
Lecture Notes on Data Engineering
and Communications Technologies 162

Rajalakshmi Krishnamurthi
Adarsh Kumar
Sukhpal Singh Gill
Rajkumar Buyya Editors

Serverless
Computing:
Principles and
Paradigms

Lecture Notes on Data Engineering
and Communications Technologies

Volume 162

Series Editor

Fatos Xhafa, Technical University of Catalonia, Barcelona, Spain

The aim of the book series is to present cutting edge engineering approaches to data
technologies and communications. It will publish latest advances on the engineering
task of building and deploying distributed, scalable and reliable data infrastructures
and communication systems.

The series will have a prominent applied focus on data technologies and commu-
nications with aim to promote the bridging from fundamental research on data
science and networking to data engineering and communications that lead to industry
products, business knowledge and standardisation.

Indexed by SCOPUS, INSPEC, EI Compendex.

All books published in the series are submitted for consideration in Web of Science.

Rajalakshmi Krishnamurthi · Adarsh Kumar ·
Sukhpal Singh Gill · Rajkumar Buyya
Editors

Serverless Computing:
Principles and Paradigms

Editors
Rajalakshmi Krishnamurthi
Department of Computer Science
and Engineering
Jaypee Institute of Information Technology
Noida, India

Sukhpal Singh Gill
School of Electronic Engineering
and Computer Science
Queen Mary University of London
London, UK

Adarsh Kumar
School of Computer Science
University of Petroleum and Energy Studies
Dehradun, Uttarakhand, India

Rajkumar Buyya
School of Computing and Information
Systems
The University of Melbourne
Melbourne, VIC, Australia

ISSN 2367-4512 ISSN 2367-4520 (electronic)
Lecture Notes on Data Engineering and Communications Technologies
ISBN 978-3-031-26632-4 ISBN 978-3-031-26633-1 (eBook)
https://doi.org/10.1007/978-3-031-26633-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9661-782X
https://orcid.org/0000-0003-2919-6302
https://doi.org/10.1007/978-3-031-26633-1

Preface

Serverless computing is a paradigm shift in cloud computing. Recently, many
companies rely on serverless computing for their product application develop-
ment and deployment, market analysis and customer relationship without investing
excess on infrastructure development and maintenance. This book brought a single
point of resource for researchers and practitioners on wide aspects of server-
less technologies. The book presents serverless computing, data-centric serverless
computing, distributed serverless computing and the road ahead and future of server-
less computing. Further, it focuses on the fundamental of serverless computing such
as the evolution of computing technologies, architecture, benefits, applications, issues
and solutions in serverless computing, open challenges and future scope. Further, the
book will present critical issues such as fine granularity and performance achieve-
ment in serverless computing. Next, the role of hyperscalers in serverless computing
in terms of application development, business and economic perspective will be
targeted.

The key performance concepts such as no operational costs, scheduling and
resource management, performance modelling, fairness, interoperability, virtual-
isation, data centres and portability are addressed. The merits of conventional
serverless computing include autoscaling and pay-as-you-go mode. It lacks effi-
cient data processing due to the shipping of data to the code, isolated VM for
serverless functions, and non-addressable and limited internal cache state. However,
modern computing in serverless requires data-intensive, distributed applications,
open-source platforms and customisable hardware. The topics under serverless data
lake architecture include functionalities such as data ingestion, data catalog, data
discovery/searching, ETL and ELT methodologies in serverless data lake archi-
tecture. Next, the containers orchestration on containers such as Docker, Kuber-
netes, and Linux Containers will be addressed. The commercial data-centric server-
less platforms frameworks such Amazon, Google, Azure and Oracle are covered.
This book also discusses the need for hardware-level enhancement for data-centric
serverless computing. For this purpose, the impact of multicore CPUs, cluster/grid
computing, graphic processing units, tensor processing units and FPGA accelera-
tors for serverless computing will be targeted. Further, the several big data format,

v

vi Preface

storage and services mechanisms for serverless computing are presented. Here, the
various modern data types and storage mechanisms such as spatial–temporal data,
time series data, key-value data, and graph-based data storage, columnar data storage,
real-time data streaming are addressed. The data-centric serverless services include
interactive queuing, real-time logging and monitoring, querying, and notification
services. Intensive data processing in serverless technology such as prediction, intel-
ligent decision-making, real-time, big data analytics, and data science support for
AI, ML and DL models in serverless computing is addressed.

This book focuses on distributed serverless computing. Here, the state manage-
ment, network file systems, communicating agents, autoscalability, P2P commu-
nication, generic- and application-specific frameworks, multi-tenancy and existing
distributed serverless computing frameworks are addressed. Further, the perfor-
mance issues in distributed serverless computing such as reliability, serviceability,
high availability, aggregation and broadcasting patterns, consistency, concurrency,
consensus, and fault-tolerant mechanism are addressed. Next, the data handling in
distributed serverless environments such as data sharing, replication, redundancy,
partitioning and indexing are addressed. This book addresses serverless technology
and primarily provides efficient mechanisms towards data privacy in terms of access
control auditing, attack and abuses. This book will also address the multiple serverless
computing and event-driven distributed systems. As a cutting-edge trend, serverless
computing is integrated with high-end computing technologies such as blockchain,
IoT, cloud computing, fog and edge computing, big data, artificial intelligence, SDN
and NFVs. This book serves as a platform for providing key insight and foreseen
open challenges towards serverless computing.

Chapters in this book are organised as follows:
The first chapter titled “Serverless Computing: New Trends and Research Direc-

tions” discussed that the serverless computing is an innovative method for the produc-
tion and distribution of software that does not rely on a centralised server manage-
ment infrastructure. Instead, the cloud service provider must ensure that the code
will execute as intended in the cloud environment. This frees up more time for the
developers to work on their projects. This chapter introduces serverless computing
and associated technologies. Additionally, this work provides future directions as
well as a summary of the research done for this book.

The second chapter titled “Punching Holes in the Cloud: Direct Communication
Between Serverless Functions” introduced a temporary architecture for function-
to-function communication in serverless systems through the use of direct network
connections. The framework has been successfully implemented on real, production-
ready serverless computing services, most notably AWS. To permit outgoing connec-
tions from functions while restricting inbound connections, contemporary serverless
computing systems frequently employ a networking configuration called network
address translation (NAT). Further, this chapter details the planning and development
of a library for transient communication in AWS Lambda. The network connection
between serverless applications is simplified by the library’s inclusion of function
and server components.

Preface vii

The third chapter titled “Hybrid Serverless Computing: Opportunities and Chal-
lenges” studied the extent to which serverless computing may be expanded to become
hybrid serverless computing. Further, the authors have defined hybrid serverless
computing, detailed the methods towards attaining it and highlighted the potential
and problems that it presents.

The fourth chapter titled “A Taxonomy of Performance Forecasting Systems
in the Serverless Cloud Computing Environments” focused on the classification
scheme used to characterise the parallel file system (PFS) structure. To understand
how existing PFSs are implemented in distributed computing environments and how
they might be adapted for usage in serverless (edge) cloud computing, a taxonomy
has been developed.

