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Preface

The International Conference on Internet of Things, Communication and Intelli-
gent Technology (IoTCIT 2022) was co-organized by Central South University,
China University of Mining and Technology, Hunan University and Hunan Inter-
national Economics University in Changsha from August 22 to 24, 2022. As the
Internet of things, communication and intelligent technology and other high-tech
fields skyrocket both domestically and internationally, scientific researchers have
confronted with many challenges posed by the complexity as well as the high
degree interdisciplinarity. Therefore, IoTCIT 2022 was organized with a motivation
to provide a platform for scholars working in related fields to showcase their research
results, creating a strong community which thrives on the frontier of technology.

The conference received a positive response from the research community for its
call for papers. We received a large number of submissions, which were checked
for plagiarism and, if they passed the check, sent for single-blind peer review. The
experts from academia were assigned as reviewers. And eighty submissions with
quality and originality of work were accepted, which are divided into three parts:
Internet of things, communication and intelligent technology. The accepted papers
are from a broad spectrum of fields like wireless communication, signal and image
processing, smart grid communication, wireless and mobile networks, information
system modeling and simulation, Internet of things and big data, next generation
network and many more. The sessions were interactive and brainstorming. Authors
of accepted papers in the related field had participated in the conference and made
oral presentations.

We would like to take this opportunity to express our deep sense of gratitude
toward our committee members for the encouragement and support. Besides, we put
on record our sincere thanks to our keynote speakers, sponsors, reviewers and guest
editors.
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vi Preface

Thanks are due to our authors andparticipants fromChineseAcademyofSciences,
University of Tabriz, IranUniversity of Science andTechnology, SunYat-senUniver-
sity, Purdue University, University of Electronic Science and Technology of China,
etc. And the tireless efforts and meticulous planning by the organizing team to make
this event successful deserve special appreciation. Last but not least, we would also
like to acknowledge the cooperation and support of Springer.

Changsha, China
Shenzhen, China

Jian Dong
Long Zhang



Introduction

The book wraps up the analytics and research portion with the application of
IoT, communication and intelligent technology, presenting selected papers from the
IoTCIT 2022. The papers include contributions from researchers and academics on
topics in the field of Internet of things, communication and intelligent technology,
which demonstrates interdisciplinary and convergent development. The proceed-
ings will serve as a useful reference material for academics, researchers and most
importantly, the student community.
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Abstract. The space based infrared surveillance system (SBIRS) is a successful
application of optical system which includes two different kinds of primary pay-
loads (scanning and staring sensors). The precision of sensor’s line of sight (LOS)
can directly determine the precision of targets tracking and location, the timeli-
ness of large size optical image processing even can influence the efficiency of the
SBIRS. Based on researching the imaging model and characteristics of scanning
sensor, this paper proposes the real-time LOS calibration methods using multi-
type control points (MCPs) for improving the precision of scanning sensor’s LOS.
The influential factors of LOS error are equivalent to LOS attitude angles, and the
theoretical model of LOS attitude angles has been used in the proposed method.
By establishing the observation equation of MCPs (ground control points and star
control points) and the state transition equation of LOS attitude angles, the real
time high precision estimation of LOS attitude angles can be achieved for using
the extend Kalman filter (EKF). The experiment results indicate that the proposed
method has a high precision and a better smooth performance compared with the
least squares method. And, the proposed method can also meet the requirement
timeliness of for target tracking mission in SBIRS.

Keywords: SBIRS · Optical image processing · MCPs · LOS attitude angles
estimation · EKF

