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Abstract. The brain’s functional networks can be assessed using imag-
ing techniques like functional magnetic resonance imaging (fMRI) and
electroencephalography (EEG). Recent studies have suggested a link
between the dynamic functional connectivity (dFC) captured by these
two modalities, but the exact relationship between their spatiotemporal
organization is still unclear. Since these networks are spatially embed-
ded, a question arises whether the topological features captured can
be explained exclusively by the spatial constraints. We investigated the
global structure of resting-state EEG and fMRI data, including a spa-
tially informed null model and found that fMRI networks are more mod-
ular over time, in comparison to EEG, which captured a less clustered
topology. This resulted in overall low similarity values. However, when
investigating the community structure beyond spatial constraints, this
similarity decreased. We show that even though EEG and fMRI func-
tional connectomes are slightly linked, the two modalities essentially
capture different information over time, with most but not all topology
being explained by the underlying spatial embedding.

Keywords: EEG-fMRI · Connectomics · dFC · Community analysis

1 Introduction

Brain activity is believed to be organized into functional networks, reflecting the
dynamic coupling between brain regions and the continuous exchange of infor-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. S. Teixeira et al. (Eds.): CompleNet 2023, SPCOM, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-28276-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28276-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-28276-8_1
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mation throughout the whole brain [19]. This coupling is known as functional
connectivity. Characterizing the dynamic behaviour of these networks and their
topology might be key to increase the understanding of the brain’s complex
activity, its spatiotemporal organization and, possibly, provide biomarkers for
neurological and psychiatric diseases [9,29].

These functional networks can be defined using different imaging techniques
like functional Magnetic Resonance Imaging (fMRI) and electroencephalogra-
phy (EEG), that allow the characterization of time-varying activity in the whole
brain. However, these techniques have distinct temporal and spatial resolution
and are sensitive to different physiological changes associated with neuronal
activity [21]. FMRI measures brain activity indirectly and is based on changes
in the blood flow, consisting in a blood-oxygen-level-dependent (BOLD) signal.
These changes, however, come slow and with a significant delay [28]. In contrast,
EEG allows the direct measurement of transient brain electrical dipoles gener-
ated by neuronal activity [21] - with the use of scalp electrodes -, having high
temporal precision. Even though both reveal the brain’s dynamic behaviour, it is
still not entirely known how the two are correlated, i.e., what is the relationship
between the hemodynamic response and electric neuronal activity, and whether
they capture the same information or not [24].

In recent years, several studies have analysed functional connectivity by com-
bining simultaneously acquired EEG-fMRI recordings, in resting-state, with the
objective of establishing a correlation or link between the two and also to take
advantage of their complementarity [1,8,26,33,38]. Moreover, this type of analy-
sis can provide richer characterization of the spatiotemporal organization of the
brain activity. However, it is still missing a comparative analysis between these
two modalities functional networks by investigating their topology over time.
Such analysis can be done considering a graph theory framework that allows the
brain functional systems to be modeled as complex networks [9]. In this context,
the functional networks and their dynamic topology can be studied by analysing
their global properties, such as their community structure [5,18], which looks at
the organization of the network into modules reflecting coherent activity between
different brain regions.

Furthermore, since these networks are spatially embedded, the question arises
whether the topological features captured can be explained by impositions deter-
mined by the brain’s underlying structure [31], in order to minimize energy costs
of maintaining such connections [32], or if there is still some functional synchro-
nization deviating from these proximity constraints. Some studies have explored
this spatial effect in structural networks [31,32] and, more recently, in the com-
munity structure of functional networks, distinguishing the influence of short-
and long-distance connections [16].

Therefore, this study intends to fill the gap in the present literature by per-
forming a comparative network analysis with EEG and fMRI dynamic functional
connectivity (dFC) data, on a global level, by means of a community analysis.
For that, several established approaches were used, such as the Louvain algo-
rithm [6] for the extraction of modules of coordinated activity, as well as its
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multiplex version [25], here applied to find partitions combining EEG and fMRI
for the first time. Moreover, with hopes of exploring the influence of space in
the topology, it was investigated the functional networks topology beyond these
spatial constraints. Hence, a new approach was applied - a modified version of
the Louvain algorithm [11], that includes a degree constrained spatial null model
in the modularity definition.