The fifth chapter titled “Open-Source Serverless for Edge Computing: A Tutorial”
investigated the options for deploying a serverless application at the edge of the
network using open-source software and Internet of things (IoT) data. Due to its focus
on resource economy and flexibility, the serverless method may be especially useful
for edge computing-based applications, in which the hosting nodes are deployed close
to the consumers and comprise devices and workstations with minimal resources.

The sixth chapter titled “Accelerating and Scaling Data Products with Server-
less” covered the framework and tools (data visualisation, pipelines, models, and
APIs) that help speed up and control data offers. APIs for data and model serving
with containerised solutions as a building block for data products that are driven by
machine learning techniques, and for serving a unified data ontology; data visualisa-
tion in the context of containerised web applications that deliver excellent methods
for data explorations, model predictions, visualisation and consumer insights.

The seventh chapter titled “QoS Analysis for Serverless Computing Using
Machine Learning” discussed the importance of artificial intelligence (AI) and
machine learning (ML) to make predictions regarding the system configurations
that are utilised in serverless computing. In addition, a model that does not incur
any costs is proposed to investigate and evaluate the many possible configurations
of workstations in an environment that lacks servers.

The eighth chapter titled “A Blockchain-Enabled Serverless Approach for IoT
Healthcare Applications” explored how blockchain technology might complement
serverless computing to address reliability issues with functions and resource alloca-
tion for IoT healthcare applications. The proposed method aims to react to customers’
demands in a trustworthy and dependable manner by taking their privacy concerns
into account, allocating resources efficiently, and meeting their needs promptly. It
is obvious that this paves the way for efficient use of resources, which in turn may
boost consumer happiness and service quality.

The ninth chapter titled “Cost Control and Efficiency Optimization in Main-
tainability Implementation of Wireless Sensor Networks Based on Serverless
Computing” provided a conceptual approach to the implementation of maintain-
ability for wireless sensor network (WSN) using serverless computing. To further
decouple the device operation and functional development, considerably optimise

viii Preface

the reuse of resources and remove the hardware interference, it has been proposed
that serverless computing may be accomplished at the software functional level
of WSN. To reduce design, manufacturing and operational costs, WSN platforms
may be built using the idea of serverless computing, which can support the func-
tions of data collecting and data management into functional development that may
benefit from exploration via upfront investments. Finally, a case study is provided
that uses existing technology and smart city scenarios to propose a WSN platform
for serverless computing.

The tenth chapter titled “Scheduling Mechanisms in Serverless Computing”
examined the benefits, drawbacks and uses of the most popular schedulers in server-
less computing. The current study’s goal is to give a thorough analysis of different
and efficient scheduling methods that can be used as a foundation for choosing the
right scheduling procedure based on the providers’ perspective.

The eleventh chapter titled “Serverless Cloud Computing: State of the Art
and Challenges” provided a thorough overview of these restrictions and to showcase
state-of-the-art research on ways to address the issues that are preventing server-
less from becoming the standard in cloud computing. The primary difficulties of
deploying such a cloud platform are examined, and potential research avenues are
outlined.

The book provides the best learning resource for researchers, graduates, under-
graduates, business people and common readers in the field of serverless computing.
When we talk about serverless cloud computing, it brings about tremendous changes
in the post-virtual-machine environment. Companies other than technology sectors
are using serverless platforms and frameworks at all production levels due to their
economic pay-per-use approach. Also, businesses of various shapes and sizes have
started to adopt serverless computing because of its scalability. Furthermore, the
technology’s use has enhanced IT infrastructures in the functions-as-a-service (FaaS)
sector. This enables a whole new range of workloads that are capable of benefiting
from the same capabilities of stateless programmes. It is now managed by a serverless
platform, so the burden of data management is removed for developers. This feature
helps business application development in a cloud-native way. This book acts as a
bridging information resource between basic concepts and advanced-level content
from technical experts to computing hobbyists towards enhancing their knowledge
and proficiency.

Noida, India
Dehradun, India
London, UK
Melbourne, Australia

Rajalakshmi Krishnamurthi
Adarsh Kumar

Sukhpal Singh Gill
Rajkumar Buyya

Contents

Serverless Computing: New Trends and Research Directions 1
Rajalakshmi Krishnamurthi, Adarsh Kumar, Sukhpal Singh Gill,
and Rajkumar Buyya

Punching Holes in the Cloud: Direct Communication Between
Serverless Functions . 15
Daniel Moyer and Dimitrios S. Nikolopoulos

Hybrid Serverless Computing: Opportunities and Challenges 43
Paul Castro, Vatche Isahagian, Vinod Muthusamy,
and Aleksander Slominski

A Taxonomy of Performance Forecasting Systems in the Serverless
Cloud Computing Environments . 79
Sena Seneviratne, David C. Levy, and Liyanage C. De Silva

Open-Source Serverless for Edge Computing: A Tutorial 121
Priscilla Benedetti, Luca Gattobigio, Kris Steenhaut,
Mauro Femminella, Gianluca Reali, and An Braeken

Accelerating and Scaling Data Products with Serverless 149
Angel Perez, Boyan Vasilev, Zeljko Agic, Christoffer Thrysøe,
Viktor Hargitai, Mads Dahlgaard, and Christian Røssel

QoS Analysis for Serverless Computing Using Machine Learning 175
Muhammed Golec, Sundas Iftikhar, Pratibha Prabhakaran,
Sukhpal Singh Gill, and Steve Uhlig

A Blockchain-Enabled Serverless Approach for IoT Healthcare
Applications . 193
Mohsen Ghorbian and Mostafa Ghobaei-Arani

ix

x Contents

Cost Control and Efficiency Optimization in Maintainability
Implementation of Wireless Sensor Networks Based on Serverless
Computing . 219
Tinanan Gao and Minxian Xu

Scheduling Mechanisms in Serverless Computing . 243
Mostafa Ghobaei-Arani and Mohsen Ghorbian

Serverless Cloud Computing: State of the Art and Challenges 275
Vincent Lannurien, Laurent D’Orazio, Olivier Barais,
and Jalil Boukhobza

Serverless Computing: New Trends
and Research Directions

Rajalakshmi Krishnamurthi , Adarsh Kumar , Sukhpal Singh Gill ,
and Rajkumar Buyya

Abstract Serverless computing is an innovative method for the production and
distribution of software since it does not rely on a centralised server management
infrastructure. As a result of this, serverless computing is becoming more widespread.
Instead, the cloud service provider must ensure that the code will execute as intended
in the cloud environment. Because everything is taken care of automatically, devel-
opers are free to concentrate on creating code rather than establishing and maintaining
the infrastructure that is necessary for their programmes to execute. This frees up
more time for the developers to work on their projects. This chapter introduces server-
less computing and associated technologies. Further, this work summarizes the work
done in this book, recent developments and presents future directions.