1 Introduction

At present, the space based infrared surveillance system (SBIRS) and warning radar
make up the whole missile defense system [1, 2]. Different from the warning radar,
the SBIRS has many advantages owning to observation geometry. It finds the missile
in the boost phase, has a wide field of view (FOV) and detects the targets outside the
radar coverage area, gives the estimations of the launch point and impact point [3]. The
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scanning sensor of SBIRS is a wide linear array whiskbroom camera, and the most
important mission of scanning sensor is to find the potential targets with its wide FOV
as soon as possible. Meanwhile, the timeliness and precision of the calibration method
is more difficult problem for scanning sensor [4, 5]. The calibration methods of remote
sensing image processing mainly include polynomial method, rational function method
and collinear equation method [6–8]. However, these conventional methods do not take
the subsequent changes of sensor bias into account, and they are off-line processing
without real-time update. For the scanning sensor, the imaging parameters (satellite orbit,
satellite attitude, and so on) are changing with each line period. Hence, the conventional
methods cannot achieve the desired performance. In [8], Andy Wu proposed an LOS
attitude determination and calibration method for SBIRS-high payload. In [3], Yong-
Hong XUE introduced a novel target LOS calibration method by using ground control
points (GCPs) for IR scanning sensor. In [5] Thomas M. Clemons put forward a bias
correction technique through utilizing stellar observations for space-based EO sensor
during tracking of a target.

Based on researching the imaging model and characteristics of the scanning sensor,
this paper analyzes the influential factors (including the thermal distortion error, assem-
bling error, and so on) of sensor’s LOS and equivalents these factors to the LOS attitude
angles. By establishing the observation equation of multi-type control points (MCPs)
and the state transition equation of LOS attitude angles, the high precision estimation
of LOS attitude angles can be achieved by using the filter method (extend Kalman filter,
EKF). The details of the proposed methods for scanning sensor of SBIRS are given in
the following.

2 LOS Calibration Model

2.1 Rigorous Imaging Model

The scanning sensor is typical linear array whiskbroom sensor. Its wide FOV is covered
by the linear array detector combination of mechanical whiskbroom. The essence of
imaging process is projecting the point on the surface (such as GCPs) of the earth in
earth centered fix (ECF) coordinate system or the point (such as star) in earth centered
inertial (ECI) coordinate system to the focal plane [3, 9], as shown in Fig. 1.

Fig. 1. The simple structure diagram of scanning sensor.
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The imaging process can be described by a series of coordinate transformations. The
influences of these undistinguished errors in the imaging process (thermal distortion
error, optical distortion error, assembling error, orbital elements error, attitude error,
etc.) are equivalent to the influences of LOS attitude angles. The LOS calibration model
for scanning sensor is expressed as follow [10–13].

⎡
⎣
X − XF

Y − YF
Z − ZF

⎤
⎦
ECF

= m ∗ REq(�α,�β,�θ) ∗ RECF
ECI ∗ RECI

orb (θ�, θi, θω)

∗ Rbody
orb (ϕ, ε, ψ) ∗ Rsen

body(φX , φY , φZ ) ∗ Mmir(θ0, θc) ∗
⎡
⎣

0
y

−f

⎤
⎦

(1)

where, (X ,Y ,Z) represents the projective position in ECF, (XF ,YF ,ZF ) represents
satellite position inECF, y represents the image columnposition in focal plane coordinate
system, f represents the focal length, m represents a scale factor. �α,�β,�θ are the
equivalent LOS attitude angles, REq(�α,�β,�θ) is the equivalent rotation matrix.
RECF
ECI denotes the rotation from ECI to ECF; θ�, θi, θω represent the orbital elements

of satellite, RECI
orb denotes the orbital elements that give the rotation from satellite orbit

coordinate system to ECI; ϕ, ε, ψ represent the Euler angles of satellite attitude, Rbody
orb

denotes the satellite attitude angles that give the rotation from satellite body coordinate
system to satellite orbit coordinate system;φX , φY , φZ represent the assembling angles of
sensor,Rsen

body denotes the assembling angles that give the rotation from sensor coordinate
system to satellite body coordinate system; θ0, θc represent the sensor pointing angles,
Mmir denotes the sensor pointing angles that give the rotation from pointing coordinate
system to sensor coordinate system.

Hence, the proposed method only needs to estimate the LOS attitude angles for
completing the real-time LOS calibration mission.