2 Materials and Methods

2.1 Data Acquisition and Preprocessing

The dataset used in this work consists in simultaneous EEG-fMRI recordings
acquired during rest in the scope of a previous project [20], using a 7T MRI
scanner along with a 64-channel EEG system, involving 9 healthy subjects (4F,
22–26 yrs). The data preprocessing and brain segmentation was done according
to [35]. Moreover, the BOLD timeseries were bandpass-filtered at 0.009–0.08Hz,
while the EEG signals were filtering at 0.3–70Hz and segmented as a multiple
of the Repetition Time (TR) of the fMRI acquisition (TR 1s).

2.2 Construction of Functional Networks

In order to analyse and compare the EEG and fMRI functional networks’ topol-
ogy, a graph representation was used. The nodes were set as 68 regions of interest
defined by the Desikan(-Killiany) atlas [14], for both modalities. This parcellation
was chosen considering the number of EEG channels and the optimal parcellation
size to capture independent EEG signals according to [17]. Moreover, to guar-
antee this spatial alignment between modalities, the EEG data was subjected
to a source reconstruction procedure, using the Tikhonov-regularized minimum
norm [2], as described in [35].

The edges, on the other hand, were defined by functional connectivity matri-
ces obtained for each time point (TR) using phase coherence for fMRI and imag-
inary part of coherency for EEG [27]. The first constitutes an instantaneous con-
nectivity measure, based on phase synchronization, which was estimated using an
adaptation of Cabral et al.’s implementation1 [10], while the second was obtained
using the Brainstorm function bst_cohn.m (according to the Brainstorm 2018
implementation, ‘icohere’ measure2) as described in [35]. Furthermore, the imag-
inary part of coherency estimation was averaged for the 5 canonical frequency
bands: delta δ (1–4Hz), theta θ (4–8Hz), alpha α (8–12Hz), beta β (12–30Hz),
gamma γ (30–60Hz).

To guarantee temporal equivalence between EEG and fMRI functional net-
works, a motion scrubbing step was taken, excluding, for both modalities, the
time points where excessive motion was detected on the EEG data. In addition,
as the BOLD time-series have an intrinsic delay with respect to the EEG data
1 https://github.com/juanitacabral/LEiDA.
2 http://neuroimage.usc.edu/brainstorm.

https://github.com/juanitacabral/LEiDA
http://neuroimage.usc.edu/brainstorm
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due to the different nature of the two signals, this temporal shift was estimated
and taken into account in aligning the two modalities’ networks. This was done
using a resting-state hemodynamic response function (HRF) deconvolution tool-
box3 [37], leading to 3–4seconds delay, depending on the subject.

Finally, to remove any spurious connectivity arising from noise or artifacts
typical on this type of dataset, the functional networks were thresholded. The
choice of an adequate proportional threshold was made using a data-driven per-
colation approach [7], i.e., by finding the percentage of edges necessary for each
time point to avoid the collapse of the giant component, which guarantees the
network’s structure integrity. Expecting fluctuations in activity over time, result-
ing in more or less structured networks [5], it was selected the median value of
said percentage of edges to be kept, resulting in the following threshold values:
11%, 7.5%, 6.6%, 7.0%, 6.1%, 7.0% and 6.5% for fMRI and EEG delta, theta,
alpha, beta and gamma frequency bands, respectively.

2.3 Community Analysis

Community analysis was performed to characterize both EEG and fMRI func-
tional networks on a macro-scale, to explore their potential similarity over time
and also to investigate the possible influence of the proximity constraints in the
modular structure captured.

Global Structure Statistical Significance. First, the global topology of
these functional networks was analysed over time, in comparison to a rewiring
null model, using three metrics: clustering coefficient, average path length and
modularity (computed using NetworkX’s functions). This allowed for the selec-
tion of time instances associated to functional networks whose global structure
was statistically significant. In concrete, this statistical testing step was done
for all metrics by generating 100 surrogates for each corresponding network and
selecting the time instances with p < 0.05. Subsequently, the selection of time
points was intersected with respect to the three metrics and for both modali-
ties, considering each frequency band independently. This led to a unique set
of time instances corresponding to statistically significant structured networks,
for EEG and fMRI simultaneously. Moreover, since the topology observed may
be due to spatial constraints, this analysis was performed again with respect to
a degree constrained spatial null model [11], resulting in a second set of time
points deviating from what was expected by the influence of space.