Keywords Application development · Serverless computing · Serverless
functions · Services · Security

R. Krishnamurthi
Department of Computer Science and Engineering, Jaypee Institute of Information Technology,
Noida, India
e-mail: k.rajalakshmi@jiit.ac.in

A. Kumar
School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttrakhand,
India
e-mail: adarsh.kumar@ddn.upes.ac.in

S. S. Gill (B)
School of Electronic Engineering and Computer Science, Queen Mary University of London,
London, UK
e-mail: s.s.gill@qmul.ac.uk

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and
Information Systems, The University of Melbourne, Melbourne, Australia
e-mail: rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Krishnamurthi et al. (eds.), Serverless Computing: Principles and Paradigms,
Lecture Notes on Data Engineering and Communications Technologies 162,
https://doi.org/10.1007/978-3-031-26633-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26633-1_1&domain=pdf
http://orcid.org/0000-0001-9661-782X
http://orcid.org/0000-0003-2919-6302
http://orcid.org/0000-0002-3913-0369
http://orcid.org/0000-0001-9754-6496
mailto:k.rajalakshmi@jiit.ac.in
mailto:adarsh.kumar@ddn.upes.ac.in
mailto:s.s.gill@qmul.ac.uk
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-3-031-26633-1_1

2 R. Krishnamurthi et al.

1 Introduction

Serverless computing eliminates the requirement for a dedicated server farm, making
it possible to manage enormous dispersed workloads. Large, geographically scat-
tered workloads may be managed using this kind of computing, eliminating the
need for a centralised data centre [1]. This computing method eliminates the need
to set up a specialised network of computers to coordinate the efforts of many
workers in different places. By using this technique, a cluster of computers is not
needed to handle globally distributed computations. In the computer world, elim-
inating servers has allowed us to manage massive workloads that are distributed
across several locations. It wasn’t possible until now to do this. Lambda, provided by
Amazon Web Services (AWS), is one of the most well-known examples of server-
less computing offered by a major cloud provider. This is the case, for example, with
cloud systems like Microsoft Azure and Google Cloud. The Google Cloud Platform
and the Microsoft Azure cloud storage service are two examples of where this kind of
technology is put to use. In this technology, large-scale computer systems provide a
substantial challenge that must be controlled when it comes to the process of moving
data from one function to another. This problem need to be addressed. The creation
of a possible solution is required for this matter.

The major advantages of serverless technology include [1–3]:

(i) This kind of computing is gaining traction in the corporate world because it may
relieve programmers of their server maintenance obligations. So, developers
may build and expand their apps without worrying about exceeding the server’s
resources. This paves the way for the development of innovative app features.

(ii) When it comes to assuring the continuous good company’s information
technology infrastructure, business executives often run across challenges.
Through the use of serverless computing, it is no longer necessary for program-
mers to manage the machines on which their programmes are executed. This
involves keeping an eye on the server, ensuring that the operating system is up
to date, and generating user accounts for all of the different user groups who
will be using the server.

(iii) The advent of cloud computing has made it possible to share software without
the need for a single centralised server. It frees up money that may be used
toward other endeavours, such as the development of a product that has a
greater capacity for usefulness and distinction.

(iv) Serverless cloud computing frees users from the obligation of managing their
own servers, enabling them to focus their attention where it will be of the
greatest benefit: on the development and improvement of valuable applications.

(v) As serverless apps make use of an architecture external to your company, you
can take advantage of only benefiting from the functions that you need to
develop it. It adapts to your budgets, since its functions scale according to the
number of requests that are made.

(vi) One company that provides this kind of technology is Amazon Web Services,
and one of the services it provides is called Lambda. With Lambda, you have

Serverless Computing: New Trends and Research Directions 3

the tools at your disposal to turn your ideas into applications that people will
find intuitive and easy to use. This is likely made possible by the presence of
in-app purchases, geolocation features, user-friendly file and photo sharing,
and maybe many more features. Now that serverless computing is a thing,
cloud-based IT service concepts that were previously unimaginable are within
reach.

(vii) To speed up the process of product distribution, you should attempt to spend
less time and effort on administrative responsibilities. Serverless computing
provides this opportunity.

1.1 Motivation

The serverless paradigm makes it possible to make software in many different ways,
which means it can be used in a wide range of high-performance, and always-available
apps. The growth of the Internet of Things (IoT) devices, online and mobile apps, Big
Data, and machine learning are just a few examples of the many different domains
where serverless computing is finding expanding usage. There are many more sectors
as well [3]. This is because serverless apps have their own specific needs, each of these
spheres will have its own set of nuances that set it apart from the others, improved
resource management practises that take into account this reality are necessary as
quickly as possible. A serverless architecture may be useful for workloads that often
expand and contract but still need a significant amount of computing power. The
concept that will drive the next generation of cloud computing services, known as
serverless computing, is garnering an increasing amount of attention. Even when
their functionality and popularity increase, it is essential for serverless systems to
keep the important qualities and characteristics that set them apart in the first place.

1.2 Traditional Versus Serverless Computing

An increasing number of people are looking towards serverless computing as a
viable option to the conventional server and cloud-based designs. This trend may
be attributable to the fact that serverless computing has become more popular since
it does away with the requirement for traditional server infrastructure. Taking this
kind of action is counter to accepted procedures in the world of web design. There
is no longer any need for developers to set up and manage backend servers because
of serverless architectures. This eliminates the need for programmers to do these
mundane chores. Less money will be spent on creating and maintaining the product.
The term “serverless computing” is gaining popularity because it appeals to program-
mers who would rather not have to worry about the care of server infrastructure. This
is one of the reasons why people are using the term more often. As a direct conse-
quence of this advancement, programmers are no longer restricted by the capabilities

4 R. Krishnamurthi et al.

of the servers they make use of in their work. As a result, investing in DevOps is a
decision that will prove to be profitable, and using this strategy has the potential to
save costs associated with the investment.

This chapter is organized as follows. Section 1 introduces the background of
serverless computing, compares the features of serverless computing with tradi-
tional computing and discussed the need for serverless computing in present and
future. Section 2 introduces the important serverless functions, architectures and
computing feasibilities. Section 3 introduces the integration of serverless computing
with advanced technologies. Section 3 presents resource management in serverless
computing environments. Section 4 presents the integration of serverless computing
with other advanced technologies. Section 5 presents the open challenges. Section 6
discusses the future directions. Finally, the conclusion is presented in Sect. 7.

2 Serverless Functions, Architectures and Computing

FaaS provides capability to execute the applications without dependent on any infras-
tructure and effortless managing of services to the customers. The key character-
istics of the FaaS includes (i) support for wide programming languages, (ii) no
overhead of administration, (iii) scalability and availability, (iv) APIs and Cloud
services based triggers for execution of codes. The conglomeration of “Functions as
a Service” together with the “Backend as a Service” leads to emerging of the server-
less computing. The leading Serverless solutions include Amazon Web Services
(AWS), Azure and Google Cloud [4].

Amazon Web Services: AWS is the top leading marketer of serverless products
and cloud space provider [5]. AWS cloud services provide developers to build and
execute their applications independent of infrastructure, and computing resources.
The basic functionalities such as traverse, deploy and publish of serverless appli-
cations within fractions of time. AWS allows developers to (i) incorporate multiple
serverless services and applications, (ii) customize the computing resources as per
the user requirements and (iii) integrate variety of serverless applications [6]. In addi-
tion, visual based workflow creation, coordination, inconnection between Lambdas
can be incorporated using AWS step functions.

Amazon provides several real time data processing solutions such as AWS Lamba,
Amazon S3, Amazon Kinesis and Dynamo DB. Amazon kinesis provides real
time streaming of data and data analytics. The Amazon databases supports NoSQL
database functionalities for two formats of data storage namely (i) key value model
and (ii) document type data. Further, AWS supports messaging services namely (i)
Amazon SNS for Publish/Subscriber and (ii) Amazon SQS for Message Queuing.

