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Foreword

With the increasing penetration of renewable energy and flexible loads in smart grids,
a more complicated power system with high uncertainty is gradually formed, which
accordingly brings great challenges to smart grid forecast and dispatch. Traditional
methods usually require knowing accurate mathematical models, and they cannot
well deal with the growing complexity and uncertainty. Fortunately, the widespread
popularity of advanced meters makes it possible for smart grids to collect massive
data, which offers opportunities for data-driven artificial intelligence (AI) methods
to address the forecast and dispatch issues. In fact, big data and AI-enabled compu-
tational methods are widely deployed nowadays. People from different industries
try to apply AI-enabled techniques to solve practical yet challenging problems. The
power and energy industry is no exception. AI-enabled computational methods can
be utilized to fully explore the value behind these historical data and enhance electric
services such as power forecast and dispatch.

This book explores and discusses the applications of AI-enabled forecast and
dispatch techniques in smart grids. The contents are divided into three parts. The
first part (Chaps. 1–3) provides a comprehensive review of recent developments in
smart grid forecast and dispatch, respectively. Then, the second part (Chaps. 4–7)
investigates the AI-enabled forecast approaches for smart grid applications, such as
load forecast, electricity price forecast and charging power forecast of electric vehicle
charging station. On this basis, the smart grid dispatch issues are introduced in the
third part (Chaps. 8–11). This part introduces the application of extreme learning
machine, data-driven Bayesian assisted optimization algorithm,multi-objective opti-
mization approach, deep reinforcement learning aswell as the federated learning, etc.
Finally, the future research directions of smart grid forecast and dispatch (Chap. 12)
are presented. This book presents model formulations, novel algorithms, in-depth
discussions and comprehensive case studies.

One author of this book, Prof. Zhigang Zeng, is an internationally established
researcher in the area of AI. He has also conducted extensive work in the application
of AI in smart grids. Moreover, another author Prof. Lei Wu is an expert in the smart
grid dispatch and serves as associate editors of several top-tier international journals.
Prof. Yong Zhao, one of the coauthors, has engaged in several practical projects
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and accumulated valuable experience in smart grid research. The first author, Prof.
Yuanzheng Li, has conducted research in smart grid for a long time with more
than 15 years, published a variety of academic papers and finished many practical
projects. It is a worthy reading book, and potential readers will benefit much from
AI perspective and how AI-enabled computational methods are used in smart grid
forecast and dispatch.

Prof. Yang Shi
Fellow of IEEE, ASME, CSME, Fellow

of Engineering Institute of Canada
University of Victoria

Victoria, Canada
yshi@uvic.ca

mailto:yshi@uvic.ca


Preface

As the next generation of power system, smart grid is devoted to achieving a sustain-
able, secure, reliable and flexible energy delivery through decolonization, decen-
tralization and digitization. In order to realize the modernization of power system,
increasing penetration of renewable energy is integrated into the smart grid, which
also challenges the reliability, stability and flexibility of the power and energy system.
Furthermore, a large number of distributed energy resources such as photovoltaic,
wind power and electric vehiclesmake the smart gridmore decentralized and compli-
cated. Meanwhile, data acquisition devices such as advanced meters are gaining
popularity, which enables an immense amount of fine-grained electricity data to be
collected. To this end, the modern smart grid calls for making the best utilization of
these history data and promoting the power system operation.

Under this background, data-driven artificial intelligence computation approaches
are applied in the power and energy system to address the forecast and dispatch issues.
In fact, AI-enabled computational methods and machine learning techniques such
as deep learning, reinforcement learning and federated learning have been greatly
and considerably developed in recent years. It seems natural to figure out how to
apply these state-of-the-art techniques to uncertainty forecast and energy dispatch.
However, it is a predicament in the power industry that even though an increasing and
huge number of smart meter data are collected, these data are not yet fully utilized
due to the complexity, uncertainty as well as the privacy concern of power system.
As a result, our book aims to take full advantage of numerous data and advanced AI
techniques to present some successful applications and also inspire more valuable
thoughts, which is quite important for both academia and industry.

