Plant Breeding Reviews VOLUME 46

Edited by IRWIN GOLDMAN

WILEY

PLANT BREEDING REVIEWS Volume 46

Editorial Board, Volume 46 Jules Janick Rodomiro Ortiz

PLANT BREEDING REVIEWS Volume 46

Edited by Irwin Goldman

University of Wisconsin–Madison Madison, Wisconsin, USA

This edition first published 2023 © 2023 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Irwin Goldman to be identified as the author of this editorial material has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-ondemand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data has been applied for Hardback ISBN: 9781119874126

Cover Design: Wiley Cover Image: © browndogstudios/Getty Images

Set in 10/12pt Melior by Straive, Pondicherry, India

Contents

Li	st of C	Contributors	xi		
1	Dani	Zamir: Pioneer in Tomato Genetics and			
	Qua	ntitative Trait Dissection	1		
	Irwin	L. Goldman			
	I.	Introduction	2		
	II.	Understanding Quantitative Genetic Variation	4		
	III.	Cloning of Quantitative Trait Loci	6		
	IV.	Characterization of Genetic Phenomena	7		
	V.	Sequencing the Tomato Genome	9		
	VI.	Practical Plant Breeding	10		
	VII.	Scientific Impact	13		
	VIII.	List of Scientific Journal Publications of			
		Dani Zamir	14		
		Literature Cited	30		
2	Mus	cadine Grape Breeding	31		
	Patrick J. Conner and Margaret L. Worthington				
	I.	Introduction	32		
	II.	History of Improvement	38		
	III.	Breeding Techniques	49		
	IV.	Molecular Breeding Resources	52		
	V.	Breeding for Specific Characters	58		
	VI.	Intersubgeneric Hybridization	79		
	VII.	Future Prospects	104		
		Literature Cited	106		
3	Bree	ding Intermediate Wheatgrass for Grain Production	119		
	Prabin Bajgain, Jared L. Crain, Douglas J. Cattani,				
	Steven R. Larson, Kayla R. Altendorf, James A. Anderson.				
	Timothy E. Crews, Ying Hu, Jesse A. Poland, M. Kathryn				
	Turner, Anna Westerbergh, and Lee R. DeHaan				
	I.	Introduction	122		
	II.	Plant Biology and Behavior	125		

v

CONTENTS

	III.	History of IWG Breeding	140
	IV.	Breeding Methodologies by Program	146
	V.	Breeding Goals and Progress	162
	VI.	Modern Breeding Tools	175
	VII.	Rate of Intermediate Wheatgrass Domestication	190
	VIII.	Future Directions	195
		Literature Cited	197
4	Und	erstanding Environmental Modulation of	
	Hete	rosis	219
	Zhi L	i, Jiabin Sun, and Candice N. Hirsch	
	I.	Introduction of Heterosis	220
	II.	Models and Mechanisms to Explain Heterosis	221
	III.	Genotype-by-Environment Interaction	224
	IV.	Inbred Lines Generally Have More Instability	
		Across Environments than Hybrids	226
	V.	Higher Heterosis Levels are Observed Under	
		Stress Conditions	227
	VI.	Variation in Heterosis is also Observed Under	
	1 711	Natural Conditions	231
	V11.	Conclusion and Future Prospects	232
		Literature Cited	233
5	Bree	ding of Hemp (<i>Cannabis sativa</i>)	239
	Lawr	ence B. Smart, Iacob A. Toth, George M. Stack.	
	Luis .	A. Monserrate, and Christine D. Smart	
	I.	Introduction	240
	II.	Taxonomy and Domestication of Hemp	245
	III.	Sex Determination in Hemp	247
	IV.	Control of Pollination	250
	V.	Breeding and Selection Schemes	255
	VI.	Target Traits for Genetic Improvement	259
	VII.	Germplasm Resources	277
	VIII.	Genomic Resources	278
	IX.	Future Directions	279
		Literature Cited	279

۰.

~

vi

7

6 Genetic Resources and Breeding Priorities in Phaseolus Beans: Vulnerability, Resilience, and Future Challenges Travis A Parker Jorge Acosta Callegos James Beaver

289

Travi	s A. Parker, Jorge Acosta Gallegos, James Beaver,	
Mark	Brick, Judith K. Brown, Karen Cichy, Daniel G.	
Debo	uck, Alfonso Delgado-Salinas, Sarah Dohle, Emmalea	
Ernes	st, Consuelo Estevez de Jensen, Francisco Gomez,	
Barbo	ara Hellier, Alexander V. Karasev, James D. Kelly,	
Philli	p McClean, Phillip Miklas, James R. Mvers, Juan	
M. O	sorno. Julie S. Pasche. Marcial A. Pastor-Corrales.	
Timo	thy Porch. James R. Steadman. Carlos Urrea. Lyle	
Walld	ice, Christine H. Diepenbrock, and Paul Gepts	
I.	Description of Crop Vulnerability and Its	
	Relevance in <i>Phaseolus</i>	294
II.	Background on the Origin, Diversification,	
	and Domestication of the Genus <i>Phaseolus</i>	296
III.	Urgency and Extent of Crop Vulnerabilities	
	and Threats to Food Security	318
IV.	Genetic Erosion in the Centers of Origin	325
V.	Status of Plant Genetic Resources in the NPGS	352
VI.	Genomic and Genotypic Characterization Data	361
VII.	Prospects, Future Development, and Gaps	
	in Genetic Diversity	371
VIII.	Epilogue	381
	Literature Cited	385
Club	Wheat – A Review of Club Wheat History,	
Imp	avament and Snike Characteristics in Wheat	191