Figure 1 depicts the serverless computing based basic web applications and its
associated backends. Here, S3 can be utilized for web hosting, Lambda functions can
be used to data processing and Amazon API gateways for configure the environment
and Dynamo DB can be used for retrieving data.

Serverless Computing: New Trends and Research Directions 5

Fig. 1 Basic Amazon Web Services in serverless computing for web application

In terms of intelligent functionalities, Amazon machine learning services enables
the real time prediction of hidden pattern and knowledge discovery from the
processed data [7]. Similarly Amazon SageMaker provides facility to manage and
deploy large scale machine learning models. Other services include Amazon Recog-
nition for digital video and audio processing, Amazon Lex for semantic analytics
and Amazon Polly for text to speech conversions [8]. Several tools are available
for developers, such as AWS serverless Application Model (SAM), AWS CodeBuild
and Code Deploy, CodeStar and Code Pipeline. In AWS, the Integrated Development
Environment (IDE) supports several enhanced editing and project management plat-
forms such as Cloud9IDE, Visual Studio. It also supports software development tool
kits such as Python, Go, Scala, Node.js, .NET, Java programming [9].

Microsoft Azure: Second most popular Serverless computing platform is the
Microsoft Azure and it provides large scale serverless computing space [10]. Azure
functions are based on event driven FaaS. Particularly, Azure IoT Edge enables to
excite program within the IoT edge devices even in unrealisable network connectivity.
Azure storage space supports voluminous data storage, high scalability, availability
and efficient durability [11].

Azure Active Directory provides strong security mechanism and access control
methods for remote cloud systems. In distributed environments, the interconnectivity
between public and private cloud platforms can be performed using Azure Service
Bus Messaging functionalities, and Azure Event Grid can be utilized for the event
based routing services. In terms of API management, the Azure Logic enables the
integration of data with developer applications, and provides transparent code inte-
gration between systems without complex coding by developers. In addition, Azure
Functions Proxies are capable of providing microservices through monolith APIs
using single API interface.

Microsoft Azure provides intelligence support system by means of Azure Bot
services for various platform namely Twitter, Microsoft teams, Slack, Skype etc.
Several cognitive functionalities such as audio, video, image, speech, text based
interpretation and processing are handled by Azure Intelligence services [12, 13].

6 R. Krishnamurthi et al.

From developers point of view, Microsoft Azure provides several serverless frame-
work plugins. For example, Visual studio IDE framework permits developers to
incorporate various functions and logical applications according the user specifica-
tions and requirements. In addition, Azure SDKs support almost all major software
development platforms and programming languages.

Google Cloud Platform: GCP sets as the world’s third top player of serverless
computing [14]. The cloud function of GCP incorporates the event drive computation
on serverless platform. The object based storage is involved on the GCP cloud storage
units. The cloud datastores includes services such as NoSQL Database as a Service
(DBaaS). For real time storage of data from IoT edge devices, the GCP provides
Firebase Real time Database platform. In terms of security and privacy, Google
Firebase platform supports wide variety of authentication APIs and allows user to
customize their mobile applications. GCP provides visualization and management
of workflow through GCP FantasM platform. Google Cloud Endpoints and APIgee
API management allows developers to design, scale applications, predictive analytics
and deploy securely on unrealiable multiregional distributed environments [15]. GCP
enables to utilize intelligence through serverless machine learning using Cloud ML
Engine, vision processing through Cloud Vision API, Speech processing through
Cloud Speech API, Text processing through Cloud Translational APIs. Google Cloud
Function provides developers with coding event trigged applications, deploying,
management and operational infrastructure.

3 Resource Management in Serverless Computing
Environments

A serverless environment’s resource management is the process of balancing the
needs of an application’s workload with those of the system, with the customer’s
participation kept to a minimum [16]. Given the autonomous character of the antici-
pated resource management process in such contexts, careful attention to every stage
of this procedure is necessary to improve application and system efficiency [17]. We
single out three key areas of resource management that must be addressed in a way
that is appropriate for the serverless computing paradigm.

1. To characterise and anticipate workload performance, programmers would want
as little effort as possible when utilising a serverless deployment paradigm. If an
application’s deployment requires the specification of a resource configuration
and other features, the process may be laborious. Because of this, it is preferable
for a serverless platform to be able to forecast performance by inferring features
of applications and workloads using simulation and benchmarks methodologies
[18]. Users’ quality of service needs may be met with the use of an efficient
strategy for establishing this comprehension, which in turn leads to improved
scheduling and scalability decisions for available resources.

Serverless Computing: New Trends and Research Directions 7

2. Resource scheduling is a major difficulty for both developers and cloud providers
or system owners since it involves effectively allocating workloads to host nodes
with the appropriate resources [16]. When the need for resources is greater than
the supply, scheduling also entails deciding which programmes will run first.
Even if the developer requires certain quality of service guarantees, the supplier
must prioritise resource efficiency [17].

3. The serverless architecture dynamically spins up environments and distributes
their resources to apps in response to incoming demands. This guarantees
increased efficiency and adaptability in the use of available resources [19].
Scaling at such a fine granularity necessitates the use of sophisticated and
dynamic resource scaling approaches to preserve the expected level of application
performance.

4 Serverless Computing and Advanced Technologies

Using serverless computing has now become extremely prevalent for developing
cloud-native apps. When it comes to cloud computing, the serverless paradigm is all
about removing the burden of managing servers. Serverless computing is expected to
grow at a far faster rate than traditional cloud services since developers no more need
to be concerned about keeping up with infrastructure [3]. With serverless computing,
cloud service providers might have an easier time handling infrastructure manage-
ment and automatic provisioning. The amount of work and materials needed to main-
tain the infrastructure are cut down as well [20]. The goal of serverless computing is
to leverage the most cutting-edge serverless technology while minimising costs and
maximising returns.

AI is the potential of technology, so it’s no surprise that platforms are starting
to include it. Due to these AI-driven platforms, we’ve been able to make more
accurate, timelier decisions [21]. Their impact may be seen in the altered methods
of doing company, communicating with consumers, and analysing financial infor-
mation. Software engineers’ output and effectiveness are drastically impacted by
complex machine learning algorithms. However, most of the problems that program-
mers face may be solved by switching to a serverless architecture. By employing
a serverless architecture, both the machine learning models and their associated
resources may be controlled with more efficiency and precision. Thanks to this
architecture, programmers may be able to devote more time and energy to training
AI models and less to maintaining servers.

Building machine learning systems is often necessary when confronting diffi-
cult problems. They perform tasks such as data analysis and pre-processing, model
training, and AI model tuning [22]. Therefore, APIs should function without a
hitch. The usage of serverless computing and artificial intelligence can guarantee
the constant storage and transmission of data and messages. Since serverless archi-
tecture provides a number of benefits and advantages, it may be a good fit for machine
learning models. Almost no management is needed to support the operation of any

8 R. Krishnamurthi et al.

kind of application or back-end service [23]. The supplier of the underlying infras-
tructure efficiently distributes its own CPU execution power in response to incoming
requests of varying traffic loads [24]. The advantages of serverless architecture
[25–28] are as follows:

1. Serverless architecture enables usage-based pricing, so you’ll only ever have to
fork out cash for the services you actually need. Because of this, the pricing
structure is more adaptable, and the overall price is decreased.