This book is a monograph about the AI-enabled computational methods for smart
grid forecast and dispatch, which consists of 12 chapters. It begins with an overview
of the basic concepts of smart grid forecast and dispatch in terms of problem statement
and property. Since uncertainty forecast is the basis of further smart grid dispatch and
its applications, three issues on AI-enabled forecast approaches, i.e., electrical load
forecast, electricity price forecast and electrical vehicle charging station charging
power forecast are subsequently studied. On this basis, the following works try to
depict the increasing dynamic and complicated smart grid dispatch issues. Specific
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works include reinforcement learning, federated learning,machine learning aswell as
the AI assisted evolutionary algorithm are introduced in this book. Finally, prospects
of future research issues on smart grid forecast and dispatch are provided at the end
of this book.

To help readers have a better understanding of what we have done, we would like
to make a simple review of the 12 chapters in the following.

Chapter 1 conducts a brief introduction of smart grid forecast and dispatch issues,
including the concept of smart grid and application-oriented review of forecast and
dispatch techniques. Following the three stages of analytic, namely descriptive,
predictive and prescriptive analytic, the key problem statement and property are
identified at this chapter.

Chapter 2 provides a comprehensive reviewof smart grid forecast and decomposes
the key application areas into three aspects from the perspective of consumers: the
load and netload forecast, the electricity price forecast as well as the electrical vehicle
charging station charging power forecast. On this basis, the research framework for
smart grid forecast is established in this chapter.

Chapter 3 offers a application-oriented survey of dispatch techniques andmethod-
ologies in the smart grid. Some real-world applications regarding smart grid dispatch
are introduced in this chapter, including distribution network, microgrid network,
electric vehicle and the integrated energy system. After that, the classical methods
for smart grid dispatch are divided into three categories, i.e., mathematical program-
ming, evolutionary algorithm and AI-enabled approached, which are discussed in
detail, respectively.

Chapter 4 develops a novel deep learningmodel for deterministic and probabilistic
load forecasting. In this model, unshared convolution neural network is selected as
the backbone, which is the first time of applying unshared convolution to load fore
casting.By reconstructing the unshared convolution layers into the densely connected
structure, this architecture has a good nonlinear approximation capability and can be
trained in the end-to-end fashion.

Chapter 5 proposes a reinforcement learning assisted deep learning probabilistic
forecast framework for the charging power of EVCS. This framework contains a
data transformer method to preprocess the charging session data and a probabilistic
forecast algorithm, termed as LSTM-AePPO. In this framework, the LSTM is used to
forecast the mean value of the forecast distribution, and the variation of its cell state
is modeled as an MDP. Then, a reinforcement learning algorithm, AePPO, is applied
to solve the MDP model and calculate the variance of the forecast distribution.

Chapter 6 presents an effective DL based DAEPF model for deterministic and
interval forecasting. In recognizing that the temporal variability exists in electricity
price datasets, the coherently aggregating structure of unshared convolution neural
network and gated recurrent unit is proposed to extract multi-term dependency
features. Considering the feature-wise variability, the feature-wise attention block
is proposed for autoweighting in the feature dimension.

Chapter 7 introduces a Dirichlet mixture model based on data association and
improve the posterior distribution by variational inference method, so that the
posterior distribution takes more information on net load data association into
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account. Thus, the lower bound of the improved evidence is constructed so that
the DDPMM obtains a suitable variational distribution through this lower bound,
and its convergence is proved by combining it with the EM algorithm.

Chapter 8 proposes a multi-objective ED (MuOED) model with uncertain wind
power. In thismodel, the expected generation cost, the upside potential and the down-
side risk are taken into account at the same time. Then the MuOED model is formu-
lated as a tri-objective optimization problem, andweuse an extreme learningmachine
assisted group search optimizers with multiple producers to solve the problem.
Afterward, a fuzzy decision-making method is used for choosing the final dispatch
solution.

