantico (1478) and whose drawings are preserved in his engineering
notebooks. A study of a self-propelled wagon probably for a theatrical machine, able to move for a
short stretch on a stage, is known. For a long time, it was wrongly interpreted as a kind of ancestor
of the automobile (Figure 1).

However, thanks to the first functional models of the Belgian Jesuit Ferdinant Verbiest
(1623–1688), we can discover the description of a thermodynamic system that allows the move-
ment of the vehicle. In 1672, to put into practice his studies on boilers, he installed one on a small
cart. The jet of steam actuated a paddle wheel which drove the wheels through a set of gears.

The drawing in Figure 2 is by the hand of the inventor, as in his description, published in 1685,
in Latin, in his treatise “Astronomia Europea.”

The Frenchman Joseph Cugnot presented his “Fardier (or steamer)” developed during the period
1769–1771, a cart propelled by a steam boiler. As shown in Figure 3, it was difficult to brake the
steamer, leading to probably the first car accident in history.

Other models followed, but steam propulsion was a stalemate in terms of the relationship
between weight and performance. This is how the automobile evolved towards the electric car.
The first electric car model was built by Sibrandus Stratingh (1835).

We could not resist quoting Camille Jenatzy’s electric car, “La Jamais contente (or Never-Happy)”
(Figure 4). This is the first motor vehicle to reach the 100 km h−1 mark.

This electric car, in the shape of a torpedo on wheels, set this record on 29 April 1899 in Achères
(France).

The first times of the electric car remained chaotic and inefficient. So, the German Carl Benz
built the first automobile in history driven by a thermal engine (1886).

Several revolutions followed that led to changes to steam engines, electric, gasoline, diesel, fuel
cell, and electric propulsion again.

Each time, the thermal systems have been adapted or reinvented themselves to meet the new
challenges that the automotive industry has encountered. The necessary revolution towards carbon
neutrality has accelerated those changes.
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Figure 1 Self-propelled wagon as drawn by da Vinci. Source: Leonardo da Vinci – http://history-computer
.com, public domain, https://commons.wikimedia.org/w/index.php?curid=14619567.

Figure 2 One of the first steam-driven cars by Belgian Ferdinant Verbiest. Source: Unknown
author/Wikimedia/Public Domain.

http://history-computer.com
http://history-computer.com
https://commons.wikimedia.org/w/index.php?curid=14619567
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Figure 3 Cugnot’s Steamer (“Fardier de Cugnot”), tested in Paris in 1770.

Figure 4 “La Jamais contente (or Never-Happy)”. Source: Unknown author/Wikimedia/Public Domain.
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2 Vectors of Evolution of Thermal Systems

The vectors of the evolution of the automobile world and of its motorization were successively: a
race for speed record, increase in the reliability of the engines, increase in the specific power of
the engines, introduction of heating and then of air conditioning of the passenger compartment,
reduction of vehicle consumption, regulatory constraints governing the environmental impact of
engines, reduction in vehicle weight, conservation of the autonomy of electric vehicles, and finally,
an improved comfort for passengers of electric and autonomous vehicles.

With each step, the thermal management of the vehicle has evolved toward more performance
and functionality, less weight, and lower cost.

To cope with these new challenges, the number of independent thermal systems has increased
initially, their interconnection has evolved, and today, many of these systems are fully connected
to ensure optimal energy management.

3 The Regulatory Constraints of Change

Pollution regulations have been important vectors for the evolution of propulsion systems and they
asked for the energy sobriety of the auxiliaries (all components and systems not directly contribut-
ing to propulsion, such as heating, air-conditioning, battery thermal management systems, etc.)

The evolution of the allowed emission limits, in CO2 per kilometer, for the four main geographical
areas, namely the USA, Europe, Japan, and China, is shown in Figure 5.

European CO2 pollution standards imposed since 1992 refer to the New European Driving Cycle
(NEDC). In addition to CO2 reduction, the European regulations have imposed limitations on emis-
sions of other pollutants, including NOx, CO, particulate matter (PM), and HC+NOx.

As an example, Figure 6 gives the allowed emission limits for diesel engines from July 1992
(Euro 1) to September 2015 (Euro 6).

To comply with these emission regulations, car manufacturers and tier one suppliers have devel-
oped major new systems such as turbocharger, fuel direct injection, high-pressure and low-pressure
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Figure 6 Allowed emission limits for diesel engines from Euro 1 (1992) to Euro 6 (2015) regulations.

exhaust gas recirculation systems (EGR), selective catalytic reduction (SCR), and diesel particulate
filter (DFP).

Each of these systems requires optimal operating conditions and specific cooling or heating sys-
tems, which have complicated the thermal architecture of the vehicle.

The introduction of electrical motorization created new demands, which included cooling of the
battery, fast cooling of the battery during charging, and compensation of the thermal deficit in
winter for passenger comfort, and the problem is even more important for fuel cell systems.

The optimization of thermal energy for full electric vehicles is no more an option but a condition
to secure vehicle range.

Despite the demands for reduction in the consumption of internal combustion engine vehicles
following the oil crises (1973 and 1979) and finally since 1992, the increasingly stringent depollu-
tion regulations enacted, the GHG (greenhouse gas) emissions of the transport sector are the only
one increasing compared to other sectors responsible of GHG emissions (power generation, indus-
try, buildings, etc.). The index shown in Figure 7 is a relative measurement of the emissions of gases
responsible for the greenhouse effect.

In addition, the share of road transport represents 11.9% of GHG emissions. Figure 8 shows
the distribution of the GHG emission per sector. The energy sector represents 73.2% of the global
emissions.

For this reason and following the Diesel Gate (2008–2015), state and city standards have been
tightened, and the NEDC standard has been replaced by the worldwide harmonized light vehi-
cles test procedure (WLTP) standard, which represents more real-time driving of the vehicle by
integrating the consumption of accessories.

Furthermore, real driving emissions (RDE) pollution standards were introduced. These stan-
dards refer to a fleet of vehicles in real use during their lifetime and not only for a new vehicle.

Figure 9 shows that the reduction of the pollution has accelerated mainly after the Diesel Gate.
Figure 10 shows a schematic illustration of average CO2 emission levels in the EU between 2014

and 2030, assuming a 3.9% per year and 6.8% per year CO2 reduction scenario.
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