2. Because of serverless computing, software developers may work independently
and quickly. Because of this, models are treated separately from other functions.
Activating this feature at any moment is completely safe and will not affect the
rest of the system in any way.

3. With the advent of the “pay-per-use” model, clients are charged solely for the
resources they actually employ. In serverless computing, you pay for the services
you employ instead of the number of servers you utilize.

4. Serverless computing eliminates the requirement for consumers to monitor and
maintain servers by making available back-end services on demand. Users of
a serverless service don’t have to worry about setting up or maintaining the
underlying infrastructure. When using serverless architecture, service providers
may easily scale up or down their bandwidth needs without making any changes
to their current infrastructure.

5. Serverless programmes have gained traction as a result of their inherent reliability
and fault tolerance. Because of this, you won’t have to build any services to
provide these capabilities to your application.

5 Open Challenges of Resource Management in Serverless
Computing

We’ve discovered that serverless architectures provide unique difficulties in terms
of resource management [16–19, 29]. The following are important challenges of
resource management in serverless.

1. Cold Start Latency: Auto-scaling systems introduce delay since resources must
be created dynamically, delaying the start of a function’s execution by a signif-
icant amount of time [30]. Especially for routines with relatively brief execu-
tion periods, this early delay might have a considerable impact on application
performance. Nevertheless, in order to solve this problem, several providers keep
reserves of available resources.

2. Resource Utilization: Serverless platforms are efficient in terms of resource usage
since they only pay for what is actually used by an application through its execu-
tion, as opposed to a more generic cloud computing pricing approach [17]. Never-
theless, the providers could be keeping the underlying infrastructure operational
for longer. Since this is the case, it’s crucial to pay extra attention to developing
techniques for optimal resource utilisation by the host nodes. Customers often

Serverless Computing: New Trends and Research Directions 9

overbook resources for function executions in an effort to prevent their applica-
tions from performing poorly [18]. Regularly underutilizing these resources may
cause the user to receive bad price for their money and lose faith in the reliability
of these services.

3. Heterogenous Workloads: Controlling a wide variety of workloads with little
input from the user is made possible by serverless architectures. Thus, in order
to provide a desirable result, such systems must learn about the specifics of the
application and workload on their own [16, 29]. This is complicated by the wide
variety of serverless apps in use today. It’s possible that customer discontent will
come from delays in resource installation time, increased resource interference
impacts, and other similar issues due to a lack of knowledge of the application’s
requirements and features.

4. QoS: There are no assurances of QoS because the serverless architecture hides
most internal workings from the customers [30]. While most consumers would
appreciate this, platforms without appropriate performance assurances may be
useless for high-precision, latency-sensitive workloads [31]. Providing a consis-
tent level of service to all of the users in a distributed system is a hard and
time-consuming undertaking for the provider.

6 Future Directions

The following are promising future directions in the area of serverless computing:

1. Delay: Response time in a serverless architecture is the sum of request queuing,
resource setup, and function execution [31]. Although most independent func-
tions have execution duration that are less than a second, or of just few seconds,
the capability to keep low latency for function executions is a crucial challenge
in serverless deployments [32]. Since the time it takes to build up resources from
scratch during a serverless environment’s “cold start” is typically far longer than
the time it takes to actually run an application, this is the primary reason for
excessive delay.

2. Reliability: When anything goes wrong on a serverless platform, the platform will
often repeat the operation. In the event that a platform’s function execution fails, it
will, for instance, resubmit the request immediately [16]. It has been determined
that, especially when state management is employed via external storage services,
a retry-based approach to fault tolerance might still not yield right output. They
stress that precision may be compromised if a partially performed failure attempt
of the same execution is viewed by a parallel execution of the function [19].

3. Sustainability: Since serverless computing facilitates the on-demand provi-
sioning and release of resources utilised in the execution of functions, it has
been heralded in the sustainability literature as a key technology for advancing
green computing [33]. As a plus, the approach of invoicing per execution time
encourages programmers to reduce resource use and boost code execution speed.
Nevertheless, decomposing an app into functions and the practise of configuring

10 R. Krishnamurthi et al.

resources on demand are believed to result in extra delay and an execution cost,
both of which impact energy usage [34].

4. Utilization of Resources: Because of the granularity of the serverless billing
model, users are only paid for the resources their applications really utilise [17,
18]. However, the provider is still responsible for the whole infrastructure, there-
fore it is in the provider’s long term interest to move as many serverless apps as
feasible onto a single host. Unfortunately, performance suffers when there are
too many requests competing for a limited resource [31]. This is indicative of the
usual tension between the goals of suppliers and customers, who each want to
minimise costs while simultaneously maximising benefits [19, 30]. As a result,
it’s crucial to arrive at a mutually agreeable resource consolidation plan.

5. Security: The use of serverless computing has improved the safety of a variety
of different infrastructures and computer systems. For example, Bila et al. [35]
provide in-depth information about one method that may be used to secure Linux
containers. There are security solutions that can detect intrusions using serverless
services [35]. There are more solutions required than existing to secure sensitive
information that has been saved in the cloud. This is because advancements have
been made in serverless architectures. For example, advancements in authentica-
tion and authorization schemes, attacks against common execution environments,
resource exhaustion attacks, and privacy concerns are some of the challenges that
need to be addressed in future [1].

6. Lack of Tools and Paradigms: There aren’t enough tools available right now to
make serverless apps. This is a big challenge. Further, the use of insufficient
modelling paradigms, which in turn leads to the creation of incoherent method-
ology, directly contributes to a drop in the overall quality of the code that has
been written. Pérez et al. [2] made a new way to write code and middleware for
use with serverless apps. This method could help apps that don’t need a server.
Benchmark suites [1] are important tools that help people figure out how likely
it is that a new idea or concept will work. Thus, there is a need to focus on new
tools and paradigms for serverless computing and application development.

7. Price Standardization: The market for serverless computing services is now
controlled by several significant technology companies, each of which offers
its unique price tiers and feature sets. It is expected in future that there will be an
expansion not just in the number of companies offering serverless services but
also in the range of price choices that are available for such services. Both of these
trends are expected to occur shortly. The estimate provided by each company is
one-of-a-kind because it takes into consideration a variety of criteria, such as
the sort of platform it utilises, the history of client association, transparency in
service and the time of day when the request is made. This is because it may
be difficult to devise a pricing model for service providers, there is a need to
continue looking into the matter.

8. Data Sharing and Infrastructure Requirements: Serverless software is composed
of several distinct functions, all of which work together to provide the required
functionality. It will be necessary for the functions to have some means of inter-
acting with one another and transferring either their data or the condition they

Serverless Computing: New Trends and Research Directions 11

are now in for this objective to be realised. Thus, the first challenge that has
to be conquered is function addressing, and the second challenge that needs
to be conquered is intercommunication for functions. Both of these challenges
need to be solved. Additionally, data sharing and infrastructure requirements are
related to each other because of auto-scaling, short-lived functions, and expo-
nential growth in the usage of serverless services with an increase in the number
of function copies.