Chapter 9 depicts a coordinated stochastic scheduling model of electric vehicle
and wind power integrated smart grid to conduct the comprehensive investigation
among wind power curtailment, generator cost and pollution emission. Specially, the
proposed model considers uncertainties of wind power and calculates wind power
curtailment by probabilistic information. Besides, we propose the parameters adap-
tive differential evolutionary algorithm to solve the above optimal issue in an efficient
way.

Chapter 10 presents a many-objective distribution network reconfiguration model
with stochastic photovoltaic power. In this model, the objective function involves
the photovoltaic power curtailment, voltage deviation, power loss, statistic voltage
stability, and, generation cost. Then, a deep reinforcement learning assisted multi-
objective bacterial foraging optimization algorithm is proposed to solve the above
many-objective distribution network reconfiguration model.

Chapter 11 designs a federated multi-agent deep reinforcement learning algo-
rithm for the multi-microgrids system energy management. A decentralized multi-
microgrids model is built first, which includes numerous isolated microgrids and an
agent is used to control the dispatchable elements of each microgrid for its energy
self-sufficiency. Then, the federated learning mechanism is introduced to build a
global agent that aggregated the parameters of all local agents on the server and
replaces the local microgrid agent with the global one.

Chapter 12 discusses some research trends in the smart grid forecast and dispatch,
such as big data issues, novelmachine learning technologies, new distributedmodels,
the transition of smart grids and data privacy and security concern. On this basis, a
relatively comprehensive understanding about the challenges of current forecast and
dispatch approaches, potential solutions and future directions are depicted in this
chapter.

In conclusion, this book provides various applications of the state-of-the-art AI-
enabled forecast and dispatch techniques for the smart grid operation. We hope this
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book can inspire readers to define new problems, apply novel methods and obtain
interesting results with massive history data in the power systems.

Wuhan, China
Wuhan, China
Hoboken, USA
Wuhan, China

Yuanzheng Li
Yong Zhao

Lei Wu
Zhigang Zeng
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Chapter 1
Introduction for Smart Grid Forecast
and Dispatch

As a novel generation of power systems, smart grid is devoted to achieving a sustain-
able, secure, reliable and flexible energy delivery through the bidirectional power and
information flow. In general, the smart grid mainly possesses the following features.

(1) Smart grid offers a more efficient way to ensure the optimal dispatch with a
lower generation cost and higher power quality via the integration of distributed
sources and flexible loads, such as renewable energy and electric vehicles [1–5].

(2) Smart grid achieves the secure and stable operation of power system via the
deployment of effective operational control technologies, including the auto-
matic generation control, autonomous voltage control and load frequency control
[6–9].

(3) Smart grid provides a transaction platform for customers and suppliers affili-
ated to different entities, thus enhances the interactions between suppliers and
customers, which facilitates the development of electricity market [10–12].

(4) Smart grid equips numerous advanced infrastructures including sensors, meters
and controllers, which also arises some emerging issues, such as the network
security and privacy concern [13–16].

On this basis, the typical architecture of smart grid is depicted in Fig. 1.1, which
illustrates that the operation of smart grid involves four fundamental segments, i.e.,
power generation, transmission, distribution and customers. As for the generation
part, traditional thermal energy is converted to electrical power, and the large-scale
of renewable energy integration is a trend in smart grid. After that, the electrical
energy is delivered from the power plant to the power substations via the high-voltage
transmission lines. Then, substations lower the transmission voltage and distribute
the energy to individual customers such as residential, commercial and industrial
loads. During the transmission and distribution stages, numerous smart meters are
deployed in the smart grid to ensure the secure and stable operation. Besides, the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Fig. 1.1 Typical architecture of smart grid

prevalent of these advanced infrastructures also brings about some emerging issues
that traditional power system seldomencounter, e.g., the network security and privacy
concern.