Louvain Algorithm. With the goal of identifying modules of synchronized
activity, potentially similar between modalities, the community structure of these
functional networks was analysed. This was done using the Louvain algorithm
for the set of time points previously selected with respect to the rewiring null
model. To explore the potential correlation between the two modalities regarding
to the modular structure captured, the communities extracted were compared

3 https://github.com/compneuro-da/rsHRF.

https://github.com/compneuro-da/rsHRF
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for all selected time points, using the Normalized Mutual Information (NMI)
metric, with values between 0 and 1.

Modified Louvain Algorithm. Considering the influence of the spatial con-
straints in the functional networks topology, it was desirable to check if some
modular configuration present emerged from functional necessity and not just as
a consequence of space proximity. With this objective, the community structure
beyond these spatial constraints was investigated. This was done using the mod-
ified Louvain algorithm4 [11], for all selected time points obtained previously
with respect to the degree constrained spatial null model. Additionally, the com-
munities extracted with and without the spatial influence were compared over
time using the NMI metric. Finally, the EEG and fMRI communities extracted
while regressing out the influence of space were compared for all time points,
again using the NMI metric. This was done to distinguish and quantify the influ-
ence of the spatial constraints in the alignment of the two modalities and also
to verify if there was still some similarity beyond that, reflecting the underlying
synchronous activity captured by the two.

Multiplex Louvain Algorithm. To investigate if combining EEG and fMRI
information would lead to new and improved results, a multilayer version of
the Louvain algorithm [25] was used to extract communities common to both
modalities (using i-graph’s louvain package find_partition function), for all time
points selected using the rewiring null model. This algorithm was applied as a
multiplex case, i.e., where all the layers share the same node set, since there is a
spatial equivalence between EEG and fMRI networks. With this, the improved
modularity was estimated for the combined multiplex EEG-fMRI network, for
each frequency band. In parallel, it was computed the modularity associated
to these communities when isolating the two layers, to check if this optimiza-
tion procedure led to different partitions than the ones obtained as described in
Sect. 2.3). Additionally, these values were compared with the equivalent ones for
the degree constrained spatial null model of both modalities.

3 Results and Discussion

3.1 Global Structure Statistical Significance

The global structure of EEG and fMRI functional networks was analysed, com-
paring global metrics values with a rewiring and a spatial null model. Fig. 1
illustrates the temporal variation of the modularity values (chosen between the
three metrics computed as they showed similar behaviour) in comparison to
each null model. Table 1 summarizes the percentage of time points deviating
from these null models, averaging for all subjects.

From these results, it is noticeable an oscillation over time, for both modali-
ties, which is not surprising considering that brain functional connectivity tends

4 https://github.com/Yquetzal/spaceCorrectedLouvainDC.

https://github.com/Yquetzal/spaceCorrectedLouvainDC
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Fig. 1. Temporal variation of modularity (blue) for fMRI (A, C) and EEG beta (B, D),
in comparison to the rewiring null model (green, A, B) and to the degree constrained
spatial null model (C, D), for arbitrary subject. (Color figure online)

Table 1. Percentage of time points for which both modalities functional networks
reflect a clustered structure in comparison to both rewiring and degree constrained
spatial null model - for each frequency band, averaged for all subjects.

Percentage (%) delta theta alpha beta gamma

Rewiring 60.6±6.5 56.8±5.3 59.1±5.3 59.5±7.1 65.3±11.4
Spatial 12.9±3.5 7.0±2.0 9.1±1.2 7.2±1.9 9.9±4.0

to oscillate between segregated and integrated states [4,5,15]. Besides this, there
is a significant difference between fMRI and EEG functional networks, as the
first one appears to possess a more clustered structure. This resulted in the
selection of time points for both modalities being almost entirely constrained
by the EEG. Furthermore, the degree constrained spatial null model presents a
somewhat clustered topology, suggesting an important contribution of the spa-
tial constraints for the structure observed. This is not surprising, since it has
been reported a general tendency for the clusters, in functional networks, to be
composed by regions that are near one another [3]. In particular, the spatial null
model’s global metrics appear to be almost identical to the EEG functional net-
works’, suggesting that the topology detected for this modality might be a result
of the spatial constraints imposed. This points to a higher susceptibility of the
EEG’s connectivity to these proximity constraints, which might result from its
intrinsic lower spatial resolution as well as to its low signal-to-noise ratio (SNR).
Nevertheless, there was still statistically significant structure being detected for
some time points, specially for the delta frequency band, supposedly due to its
ability to capture synchronized oscillations between brain regions at a longer
distance than higher frequencies [13,22].
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Table 2. Median modularity values associated to the communities extracted for fMRI
and EEG frequency bands over time using the Louvain algorithm, averaged for all
subjects. These values were computed considering each set of selected time points,
using the rewiring null model, for every EEG-fMRI pair, for all frequency bands.