9. Other Challenges: Serverless describes a scenario in which an application may
scale automatically without adding additional servers. This goal may be achieved
by completing and delivering copies of the service offerings to the appropriate
customers. Given that there are no established rules for determining the places
where the real copies of functions are saved, there is no way to offer an answer
to this request as it is impossible to do so. Additionally, data caching, service
provider management, distributed processing with different modes of execution
and customized service scheduling are some of the other concerns that need to
be focused upon in detail.

7 Conclusion

This work looks at how serverless computing opens up new perspectives, termi-
nologies, architectures, service options and opportunities. Later in the work, the
possibilities, different points of view and recent developments are discussed briefly.
Initially, this work outline how the wide use of serverless computing technology has
opened up a world of possibilities. Next, this work discussed the open issues and
challenges that keep serverless services from being as good as they could be. After
the current problems are fixed, serverless computing is likely to become the most
popular way to do computing, overtaking cloud computing shortly.

References

1. Shafiei H, Khonsari A, Mousavi P (2022) Serverless computing: a survey of opportunities,
challenges, and applications. ACM Comput Surv (CSUR) 54(11):1–32

2. Pérez A, Moltó G, Caballer M, Calatrava A (2019) A programming model and middleware for
high throughput serverless computing applications. In: Proceedings of the 34th ACM/SIGAPP
symposium on applied computing, Apr 2019, pp 106–113

3. Mampage A, Karunasekera S, Buyya R (2022) A holistic view on resource management
in serverless computing environments: taxonomy and future directions. ACM Comput Surv
(CSUR) 54(11s):1–36

4. Pierleoni P, Concetti R, Belli A, Palma L (2020) Amazon, Google and Microsoft Solutions for
IoT: architectures and a performance comparison. IEEE Access 8:5455–5470. https://doi.org/
10.1109/ACCESS.2019.2961511

5. Mathew S, Varia J (2014) Overview of Amazon Web Services. Amazon Whitepap 105:1–22
6. Wittig M, Wittig A (2018) Amazon Web Services in action. Simon and Schuster

https://doi.org/10.1109/ACCESS.2019.2961511
https://doi.org/10.1109/ACCESS.2019.2961511

12 R. Krishnamurthi et al.

7. Newcombe C, Rath T, Zhang F, Munteanu B, Brooker M, Deardeuff M (2015) How Amazon
Web Services uses formal methods. Commun ACM 58(4):66–73

8. Chong N, Cook B, Eidelman J, Kallas K, Khazem K, Monteiro FR, Schwartz-Narbonne
D, Tasiran S, Tautschnig M, Tuttle MR (2021) Code-level model checking in the software
development workflow at Amazon Web Services. Softw Pract Exp 51(4):772–797

9. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, Wasserman HJ, Wright NJ
(2010) Performance analysis of high performance computing applications on the Amazon Web
Services cloud. In: 2010 IEEE second international conference on cloud computing technology
and science. IEEE, pp 159–168

10. Bisong E (2019) An overview of Google Cloud Platform services. In: Building machine learning
and deep learning models on Google Cloud Platform, pp 7–10

11. Wankhede P, Talati M, Chinchamalatpure R (2020) Comparative study of cloud platforms—
Microsoft Azure, Google Cloud Platform and Amazon EC2. J Res Eng Appl Sci 5(02):60–64

12. McGlade J, Wallace L, Hally B, White A, Reinke K, Jones S (2020) An early exploration of
the use of the Microsoft Azure Kinect for estimation of urban tree diameter at breast height.
Remote Sens Lett 11(11):963–972

13. Kamal MA, Raza HW, Alam MM, Su’ud MM (2020) Highlight the features of AWS, GCP
and Microsoft Azure that have an impact when choosing a cloud service provider. Int J Recent
Technol Eng 8(5):4124–4232

14. Bataineh AS, Bentahar J, Mizouni R, Wahab OA, Rjoub G, Barachi ME (2022) Cloud
computing as a platform for monetizing data services: a two-sided game business model. IEEE
Trans Netw Serv Manage 19(2):1336–1350. https://doi.org/10.1109/TNSM.2021.3128160

15. Ariza J, Jimeno M, Villanueva-Polanco R, Capacho J (2021) Provisioning computational
resources for cloud-based e-learning platforms using deep learning techniques. IEEE Access
9:89798–89811. https://doi.org/10.1109/ACCESS.2021.3090366

16. Li Z, Guo L, Cheng J, Chen Q, He B, Guo M (2022) The serverless computing survey: a
technical primer for design architecture. ACM Comput Surv (CSUR) 54(10s):1–34

17. Suresh A, Somashekar G, Varadarajan A, Kakarla VR, Upadhyay H, Gandhi A (2020) Ensure:
efficient scheduling and autonomous resource management in serverless environments. In:
2020 IEEE international conference on autonomic computing and self-organizing systems
(ACSOS). IEEE, pp 1–10

18. Großmann M, Ioannidis C, Le DT (2019) Applicability of serverless computing in fog
computing environments for IoT scenarios. In: Proceedings of the 12th IEEE/ACM inter-
national conference on utility and cloud computing companion, Dec 2019, pp 29–34

19. Cicconetti C, Conti M, Passarella A, Sabella D (2020) Toward distributed computing
environments with serverless solutions in edge systems. IEEE Commun Mag 58(3):40–46

20. Mampage A, Karunasekera S, Buyya R (2021) Deadline-aware dynamic resource management
in serverless computing environments. In: 2021 IEEE/ACM 21st international symposium on
cluster, cloud and internet computing (CCGrid). IEEE, pp 483–492

21. Gill SS, Xu M, Ottaviani C, Patros P, Bahsoon R, Shaghaghi A, Golec M et al (2022) AI for
next generation computing: emerging trends and future directions. Internet Things 19:100514

22. Agarwal S, Rodriguez MA, Buyya R (2021) A reinforcement learning approach to reduce
serverless function cold start frequency. In: 2021 IEEE/ACM 21st international symposium on
cluster, cloud and internet computing (CCGrid). IEEE, pp 797–803

23. Jonas E, Schleier-Smith J, Sreekanti V, Tsai C-C, Khandelwal A, Pu Q, Shankar V et al (2019)
Cloud programming simplified: a Berkeley view on serverless computing. arXiv preprint arXiv:
1902.03383

24. Golec M, Ozturac R, Pooranian Z, Gill SS, Buyya R (2021) iFaaSBus: a security- and privacy-
based lightweight framework for serverless computing using IoT and machine learning. IEEE
Trans Ind Inform 18(5):3522–3529

25. Castro P, Ishakian V, Muthusamy V, Slominski A (2019) The rise of serverless computing.
Commun ACM 62(12):44–54

26. Zafeiropoulos A, Fotopoulou E, Filinis N, Papavassiliou S (2022) Reinforcement learning-
assisted autoscaling mechanisms for serverless computing platforms. Simul Model Pract
Theory 116:102461

https://doi.org/10.1109/TNSM.2021.3128160
https://doi.org/10.1109/ACCESS.2021.3090366
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383

Serverless Computing: New Trends and Research Directions 13

27. Du D, Liu Q, Jiang X, Xia Y, Zang B, Chen H (2022) Serverless computing on heterogeneous
computers. In: Proceedings of the 27th ACM international conference on architectural support
for programming languages and operating systems, pp 797–813