Among the various smart grid operation issues, forecast and dispatch are regarded
as the most critical segments. One the one hand, smart grid forecast offers a precious
information for the uncertain future status, which significantly assists the smart grid
to prevent and defuse the potential risks . On the other hand, smart grid dispatch
contributes to optimal operation of power system, which promotes the efficiency of
energy utilization as well as the stability of the whole system. In this way, extensive
previous research has devoted to investigate these two directions, which has already
achieved quite successful applications. In the rest part of this section, comprehensive
introduction regarding the smart grid forecast and dispatch is presented as follows.

1.1 Smart Grid Forecast

Forecasting techniques are essential to the operation of the smart grid, and it is capable
to provide crucial references, such as load and electrical price for the schedule and
planning of the power system [17–19]. The precious of forecasting highly influence
the decision performance of the smart grid [17]. Generally, the forecasting techniques
can be represented as follows:

Y = Fθ (X) (1.1)

where Y is the forecast value, normally stands for the load, electricity price and
demands; Fθ denotes the forecast model with parameter θ and X is the inputs. The
θ is usually determined by the experiences of algorithm designer or through the
historical data. Besides, the forecasting would apply autoregression, that is, Y = Xt
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and X = X [t−1,t−2,...,t−T ] where T indicates the order of the regression model [20,
21]. It should be noted that the forecasting can be categorized in to three types on
the basis of the time interval [22].

• The long-term technique focuses on the forecasts about 1 year to 10 years ahead.
The values are mainly used for the long-term planning of the smart grid, including
the future direction and the assessment of a smart grid [23, 24].

• The medium-term forecasting technique mainly takes the consideration of the
predict value about 1 mouth to 1 year ahead. The economic efficiency, security
guarantee and maintenance of the power system are the chief topics during this
time interval [25].

• The recent industry and academia both concentrate on the forecasting on less time
interval, namely about 1 hour to 1 day ahead, and this is describe as the short-term
forecasting. It is due to the optimal economic dispatch in smart grid, the optimum
unit commitment and the evaluation of contracts between various companieswould
rely on the precious forecasting value to achieve an efficient performance [24, 26].

Traditionally, the above forecast in the smart grid can be done through statis-
tical methods such as Box–Jenkins basic models, Kalman filtering (KF)[27], gray
method (GM)[28] and exponential smoothing (ES)[29]. TheBox–Jenkins basicmod-
els include autoregressive (AR)[30], moving average (MA)[31] autoregressive mov-
ing average (ARMA)[32] and autoregressive integrated moving average (ARIMA)
models[33]. In AR, the forecast value can be expressed as a linear combination of
previous data. The MA method mimics the moving average process; it is a linear
regression model that forecasts future values through the white noise of one or more
past values. ARMA model combines both AR and MA, and the ARIMA further
enhances the ability of the algorithm on the non-stationary data[34]. Besides, the
KF method is efficient, especially in long-term forecasting, and is capable of dealing
with errors with multi-inputs. Therefore, the numerous elements that may influence
the forecast performance should be considered, such as weather, time, economy, ran-
dom disturbances, and other customer factors. Moreover, GM is widely applied in
the scenario with limited past data and the ES can be carried from the exponentially
weighted average of the past observation.

With the development of machine learning techniques, support vector machines
(SVMs)[28], the artificial neural network (ANN)[35], extreme learning machines
(ELM)[36] and wavelet neural networks (WNNs)[37] are emerging for the forecast
problem in the smart grid. The SVMmodel could deploy a hyperplane that separates
the data that is mapped into a higher feature dimensional space through a nonlin-
ear mapping function. In this way, the algorithm is capable to model the nonlinear
relationship between the input and the forecast value. The ANN has gained huge
popularity in recent decades because of the development of big data and advanced
computation hardware [38]. Basically, it is capable of fitting the nonlinear relation-
ship when conducting forecasting, the burgeoning recurrent neural network (RNN)
and Transformer-family model further endow the time and space dependency for
the forecasting, which further improves the forecasting accuracy of the model [29,
39]. The ELM is a special case of a feedforward neural network that only contains
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a single-hidden layer. By analytically solving the corresponding least-squares prob-
lem, the weights of the ELM can be simply determined. WNN takes the advantage
of the wavelet function and thus can recognize a feature extraction without too much
prior information. Thismeans the algorithm is robust for approximating the nonlinear
function [40].