2.2 LOS Attitude Angles Model

All on-orbit satellites suffer from a cyclical cooling and heating space environment
owing to the circular orbit around the earth. The thermal distortion error which results
from the satellite enters and comes out of earth caused solar eclipse is the biggest error
in the imaging process [14]. This error has the same period with the satellite orbit and
is presenting in three axes. The optical distortion error and the assembling error which
caused by satellite launching and injecting are usually unchanged or changing slowly
[5]. These errors are the main factors to influence the sensor LOS. From what has been
discussed about the characteristics of the main factors, each axis LOS attitude angle is
expressed by a constant bias and a cosine component as follow [5, 14].

⎧⎨
⎩

α(t) = ςα + Aα cos(ωαt + ζα)

β(t) = ςβ + Aβ cos(ωβ t + ζβ)

θ(t) = ςθ + Aθ cos(ωθ t + ζθ )

(2)
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where, ςα, ςβ, ςθ are the constant components, Aα,Aβ,Aθ are the amplitudes of
the cosine component, ωα, ωβ, ωθ are the frequencies of the cosine component, and
ζα, ζβ, ζθ are the phases of the cosine component.

3 Technical Approach

3.1 Determine the Background Observations

The scanning sensor of SBIRS can observe both GCPs and star control points (SCPs)
with the high extracting precision in observation background due to the orbit motion
of high ellipse orbit. Meanwhile, the same GCP can be observed in sequence image
with different satellite positions and pointing angles because of the orbit motion and
mechanical whiskbroom. And this can hamper the extracting precision of GCPs. In this
paper, the proposed method uses the multi-type control points (MCPs, GCPs and SCPs)
to calibrate the scanning sensor LOS of SBIRS.

Determine the Background Observations of SCPs. Whether there are enough stars in
the FOV of scanning sensor is the most important issue what we should pay attention
to. TheWide-field Infrared Survey Explorer (WISE) preliminary data which released by
the infrared astronomical satellite in 2011 is used in this study. Refer to [8], the scanning
sensor of SBIRS can detect nearly 1551 IR stars in one orbit period. Figure 2(a) shows
the distribution of observed stars in the sky which are represented by the red dots; the
green dots represent the stars in the FOV of sensor which are sheltered by the earth; the
blue dots represent the stars outside the FOV of sensor. Figure 2(b) shows the number
of observed star with the time-varying.
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Fig. 2. (a) The distribution of observed stars in the sky, (b) the number of observed stars with the
time-varying

How to rapidly extract and match the stars is the next important issue. In this paper,
the centroid weight method is used to high precision extract the image positions of stars.
From the Fig. 2b, only a few numbers of stars can be observed by the scanning sensor
in one frame period. It is a time-consuming work that searches all WISE data to match
the candidate stars in the sensor FOV. So, the WISE data is divided into some small
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sub-catalog in advance for the rapidly star matching, and then, the sensor LOS has been
calculated to decide which sub-catalog should be used in star matching [9].

Determine the Background Observations of GCPs. For remote sensing image, the
template images of GCPs are usually generated before GCPs extraction and matching
and used for a long time [15]. The scanning sensor is used to meet the mission demand
of high frequency monitoring coverage area. Due to the orbit motion and mechanical
whiskbroom, the same GCP can be observed in sequence image with different satellite
positions andpointing angles.While, the different pointing angles can lead to thedifferent
image shapes for one GCP. If we still use the fixed template image for GCPs extraction
and matching, it could deteriorate the accuracy of GCPs extraction and matching. The
simulation images of Taiwan Island (E 121.9◦,N 24.7◦) with different pointing angles
are shown in Fig. 3(a), b.

Fig. 3. (a–b) The images of Taiwan Island with different pointing angles, (c–d) the real-time
generation of GCPs templates

Based on these characteristics of scanning sensor, we use the imaging model and
imaging parameters to generate the template images of GCPs in real time for eliminating
the influence of the pointing angle. The simulation data comes from Shuttle Radar
Topography Mission (SRTM). The details of generation GCPs template are presented
in [16]. The real-time template images of Taiwan Island with different pointing angles
are shown in Fig. 3(c–d).