28. Aslanpour MS et al (2021) Serverless edge computing: vision and challenges. In: 2021
Australasian computer science week multiconference, pp 1–10

29. Xie R, Tang Q, Qiao S, Zhu H, Yu FR, Huang T (2021) When serverless computing meets edge
computing: architecture, challenges, and open issues. IEEE Wireless Commun 28(5):126–133

30. Djemame K (2021) Energy efficiency in edge environments: a serverless computing approach.
In: International conference on the economics of grids, clouds, systems, and services. Springer,
Cham, pp 181–184

31. Gill SS (2021) Quantum and blockchain based serverless edge computing: a vision, model,
new trends and future directions. Internet Technol Lett e275

32. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell N et al (2017) Serverless
computing: current trends and open problems. In: Research advances in cloud computing.
Springer, Singapore, pp 1–20

33. McGrath G, Brenner PR (2017) Serverless computing: design, implementation, and perfor-
mance. In: 2017 IEEE 37th international conference on distributed computing systems
workshops (ICDCSW). IEEE, pp 405–410

34. Hassan HB, Barakat SA, Sarhan QI (2021) Survey on serverless computing. J Cloud Comput
10(1):1–29

35. Bila N, Dettori P, Kanso A, Watanabe Y, Youssef A (2017) Leveraging the serverless architec-
ture for securing Linux containers. In: 2017 IEEE 37th international conference on distributed
computing systems workshops (ICDCSW), pp 401–404. https://doi.org/10.1109/ICDCSW.201
7.66

https://doi.org/10.1109/ICDCSW.2017.66
https://doi.org/10.1109/ICDCSW.2017.66

Punching Holes in the Cloud: Direct
Communication Between Serverless
Functions

Daniel Moyer and Dimitrios S. Nikolopoulos

Abstract Serverless computing allows Cloud users to deploy and run applications
without managing physical or virtual hardware. Since serverless computing can scale
easily via function replication, a growing trend is to use serverless computing to run
large, distributed workloads without needing to provision clusters of physical or
virtual machines. Recent work has successfully deployed serverless applications of
data analytics, machine learning, linear algebra, and video processing, among others.
Many of these workloads are embarrassingly parallel and follow the stateless func-
tion execution paradigm for which serverless computing is designed. However, some
applications, particularly those implementing data pipelines, necessitate state shar-
ing between different data processing stages. These workloads have a high degree
of parallelism and can also scale easily with the number of concurrent functions but
use slow Cloud storage solutions to communicate data between functions. Current
serverless application deployments use containers or lightweight virtual machines
with limited memory, computation power, and execution time. Therefore, a direct
communication path between functions would need to be ephemeral and function
under constrained resources. Introducing an ephemeral communication path between
functions raises a number of additional challenges. Serverless providers use network
firewalls to block inbound connections. Furthermore, the performance and scaling
characteristics of a direct communication path would be entirely opaque to users.
This chapter presents an ephemeral communication framework for serverless envi-
ronments that uses direct network connections between functions. The framework
has been successfully deployed on actual, production-strength serverless comput-
ing offerings, specifically AWS. The insight behind the proposed framework is that
current serverless computing environments use a common networking configuration
called Network Address Translation (NAT) to allow outbound connections from func-
tions while blocking inbound connections. This work presents the design and imple-
mentation of an ephemeral communication library for AWS Lambda. The library

D. Moyer (B) · D. S. Nikolopoulos (B)
Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24060, USA
e-mail: dmoyer@vt.edu

D. S. Nikolopoulos
e-mail: dsn@cs.vt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Krishnamurthi et al. (eds.), Serverless Computing: Principles and Paradigms,
Lecture Notes on Data Engineering and Communications Technologies 162,
https://doi.org/10.1007/978-3-031-26633-1_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-26633-1_2&domain=pdf
dmoyer@vt.edu
 854 53672
a 854 53672 a

dsn@cs.vt.edu
 854 56550 a 854 56550 a

https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2
https://doi.org/10.1007/978-3-031-26633-1_2

16 D. Moyer and D. S. Nikolopoulos

includes function and server components so that serverless applications can use net-
work communications easily. It specifies an interface for serverless application code
that runs on each function. The communication library supports multi-function jobs
and manages communication between functions automatically. This work also imple-
ments an orchestrator server to invoke functions and send control messages between
them. An external server is necessary to perform NAT traversal, and is also used
for coordination. By using network connections, the proposed library achieves high
performance and excellent scaling in workloads with over 100 functions. This work
measures throughput of 680 Mbps between a pair of functions and verifies that this
is the maximum throughput achievable on the current AWS Lambda offering. It also
evaluates the framework using a multi-stage reduce-by-key application. Compared
to an equivalent implementation using object storage, the library is 4.7 times faster
and costs only 52% as much.

Keywords Serverless computing · AWS Lambda · NAT traversal · TCP hole
punching · communication framework

1 Introduction

Serverless computing is a service that allows developers to run programs directly
without having to manage servers themselves. Also known as Functions as a Service
(FaaS), serverless computing is offered by major cloud platforms, for instance, Ama-
zon Web Services (AWS) Lambda. Since serverless computing can scale rapidly, a
growing trend is to use it to run large distributed workloads without needing to provi-
sion a cluster of machines. Recent works have used serverless for data analytics [1],
machine learning [2– 4], linear algebra [5], and video processing [6, 7]. However,
since serverless programs, which are called functions, each run in their own isolated
environment, a key problem for large-scale computing applications is transferring
data between multiple instances of a function. Individual serverless functions have
limited memory, computation power, and execution time, so inter-function commu-
nication is a requirement for many applications. Existing works have used object
storage and in-memory databases for communication, but these techniques require
trade-offs with regard to performance, cost, and scalability [8, 9]. Using direct net-
work connections between functions is attractive since it would be fast, incur no
extra cost, and scale with the number of functions; however, serverless providers use
network firewalls to block inbound connections.

1.1 Novelty

This work presents a method to bypass the firewall for AWS Lambda, and develops the
first communication framework that uses direct network connections between func-

Punching Holes in the Cloud: Direct Communication … 17

tions. Lambda uses a common networking configuration called Network Address
Translation (NAT) to allow outbound connections from functions while blocking
inbound connections. However, there are several standard techniques, such as hole
punching or relaying that allow endpoints behind NAT to establish a connection with
each other by using an external server for setup. This process is called NAT traversal
and the proposed communication library implements TCP hole punching in order to
transfer data between serverless functions over TCP connections. This work demon-
strates that the communication library can scale to workloads with over 100 func-
tions and show it achieves a significant speedup compared to exchanging data with
object storage. There have been several previous serverless execution frameworks
[10– 12], but to our knowledge, none of them use direct network communication.
Also, prior studies [8, 9] on inter-function communication for large serverless work-
loads have found limitations in existing methods: object storage is slow and in-
memory databases are expensive and do not scale easily. Fouladi et al. [13] mention
that NAT traversal between functions is possible, but do not evaluate it or discuss it
in detail. This work demonstrates that serverless functions can communicate using
network connections, which has significant advantages over current techniques.