Despite the above significant progress in the field of smart grid forecasting, the
related fields are still developing. Nowadays, its main research focuses on the fol-
lowing aspects:

1. Increasing the accuracy of the forecasting techniques
Although current methods have achieved sufficient performance, the forecasting
accuracy is still inadequate due to numerous reasons. First, the forecastingmethod
would be underfitting due to the inappropriate model or training method. Besides,
the performance of the methods would decrease when forecasting the peak or
some emergencies happened. Overall, the forecasting values are fully trusted
only if their accuracy raise to a higher level.

2. Tackle the distribution training and application of the forecasting method
With the development of renewable energy techniques and the electrical market,
more andmore distributedmicrogrids are being developed. Sincemicrogrids have
become themain subject of the smart grid, their distribution characteristic requires
distributed forecasting techniques.Different from the traditional gridswith central
operators, the distributedmicrogrids have their ownmanagement center for power
dispatch and energy transactions. In this way, forecasting techniques, especially
ML methods, should develop new approaches for this change.

3. Raising the explainability of ML techniques
The black box feature of the current ML techniques limits its wide application in
the industry. On the one hand, the experiences of human experts cannot accelerate
the training of ML methods. On the other hand, the knowledge of ML methods
that are trained through numerous data is impossible to be learned by humans,
which reduced the credibility of the methods. Therefore, the exploration of the
explainability of ML is necessary, which could develop more transparent ML
methods and thus become more inspired for wider applications.

1.2 Smart Grid Dispatch

1.2.1 Problem Statement

Power dispatch is a pivotal problem that must be addressed in achieving the smart
grid promise [41]. In order to decide the optimal strategy for power generation, trans-
mission and even consumption, smart grid dispatch connects different components
within the whole power system. To be specific, the purpose of power dispatch aims at
reasonably arranging the generation schemes to each generator and determining the
operation states of transformers and other power equipment, so as to optimize some
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performance indicators while satisfying the constraint conditions at the same time.
Generally, the smart grid dispatch could be converted into an optimization problem,
which is expressed as follows.

min f (x)

s.t.

{
g(x) = 0,
h(x) ≤ 0,

(1.2)

where x denotes the decision variables of smart grid (e.g., outputs of generators,) and
f (x) represents the objective function (e.g., the fuel cost, the voltage deviation, trans-
mission loss and etc.). Besides, g(x) and h(x) are equality constraints (e.g., power
balance constraints) and inequality constraints (e.g., output limits of equipment),
respectively. In fact, smart grid dispatch problems will have different formulations
under different requirements or assumptions. Therefore, some popular formulations
of smart grid dispatch are summarized in this section.

(a) Economic Dispatch (ED)

ED is one of the fundamental problems in the smart grid, which allocates generation
among different generation units to achieve the minimum operation cost without
considering the transmission network constraints [42]. In general, ED is the simplest
formulation of smart grid dispatch that is usually utilized for real-time operation as
follows.

min c (PG)

s.t.

{∑
G PG − ∑

D PD = 0
Pmin
G ≤ PG ≤ Pmax

G

(1.3)

where G represents the set of power generators and D is the set of load demands. PG
and PD denote the outputs of generator and load demands, respectively. Hence, c(PG)

is the total cost function, which could be calculated by linear function (i.e., c(PG) =∑
(α + βPG)) or nonlinear quadratic function c(PG) = ∑

(α + βPG + γ P2
G). In

addition, the power balance constraint is presented by the first constraint, without
considering the power flow through transmission lines and the second constraint
depicts the limits of generator outputs.