3.2 The Procedure of Proposed Method

The real-time LOS calibration method using MCPs consists of four primary steps:
(1) determine the background MCPs observations; (2) obtain the LOS attitude angles
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measurements; (3) estimate the LOS attitude angles; (4) calibrate the target LOS. The
procedure of proposed method is shown in Fig. 4.

Determine background 

MCPs observations 

Target

observations

Image Data

Obtain the LOS attitude 

angles measurements

Real-time GCPs 

templates

generation

Sub-catalog star 

database

Update of the 

LOS attitude 

angles

Predict of the 

LOS attitude 

angles

Target LOS

calibration

MCPs

affirm

yes

no

LOS attitude angles

Fig. 4. The flowchart of proposed method

3.3 Derivation of EKF

State Variables and State Transition Equation. The desirable state variables should be
selected for exactly estimating the LOS attitude angles. And the state transition equation
can be established based on the changing rule of the state variables. According to the Eq.
(1), we need to obtain the estimation of the LOS attitude angle for each axis. Hence, three
separate EKFs with the state vector modeled as the magnitude of LOS attitude angles,
the changing rate of LOS attitude angles, and the frequency of the cosine component in
LOS attitude angles for each axis, such that:

⎧⎪⎨
⎪⎩

αk = [
αk α̇k ωα,k

]T
βk = [

βk β̇k ωβ,k
]T

θk = [
θk θ̇k ωθ,k

]T
(3)

According to Eq. (2), we take the one-dimensional LOS attitude angle as an example.
The first-order and two-order derivatives of the one-dimensional LOS attitude angle can
be expressed as follow.

α̇(t) = −Aαωα sin(ωαt + ζα) (4)

And

α̈(t) = −Aαω2
α cos(ωαt + ζα) (5)
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For the case of ςα ≈ 0, the Eq. (5) can be simplified as follow.

α̈(t) ≈ −α(t)ω2
α (6)

Account for some random frequency variations, the process noise model ω̇α(t) =
μα(t) has been applied in here, μα(t) is a spectral density of �ωα . Therefore, the state
transition equation can be described as follow [10].

⎡
⎣

α̇

α̈

ω̇α

⎤
⎦ =

⎡
⎣

0 1 0
−ω2

α 0 0
0 0 0

⎤
⎦

⎡
⎣

α

α̇

ωα

⎤
⎦ +

⎡
⎣

0
0

μα

⎤
⎦ (7)

The discrete state transition equation can be expressed as follow by the linearization
and discretization of the nonlinear continuous system.

Xk = �Xk−1 + υk−1 (8)

where, Xk = [αk;βk; θk ] is the discrete state vector of sampling time k. � =
diag[�α,�β,�θ ] is the fundamental matrix. υk−1 = [

υα;υβ;υθ

]
is the corresponding

process noise with the covariance matrix Qk−1 = diag[Qα,Qβ,Qθ ], υα = [0, 0, μα]T ,

υβ = [
0, 0, μβ

]T , υθ = [0, 0, μθ ]T . �α,�β,�θ and Qα,Qβ,Qθ have the same con-
struct respectively, so we take�α andQα as the examples for describing their constructs
[19].

�α ≈ I + ∂f (α)

∂α
Ts =

⎡
⎣

1 Ts 0
−ω̂2

α,k−1Ts 1 −2ω̂α,k−1α̂k−1Ts
0 0 1

⎤
⎦ (9)

where, Ts is the time step interval of the measurement. It is the line sampling time of
scanning sensor.

Qα = E{υαυ ′
α} =

∫ Ts

0
�α(τ)��T

α (τ )dτ

=
⎡
⎣
0 0 0
0 4

3 ω̂
2
α,k−1α̂

2
k−1T

3
s �ωα −ω̂α,k−1α̂k−1T 2

s �ωα

0 −ω̂α,k−1α̂k−1T 2
s �ωα Ts�ωα

⎤
⎦ (10)

where, �T
α (τ ) is the transposed matrix of �α(τ).