1.2 Design and Contributions

This work develops a communication library with function and server components
so that serverless applications can use network communications easily. It specifies
an interface for serverless application code that runs on each serverless function. The
proposed library supports multi-function jobs and manages communication between
functions automatically. This work also implements an orchestrator server to invoke
functions and send control messages between them. An external server is necessary
to perform NAT traversal, and it is also used for coordination. By using network
connections, the library achieves high performance with a measured throughput of
680 Mbps between a pair of functions. This work also evaluates it using a multi-
stage reduce-by-key application with over 100 functions. Compared to an equivalent
implementation using object storage, the proposed library is 4.7 times faster and
costs only 52% as much.

2 Background

This section provides background on serverless computing, the storage systems used
in current stateless serverless computing environments, and NAT traversal, which is
the fundamental technique that we are using to develop an ephemeral communication
library for serverless functions. This section also discussed the motivation for this
work in relation to the state of the art.

18 D. Moyer and D. S. Nikolopoulos

2.1 Serverless Computing

Serverless computing, also called Functions as a Service (FaaS), is a paradigm in
cloud computing where users can execute short-lived application code in a quickly
scalable, stateless environment without needing to deploy or manage servers. A single
instance of a serverless application is called a function. Serverless functions can be
triggered automatically to respond to events or used to process data in parallel. As an
example, uploading an image to a particular bucket in object storage might trigger
a serverless function to resize it automatically. Major commercial FaaS providers
include Amazon Web Services (AWS) Lambda [14], Azure Functions [15], Google
Cloud Functions [16], IBM Cloud Functions [17], and Oracle Cloud Functions [18]
and there are also several open-source serverless platforms including OpenFaaS [19],
Apache OpenWhisk [20] and Kubeless [21].

A key feature of serverless is that it scales quickly compared to traditional server-
based computing where users provision virtual machine servers. It is possible to
simultaneously launch hundreds of serverless functions and the initialization time
is usually well under a second, whereas it may be up to a minute for server-based
machines. However, each serverless function has a maximum execution time, which
is 15 min in the case of AWS Lambda. Users can also configure the memory and
CPU power allocated to each function, which ranges from 128 to 10,240 MB with
AWS Lambda. Serverless computing uses a pay-as-you-go cost model where users
are billed based on the total execution time of their functions proportional to the
configured memory size as well as the number of function invocations. The rapid
scalability and usage-based billing means that serverless is ideal for uneven or bursty
workloads since users do not need to provision resources in advance.

Besides scalability, one of the main characteristics of serverless functions are that
they run in a stateless, isolated environment called a container. Although containers
have a small amount of storage space (512 MB for AWS Lambda) during their
execution, it is not persisted so functions must use external storage mechanisms.
Containers also block incoming network connections, so it is not possible to run web
servers directly in functions or to access running function code in a remote shell for
debugging. While different functions are guaranteed to run in separate containers,
a FaaS provider may at its discretion, reuse a container from a previous execution
of the same function. This reduces startup time since the function does not need to
reinitialize and is called a warm start, as compared to when a function runs in a new
uninitialized container, which is called a cold start. Overall, serverless computing
has several distinct properties, including minimal management, rapid scalability, and
isolated execution environments.

Punching Holes in the Cloud: Direct Communication … 19

2.2 Data Storage with Serverless

Serverless applications must solve problems related to data transfer and limited func-
tion lifetime that do not occur with traditional server-based computing. One challenge
in serverless is how to persist data and transfer it between multiple functions, since
functions are ephemeral by nature. Although functions do have access to limited stor-
age space during runtime, it is not persistent. Also, functions can be invoked with a
small amount of metadata, but this is not sufficient for data processing applications.
Thus, it is necessary for serverless functions to input and output data via one or more
external data stores, such as database servers or object storage. Because functions are
isolated from each other, using external data storage also allows functions to com-
municate for large computing workloads. This differs from traditional server-based
computing frameworks where nodes can easily exchange data over the network. In
addition, conventional server-based computing nodes do not have limited lifetimes,
but serverless functions do. Serverless computations must account for limited func-
tion lifetime when scheduling functions and ensure that functions finish writing their
output before they timeout.

There are several different external cloud computing services that serverless func-
tions can use to send and receive data, such as object storage, memory- and disk-
backed databases and proxied network connections. Persistent object storage such
as AWS Simple Storage Service (S3) can store large amounts of data for a few cents
per gigabyte per month. A disadvantage is that it does not support high through-
put and rate-limits requests to a few thousand per second [8]. While object storage
is cheap, the fastest storage available is memory-backed key-value stores, such as
AWS ElastiCache, which provides managed Memcached or Redis instances. These
memory-backed databases can support a very fast request rate (over 100,000 requests
per second) and are efficient for small objects but are significantly more expensive:
ElastiCache is hundreds of times more expensive than S3 when storing the same
amount of data [8]. Also, memory-backed stores must have servers provisioned to
run on. Of course, any other type of database can also be used in combination with
serverless to provide different trade-offs with respect to cost and performance. Most
databases still need provisioned servers, however, which limits scalability. In theory,
it is also possible to use external proxy servers so serverless functions can com-
municate over the network. However, this would only be practical if the bandwidth
each function needs is small compared to that of a server since provisioning multiple
servers just to act as proxies would defeat the purpose of using serverless in the first
place. Overall, for large computing serverless workloads, there are several options
for external storage, including object storage, databases, and proxied connections,
but they all require trade-offs between cost and performance.

20 D. Moyer and D. S. Nikolopoulos

2.3 Network Address Translation (NAT)

2.3.1 Definition

Network Address Translation [22] is a commonly used technique to connect an
internal network with a different IP addressing scheme from its external network.
A network address translator rewrites the IP packets that cross from one network to
the other in order to translate between internal and external IP addresses and port
numbers, modifying the packet headers to do so. It maintains connection state so
that when a client on the internal network makes an outbound connection, it can
correctly forward the return packets back to that client. Typically, NAT is used in
combination with filtering rules to block unsolicited incoming packets from entering
the internal network. In this case, two clients behind different internal networks are
unable to connect to each other directly without using a special technique to bypass
NAT, which is known as NAT traversal.

2.3.2 NAT Traversal

Transmission Control Protocol (TCP) hole punching is a technique for establishing a
TCP connection between two endpoints that are both behind separate NAT networks
and thus cannot connect directly [23]. The way TCP hole punching works is that both
endpoints simultaneously make an outbound connection to the other endpoint. If the
destination IP address and port of each connection matches the source IP address and
port of the other, then each NAT device will allow the incoming connection from the
other endpoint because it treats it as the response to the outbound connection from its
own endpoint. For this to work, each endpoint must know the public source IP address
and port of the other endpoint’s outbound connection so it can make the destination
IP address and port of its connection match. Thus, a prerequisite for hole punching
is that both endpoints exchange their external source IP addresses and ports using
an out-of-band method such as a relay server. However, the NAT device must use a
known or predictable external source IP address and port for TCP hole punching to
be possible. If the NAT device uses an unpredictable external port, then the opposite
endpoint will not know what destination port to use, and the NAT traversal will not
work.

2.3.3 AWS Lambda NAT Behavior

AWS Lambda creates each function container with a private IP address behind a
NAT firewall that blocks incoming connections. The NAT firewall translates the
function’s private IP address into a public IP address so it can access the public
internet. However, since the firewall does not allow functions to receive connections,
this means that Lambda cannot be used to run externally-accessible servers and that
two functions cannot directly communicate with each other over the network without