(b) Optimal Power Flow (OPF)

Despite ED achieves quite successful applications in power system, it only finds the
optimal dispatch for generators, which are constrained within their output limits and
results in a balance between total generation and load demands. However, the ED
calculation ignores the effect that the dispatch of generation has on the loading of
transmission lines or the effect it has on bus voltages. In fact, the dispatch solution of
generators does have a significant affects on power flows, which should be taken into
account under some circumstances. To this end, the optimal power flow is proposed
as an extension of classic ED model, which couples the power flow calculation with
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the ED calculation so that the power flow and ED are optimized, simultaneously
[43]. The original formulation of OPF is expressed as follows:

min
∑
Gi∈G

c (PGi )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PGi − PDi − ∑
j∈i Vi Vj

(
Gi j cos θi j + Bi j sin θi j

) = 0
QGi − QDi − ∑

j∈i Vi Vj
(
Gi j cos θi j − Bi j sin θi j

) = 0
Pmin
Gi ≤ PGi ≤ Pmax

Gi
Qmin

Gi ≤ QGi ≤ Qmax
Gi

Vmin
i ≤ Vi ≤ Vmax

i|Sij| ≤ Smax
ij

(1.4)

where PGi and QGi are the active and reactive power of generator i . PDi and QDi

denote the active and reactive power demand of bus i . Vi represents the voltage
magnitude of bus i and θij denotes the difference of voltage phase between bus i and
j . G ij and Bij are the real and imaginary part of the mutual admittance, respectively.
Besides, Sij is the power flow, and Smax

ij represents the transmission capacity of the
branch connecting bus i and j . The power flow equations are addressed by the first
two constraints, while the next four constraints depict the limitation of generator, bus
and branch, respectively.

(c) Energy Management

With the increasing penetration of highly fluctuated renewable energy, power sys-
tem is confronted with rigorous challenge, which is mainly due to the imbalance
between power supply and demand. Actually, the shortage/excess in the consump-
tion or generation of power may perturb the smart grid and create serious problems
such as voltage deviation and even blackouts in severe conditions. Therefore, energy
management is applied to increase the balance between supply and demand in an
efficient way, and to reduce the peak load during unexpected periods. Generally,
energy management can be divided into two main categories. On the one hand, the
first one is from the perspective of electricity supply, which uses the energy manage-
ment to define the adequate scheme of generation units in an efficient way, which
is also named unit commitment. A classical formulation of energy management is
presented as follows:

min
∑
t

(
c1

(
PG,t

) + c2
(
uG,t

) + c3
(
suG,t

) + c4
(
sdG,t

))

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
G PG,t − ∑

D PD,t = 0
uG,t Pmin

G ≤ PG,t ≤ uG,t Pmax
G

uG,t = uG,t−1 + suG,t − sdG,t∑
t suG,t ≥ SUG∑
t sdG,t ≥ SDG

(1.5)
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where c1(·), c2(·), c3(·) and c4(·) represent the fixed cost, variable cost, startup cost
and shutdown cost of generation units, respectively. uG,t , suG,t and sdG,t denote the
decisions of unit commitment, startup and shutdown.Asmentioned before, the power
balance constraint is addressed by the first constraint, while the second constraint
presents the limitation of generator outputs. Besides, the status of generation units
is denoted by the third constraint, while the last two address the minimal startup and
shutdown time constraints.

On the other hand, the second category is on the consumer side, in which con-
sumers manage their energy consumption in order to meet the available power from
the generation side, which is also called demand response. More specific, the con-
sumer side energymanagement provides an opportunity of users to play an important
role int he operation of smart grid by shifting or reducing their energy usage during
peak periods in response to time-based rates or other forms of financial incentives.