3.3.1 Observation Equation

The observation equation of SCPs. The SCPs residuals are defined as the differences
between the estimated right ascension (RA) and declination (DEC) of SCPs and the
true RA and DEC of SCPs [9]. The true RA and DEC angles α′

ECI , β
′
ECI in ECI can be

obtained after the SCPs matching. The estimated RA and DEC angles α̂′
ECI , β̂

′
ECI in ECI
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can be calculated according to the Eq. (10) by using the imaging parameters and the real
image positions of SCPs. Hence, the SCPs residuals �α′,�β ′ are calculated as follows.

�α′ = α′
ECI − α̂′

ECI

�β ′ = β ′
ECI − β̂ ′

ECI (11)

The relationship between the SCPs residuals and the LOS attitude angles can be
expressed as follow.

⎧⎨
⎩

α = cos−1(cos�α′ cos�β ′)
β = cos−1(sin�α′ cos�β ′)
θ = cos−1(sin�β ′)

(12)

The observation equation of GCPs. The GCPs residuals are defined as the differences
between the estimated longitude and latitude of GCPs and the true longitude and latitude
of GCPs in ECF. Once the extraction and matching of GCPs have been completed, the
estimated longitude and latitude of GCPs B̂ECF , L̂ECF can be computed according to the
Eq. (10) by using the image parameters and the real image positions of GCPs. Hence,
the GCPs residuals �α′,�β ′ are calculated as follow. And the relationship between the
GCPs residuals and the LOS attitude angles can be expressed as follow.

�α′ = BECF − B̂ECF

�β ′ = LECF − L̂ECF (13)

According to the Eq. (12), we only obtain the measurement of magnitude of LOS
attitude angles in each control point observation. The measurement variables are defined
as follow:

⎧⎪⎨
⎪⎩

Zα,k = [
αk 0 0

]T
Zβ,k = [

βk 0 0
]T

Zθ,k = [
θk 0 0

]T
(14)

The measurement vector of sampling time k is defined as Zk = [
Zα,k;Zα,k ;Zθ,k

]
.

The observation equation is used to describe the relationship between the discrete state
vector and measurement vector. So, the observation equation of two kinds of control
points can be represented as follow:

Zk = HkXk + νk (15)

where, Xk is the discrete state vector of sampling time k. Hk = diag
[
Hα;Hβ;Hθ

]
is

the observation matrix. νk is the measurement noise, E{νk} = 0, E{ν2k } = Rkδki, and
the Rk = σ 2

v is the measurement noise variance.

The steps of EKF. The main steps of EKF are listed as follows [17].



The Real-Time LOS Calibration Method 11

(a) Propagate the covariance matrix Pk/k−1 and the estimated state vector X̂k/k−1.

Pk/k−1 = Φk−1Pk−1/k−1Φ
T
k−1 + Qk−1 (16)

X̂k/k−1 = Φk−1X̂k−1/k−1 (17)

(b) Compute the gain matrix Kk based on the MCPs observations.

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1 (18)

(c) Update the covariance matrix Pk/k and the estimated state vector X̂k/k .

Pk/k = (I − KkHk)Pk/k−1 (19)

X̂k/k = X̂k−1/k−1 + Kk(Zk − Hk X̂k/k−1) (20)

4 Experiment

To verify the superior performance of the real-time sensor LOS calibration method,
we design two experiments in this paper. In the first experiment, the EKF method is
compared with the least square method (LS method). The second experiment shows the
high calibration precision by using the MCPs. The details of experiments are described
as follow.

4.1 Method Comparison

SimulationSceneDescription. There are twokinds of inputs in this experiment. The one
is GCPs which are used to estimate the LOS attitude angles. The other is Random Check
Points (RCPs) which are picked out randomly to accurately evaluate the performances of
two methods. We randomly select 10 GCPs and 30 RCPs in each frame. The beginning
time of simulation is 8 JUL 2021 15:30:00 UTCG and the ending time is 8 JUL 2021
18:30:00 UTCG. The simulation parameters are defined as follow. The satellite position
error is set to 600 m in each direction, the satellite velocity error is set to 100 m/s in
each direction, the satellite attitude error is set to 10′′ in each axis, the sensor assembling
error is set to 40′′ in each axis, the sensor pointing error is set to 10′′, the frame period
of sensor is set to 5 s, the angle resolution of sensor is set to 60 µrad. To adequately
compare the EKF method and the LS method, we have designed different testing scenes
according to the Eq. (2) in this experiment, the parameters of three-dimensional LOS
attitude angles are listed in Table 1.