Modularity (Q) delta theta alpha beta gamma

QEEG 0.455±0.004 0.466±0.002 0.447±0.003 0.465±0.010 0.428±0.015
QfMRI 0.700±0.004 0.700±0.005 0.697±0.005 0.699±0.004 0.699±0.015

3.2 Louvain Algorithm

The overall results of the community analysis with the Louvain algorithm, using
the time points selected with the rewiring null model, are reported hereafter, for
both EEG and fMRI functional networks. Table 2 summarizes the median mod-
ularity obtained for each modality, averaging for all subjects. Fig. 2 represents
the range of modularity and NMI values obtained from the comparison of the
community structure of both functional networks. Figure 3 shows the correlation
over time between the two modalities, for arbitrary frequency band and subject.

In line with the previous observations, the fMRI functional networks show
a more modular configuration than the EEG, which is also in accordance with
previous dFC studies [33]. The less modular topology retrieved for the EEG
might be due: i) to a worse quality of the data collected, as it is more affected by
artifacts [30]; ii) to lack of sensibility of the technique to capture the topology of
the underlying functional networks [23]; or iii) due to the difficulty in performing
an accurate source reconstruction, specially for resting-state data [12].

Regarding the comparison between the two modalities’ captured topology,
it was found a low-to-moderate similarity, as it can be observed from the NMI
results, which is in line with previous reports comparing EEG and fMRI static
connectomes [35] for the same dataset. These results are also in accordance
to studies examining dFC with both modalities, reporting a link between the
two [1,8,13,34]. Nevertheless, this similarity is not particularly high, which might
be due to the lack of modular topology for the EEG networks, as discussed. It
might also be that this modality captures different interactions, leading to a more
integrated topology instead of the segregated one found for the fMRI networks.
In fact, it has been shown in [26] that EEG functional connectivity clusters into
groups of brain regions differently than the fMRI functional connectivity and
that these clusters appear to be extended in space, with a lower connectivity
within modules than between them. Moreover, from the coloured NMI arrays,
it is noticeable an oscillation in similarity over time, which was found to be
specific to each frequency band. This not surprising considering past studies
reporting a different contribution of each EEG frequency band to the BOLD
connectivity dynamics [13,38], that varies across space [36], with a more local
topology captured for higher frequency bands, such as the gamma band, and a
more global connectivity for lower ones, like the delta band [22,34].
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Fig. 2. Range of modularity for both EEG and fMRI networks (A, C), for all frequency
bands, as well as range of NMI values (B, D) regarding the comparison of both modal-
ities’ communities obtained over time, with the Louvain algorithm (A, B) and with
modified Louvain algorithm (C, D), for all subjects.

3.3 Modified Louvain Algorithm

To further analyse the spatiotemporal organization and contemplate its spatial
embedding, the community analysis was performed with the modified Louvain
algorithm, using the time points selected with the spatial null model. Table 3
summarizes the median modularity obtained for each modality, averaging for all
subjects. Figure 2 shows the similarity between EEG and fMRI networks still
arises beyond the influence of space, for all frequency bands, while Fig. 4 shows
the comparison between the communities obtained over time with and without
the spatial constraints, for arbitrary frequency band and subject.

Spatial constraints seem to explain the majority of the topology observed
in EEG and fMRI functional networks, as observed in Sect. 3.1. Nevertheless, it
was still possible to retrieve some significant community structure beyond these
expectations, despite being associated to quite low modularity values (Table 3).
When comparing the communities obtained with the regular and modified ver-
sion of the Louvain algorithm, it was found an overall high similarity, but not
a complete match. This points to the existence of relevant spatial patterns that
arise out of functional necessity and not just as a consequence of space, even
if not to a great extent. Furthermore, these similarity values are lower for the
EEG, implying that, on top of not having a clear modular structure as the fMRI
networks, the spatial effects have a higher impact in EEG networks’ topology.
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Fig. 3. NMI coloured array regarding the comparison of the communities obtained over
time with the Louvain algorithm, between fMRI and EEG alpha band, for arbitrary
subject. (Color figure online)

Table 3. Median modularity values associated to the communities extracted for fMRI
and EEG frequency bands over time using the modified Louvain algorithm, averaged
for all subjects. These values were computed considering each set of selected time
points, using the degree constrained spatial null model, for every EEG-fMRI pair, for
all frequency bands.