(d) Network Reconfiguration

Network reconfiguration could be defined as altering the network topological struc-
tures by changing the open/close status of tie switches while satisfying operation
constraints [44]. This process can improve the performance of smart grid according
to different particular objectives and constraints. The formulation of original network
reconfiguration is presented as follows:

min Ploss + �VD

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PGi − PDi − ∑
j∈i Vi Vj

(
Gi j cos θi j + Bi j sin θi j

) = 0
QGi − QDi − ∑

j∈i Vi Vj
(
Gi j cos θi j − Bi j sin θi j

) = 0
Vmin
i ≤ Vi ≤ Vmax

i
0 ≤ Ii ≤ Imax

i
Radial topological constraints

(1.6)

where the fourth constraint addresses the limitation of line current and the radial
network structure must be maintained and all loads should be served after reconfig-
uration, as the last constraint denoted.

1.2.2 Problem Properties

The objective functions and operation constraints of smart grid dispatch determine
that this problem has the following characteristics [45]:

(a) Multi-objective

It should be noted that the optimization objectives of smart grid dispatch are diverse
from different perspectives. For instance, the owner of renewable power plant prefers
to promote the utilization of renewable energy, in order to gain more revenue. How-
ever, the large-scale integration of renewable energy may threaten the secure opera-
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tion of power system, which is confronted with the optimization objective of smart
grid. Therefore, smart grid dispatch cannot consider only one optimization objec-
tive. Actually, the dispatcher usually needs to consider several objectives in the real
smart grid, such as the generation cost, voltage deviation and power loss, which is a
multi-objective optimal dispatch problem of power system.

(b) Multi-constraint

Due to the particularity of power system, the smart grid dispatch problem is a multi-
constraint one. At first, the power generation and load demand must be balanced in
real-time since the electricity cannot be stored in a large scale. Afterward, consid-
ering the effect of generation dispatch on transmission lines, the classic energy con-
servation should be extended to power flow constraints, which determine the power
distribution of smart grid. In addition, the outputs of electrical appliance should also
be constrained as a result of their physical limitation. At last, the secure constraints
of smart grid need to be satisfied including the apparent power on transmission lines,
the voltage amplitude of power buses and etc. Consequently, the smart grid dispatch
problem is formulated as an optimization model with multiple constraints.

(c) Multi-variable

In order to achieve the economic and secure operation of smart grid, numerous deci-
sion variables should be dispatched including the power outputs of generator, the
terminal voltage amplitude of generator, the tap position of transformer and control-
lable status of electrical equipment. Therefore, the smart grid dispatch problem in
reality is accompanied with high-dimensional decision variables due to the extensive
scale of power system. For example, the dimension of decision variables in IEEE
118-bus power system is up to 238, while the total number of decision variables in
China Southern Power Grid is more than ten thousand. Worse of all, some variable
of smart grid dispatch are continuous, while some other are discrete, which leads to
this problem hard to be solved.

(d) Strong uncertainty

With large-scale renewable energy integrated into the power system, its strong uncer-
tainty brings about serious challenges to the dispatch of smart grid. First of all, the
outputs of renewable energy are intermittent such as solar power and hydroelectricity,
which makes the peak load regulation difficult. Secondly, the randomness of renew-
able energy may threaten the secure and stable operation of smart grid, e.g., voltage
deviation, power loss or even congestion. Finally, the generation of renewable energy
is uncontrollable to some extent, which aggravates the dispatch burden of smart grid.
In addition, the consumption behavior of load users is also random, which leads to
the uncertainty of demand side.

(e) Computational complexity

Taking aforementioned four aspects into account, we could make a conclusion that
the smart grid dispatch is a complicated optimization problem with multi-objective,



1.2 Smart Grid Dispatch 9

multi-constraint, multi-variable and strong uncertainty. This is the reason why smart
grid dispatch problem has attracted much attention in recent years. In order to handle
this complex problem and meet the requirement of practical application, several
methods are proposed, whichwill be introduced in Chap. 3with detailed explanation.
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