ExperimentResult. The angle between the calibrated LOS vector rcalECI and the true LOS
vector rtrueECI in ECI is used as the criterion of the calibration precision and calculated as
follow [3].

φ = arccos

( (
rtrueECI

)TrcalECI∥∥rtrueECI

∥∥ · ∥∥rcalECI

∥∥
)

(21)
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Table 1. The parameters of different testing scenes

Scene No. 1 (µrad) 2 (µrad) 3 (µrad) 4 (µrad) 5 (µrad)

Parameters
ς = 0.00

A = 0.24

ς = 0.60

A = 0.24

ς = 1.20

A = 0.24

ς = 1.20

A = 0.06

ς = 1.20

A = 0.48

The calibration results of RCPs using two methods with the first 100 s of scene 3 are
shown as follow.

Fig. 5. The calibration results of RCPs using two different inputs

Table 2. The calibration results of two methods in different scenes

Scene No. The EKF method The LS method

Mean value (µrad) Variance Mean value (µrad) Variance

1 90.83 41.33 92.08 48.92

2 91.57 40.29 91.19 49.13

3 90.73 42.18 92.33 48.51

4 89.11 39.66 90.18 46.17

5 95.35 44.74 121.65 62.36

The calibration results of two methods in different scenes are shown in Table 2.
In the Fig. 5, the simulation results show that the EKF method is an effective method
for calibrating the scanning sensor’s LOS attitude and has a fast speed convergence
in comparison with the LS method, the EKF has converged in the twentieth second.
Meanwhile, the calibration results contain the wave phenomenon, this is mainly because
theGCPs only distribute in themiddle of the image,when the SCPs distribute in the space
area, the calibration results would diverge. When the EKF method converges, it has a
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similar performance with the LSmethod in the scene 3. From the Table 2, the simulation
results show that the performance of the EKF method is better than the LS method in
all testing scenes. The mean of the EKF method is similar to the LS method. However,
the standard deviation of the EKF method is better than the LS method, so the EKF
method has the smoother and steadier performance. We find that the EKF method has
the similar performance in the scene 1–3. The experiment results of scene 3–5 indicate
that the performance of two methods deteriorate with the growing the amplitude of the
cosine components. Nevertheless, the EKF method can obtain a preferable calibration
result even in the scene 5. It is because that the model of the LOS attitude angles is
used in the EKF method. The other important thing is that the EKF method can do the
calibration work as soon as the target is detected, does not need to wait until the whole
image is obtained and has a much better timeliness in comparison with the conventional
method.

4.2 Method Verification

Simulation Scene Description. The simulation scene is same as the last one. We use
the parameters of LOS attitude angles in scene 3. And, we use three sets of CPs to test
the performance of the EKF method. The first set contains two kinds of CPs: GCPs
and SCPs, the second set only contains SCPs, the third set only contains GCPs. It is
well-known that the extracting precision of SCPs is better than the extracting precision
of GCPs, even if we used the real-time templates in the GCPs extraction and matching.
So, the extraction error of GCPs is 60µrad and the extraction error of SCPs is 30µrad in
this experiment. The RCPs also have been used to accurately evaluate the performances
of the proposed method in different sets. We randomly select 10 CPs and 30 RCPs in
each frame for three sets.

Experiment Result. The calibration results of RCPs using three different input sets with
the first 100 s of the scene are shown in Fig. 6, and the performance statistics are listed
in Table 3.