Modularity (Q) delta theta alpha beta gamma

QEEG 0.036±0.003 0.034±0.002 0.034±0.001 0.032±0.002 0.033±0.002
QfMRI 0.072± 0.002 0.071± 0.005 0.073± 0.003 0.072± 0.004 0.071± 0.003

Comparing the two modalities community structure beyond the spatial con-
straints, an overall lower similarity was obtained, in comparison to the one pre-
sented in Sect. 3.2 (see Fig. 2). This suggests that part of the similarity between
the two is guaranteed by the underlying spatial embedding. Even so, it was still
retrieved a partially similar modular configuration beyond that, which supports
a link between the EEG and fMRI dFC. However, it is important to take into
consideration that this analysis was done only for the few time points deviating
from the spatial null model (around 9%).

3.4 Multiplex Louvain Algorithm

Since it was not found a total match between the topology captured by two
modalities on a global level, one can speculate that these complementary tech-
niques capture different information regarding the underlying neuronal activity
and its functional organization. The improved median modularity resulting from
the multiplex Louvain algorithm analysis is reported in Table 4, as well as the
individual values obtained for each modality.

One can immediately notice that the individual modularity values obtained
are lower than the single-layer ones reported in Sect. 3.2. Meaning that the multi-
layer approach finds clusters common to both modalities that were not captured
previously, as these partitions possessed too low modularity to be selected by
the community detection procedure. This suggests that using EEG and fMRI
together allows the capture of modules of synchronised activity that otherwise
would not be found if looking at each functional network individually. These
findings are in line with two previous studies that performed a joint-analysis of
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Fig. 4. NMI coloured arrays regarding the comparison of the communities obtained
over time with and without the spatial constraints, between fMRI and EEG theta
band, respectively, for arbitrary subject. (Color figure online)

Table 4. Median modularity (Q) values associated to the common communities
extracted from both fMRI and EEG frequency bands over time using the multiplex
Louvain algorithm, averaged for all subjects. These values were computed considering
each set of selected time points, using the rewiring null model, for every EEG-fMRI
pair, for all frequency bands.

Modularity (Q) delta theta alpha beta gamma

Qmultiplex 0.747±0.004 0.752±0.004 0.748±0.005 0.755±0.005 0.751±0.005

QEEG 0.091±0.009 0.123±0.009 0.105±0.005 0.148±0.011 0.102±0.014
QfMRI 0619±0.011 0.591±0.010 0.603±0.009 0.571±0.009 0.615±0.007

these modalities, by means of a hybrid independent component analysis [33] and
by building a multimodal graph, joining the EEG and fMRI nodes into a single
network [38] to identify new connectivity structure. Furthermore, the modular-
ity found was statistically significant in comparison to a multiplex spatial null
model for most time points, implying that it is not just the spatial embedding
that leads to the common partitions found.

4 Conclusions

From this work it is possible to draw several conclusions. First of all, the EEG and
fMRI functional connectivity seem to capture different information on a global
level. FMRI networks showed more modular configuration, consistent over time,
while EEG ones captured a less clustered topology, with each frequency band
capturing a slightly different structure oscillating across time. Moreover, when
combining the two modalities, significant communities were extracted that would
not be captured otherwise. Secondly, both functional networks’ organization is
mostly explained by the spatial embedding, giving preference to close connec-
tions. Nevertheless, relevant communities were still obtained beyond those con-
straints, for both fMRI and EEG, in particular for the delta, alpha and gamma
bands. Finally, despite the differences reported, there is a similarity between the
modalities’ topology over time, again mostly explained by the spatial embedding.
Nonetheless, when regressing out the influence of space, a small similarity was
still retrieved for a set of time points. Therefore, it is possible to conclude that,
even though fMRI and EEG functional connectomes are slightly linked, the two