In the Fig. 6, the calibrated results using the first input set has a fast speed convergence
and a good smoothness compared with the calibrated results using the second or third
input set. There are a lot of divergence points in the calibrated results using the second
and third input sets. It is obvious that the number of divergence points in calibrated
results using the second input set is more than the divergence points in calibrated results
using the third input set. This is because the proportion of the space background is
smaller than the earth background and the distribution of SCPs is more uneven than
GCPs in the image of scanning sensor. Due to the higher extracting precision of SCPs,
the convergence points in calibrated results using the second input set have a superior
performance than the convergence points in calibrated results using the third input set.

From the Table 3, the mean value of the calibrated results using second input set
is like the calibrated results using third input set, while the variance of the calibrated
results using second input set is worse than the calibrated results using third input set.
And, the first input set can obtain the most efficient performance in three sets. There
are two reasons: (1) the SCPs distribute at the both ends of the scanning image, the
GCPs distribute in the middle of the scanning image, so the MCPs (SCPs and GCPs)
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Fig. 6. The calibration results of RCPs using three different input sets

Table 3. The calibration results of three different input sets

Mean value (µrad) Variance

First input set 60.49 31.36

Second input set 91.33 65.82

Third input set 89.42 41.64

can distribute evenly compared with the GCPs or SCPs; (2) the extracting precision of
SCPs is better than the GCPs. And, the simulation result show that the proposed method
by using the MCPs can effectively improve the LOS calibration precision of scanning
sensor and achieve the precision of about one pixel (the angle resolution of sensor is set
to 60 µrad).

5 Conclusions

The LOS calibration of scanning sensor is a significant work in SBIRS. This paper
proposes a LOS calibration method using MCPs for scanning sensor which can real-
time calibrate the errors that result from thermal or dynamic effects on the system while
the target is in track. The experiment results indicate that the performance of proposed
method has been improved to about one pixel by using MCPs. So, the proposed method
can deal with the situation of GCPs deficiency (such as cloud covered). Compared with
the conventional methods (such as LS method), the most important thing is that the
proposed method does not need to accumulate the CPs. Once the target is detected, the
calibration work can be completed by the proposed method in real-time. And this study
contributes to the high precision of target’s tracking and location in SBIRS.
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Abstract. In this paper, a fisheries aquaculture water quality monitoring system
based on the IoT is designed. The design of the system is based on the develop-
ment board STM32F103 as the main controller. The system uses WIFI wireless
transmission network, wirelessmodule equippedwith variousmonitoring sensors,
real-time collection of aquaculture site water quality temperature, turbidity value
and other data. The data is transmitted to the monitoring interface of the top com-
puter to provide real-time monitoring interface for aquaculture personnel. After
our system test, the water quality information of fishery aquaculture environment
can be monitored, which confirms the feasibility of the system.

Keywords: Iot ·Water quality monitoring ·Wireless sensor network

1 Introduction

China’s fishery develops rapidly, but in some traditional aquaculture, water quality mon-
itoring mainly relies on traditional manual monitoring methods. However, manual sam-
pling method will have a large workload, and its monitoring scope and time are also very
limited, and can not accurately monitor the required water quality data information. In
the current field of fishery Internet of Things, advanced Internet of Things technology is
usually applied in fisheries, so as to improve the efficiency of fishery breeding. Encinas
et al. [1] designed a prototype of aquaculture water quality monitoring based on wireless
sensor networks, Chen and Han [2] designed a water quality monitoring in smart city: A
pilot project, Shixian et al. [3] designed a water quality online monitoring system based
on Internet of Things technology. In this article, the designed system using some of
the fishery IoT technology, complete real-time acquisition of aquaculture water quality
parameters of the information, to adapt to the modern intelligence cultivation pattern,
at the same time satisfy the needs of convenience, environmental protection, high effi-
ciency, low cost, etc. Based on the terminal sensor of the Internet of Things, a complete
set of data acquisition system is combined through theWIFI wireless [4] communication
module to realize the processing of water quality detection data and the control of the
lower computer. Through docking with the platform, detected data can be saved to the
platform for data processing, and the development from traditional manual farming to
modern equipment farming [5] will help improve the survival rate of fish farming. We
mainly built several modules to solve the following problems:
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