Impr	ovement, and Spike Characteristics in Wheat	421
Kimb	erly A. Garland-Campbell	
I.	Introduction	423
II.	Spike Architecture in Grasses	424
III.	Club Wheat History	426
IV.	Club Wheat Breeding	432
V.	Major Genes for Control of Spike Charactersitics	
	in Wheat	444
VI.	Conclusion	454
	Literature Cited	455

CO	N	m	ere:	N	r n	10
UU	1		L E.	IN		. D

8	Predicting Genotype × Environment × Management(G × E × M) Interactions for the Design of CropImprovement Strategies: Integrating Breeder,Agronomist, and Farmer PerspectivesMark Cooper, Carlos D. Messina, Tom Tang, Carla Gho,Owen M. Powell, Dean W. Podlich, Frank Technow,and Graeme L. Hammer			
	 I. Three Perspectives of G×E×M Interactions II. Foundations for G×E×M Prediction III. The Breeder's Equation and Beyond IV. G×E×M Considerations for Designing Multi-Environment Trials V. Breeder's Questions: G×E×M → G×(E×M) 	470 476 480 482 510		
	VI. Agronomist's Questions: $G \times E \times M \rightarrow M \times (E \times G)$ VII. Farmer's Questions: $G \times E \times M \rightarrow (G \times M) \times E$ VIII. Integrating the Different $G \times E \times M$ Perspectives IX. $G \times E \times M$ Predictions Beyond the Training Data	520 525 531		
	Boundaries X. Prediction-Based Crop Improvement: Future Prospects Literature Cited	548 555 560		
9	Root Phenes for Improving Nutrient Capture in Low-Fertility Environments <i>Christopher F. Strock and Hannah M. Schneider</i>	587		
	 I. The Need for Nutrient-Efficient Crops II. Root Phenes are Important for Resource Aquisition and Plant Growth III. Root Ideotypes for Improved Nutrient Acquisition IV. Phenotyping Methodology and Technology V. Deployment Strategies for Root Phenes in Crop Breeding Programs VI. Conclusions Literature Cited 	589 590 596 605 610 614 615		
10	Role of the Genomics–Phenomics–Agronomy Paradigm in Plant Breeding Chunpeng James Chen, Jessica Rutkoski, James C. Schnable, Seth C. Murray, Lizhi Wang, Xiuliang Jin, Benjamin Stich, Jose Crossa, Ben J. Hayes, and Zhiwu Zhang	627		
	I. Introduction II. Agronomy and Genomics (A-G)	630 631		

III.	Genomics and Phenomics (G-P)	636
IV.	Phenomics and Agronomy (P-A)	641
V.	Merge G-P-A through GWAS	644
VI.	Merge G-P-A through Blup	647
VII.	Merge G-P-A through Bayesian Methods	649
VIII.	Merge G-P-A through Ml	654
IX.	Conclusion and Future Prospects	658
	Literature Cited	659
Cumulative Contributor Index		675
Cumulati	685	

List of Contributors

Kayla R. Altendorf

Seed and Cereal Research Unit, USDA ARS, Prosser, WA, USA

James A. Anderson

Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, USA

Prabin Bajgain

Department of Agronomy & Plant Genetics, University of Minnesota, St. Paul, MN, USA

James Beaver

Departamento de Cultivos y Ciencias Agro-Ambientales, University of Puerto Rico, Mayagüez, PR, USA

Mark Brick

Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA

Judith K. Brown

School of Plant Sciences, University of Arizona, Tucson, AZ, USA

Douglas J. Cattani

Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada

Chunpeng James Chen

Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA

Karen Cichy Sugarbeet and Bean Research Unit, USDA-ARS, East Lansing, MI, USA

Patrick J. Conner

Department of Horticulture, University of Georgia, Tifton, GA, USA

Mark Cooper

Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland, Australia

Jared L. Crain

Department of Plant Pathology, Kansas State University, Manhattan, KS, USA

Timothy E. Crews

The Land Institute, Salina, KS, USA

Jose Crossa

Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México

Daniel G. Debouck Programa de Recursos Genéticos, CIAT, Cali, Colombia

Lee R. DeHaan The Land Institute, Salina, KS, USA

Alfonso Delgado-Salinas

Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México

Christine H. Diepenbrock

Department of Plant Sciences, University of California, Davis, CA, USA

Sarah Dohle Department of Plant Science, Delaware Valley University, Doylestown, PA, USA

Emmalea Ernest Cooperative Extension Vegetable & Fruit Program, University of Delaware, Georgetown, DE, USA

Jorge Acosta Gallegos Campo Experimental Bajío, INIFAP, Celaya, México

Kimberly A. Garland-Campbell

USDA-ARS Wheat Health, Genetics and Quality Unit, Washington State University, Pullman, WA, USA

LIST OF CONTRIBUTORS

Paul Gepts

Department of Plant Sciences, University of California, Davis, CA, USA

Carla Gho

Corteva Agriscience, Johnston, IA, USA

Irwin L. Goldman

Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA

Francisco Gomez

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

Graeme L. Hammer

Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland, Australia

Ben J. Hayes

Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia

Barbara Hellier

Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Pullman, WA, USA

Candice N. Hirsch

Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA

Ying Hu

College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China

Consuelo Estevez de Jensen

Departamento de Cultivos y Ciencias Agro-Ambientales, University of Puerto Rico, Mayagüez, PR, USA

Xiuliang Jin

Ministry of Agriculture, Chinese Academy of Agricultural Sciences/ Key Laboratory of Crop Physiology and Ecology, Institute of Crop Sciences, Beijing, China

Alexander V. Karasev

Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA

James D. Kelly

Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA

Steven R. Larson

Forage and Range Research, USDA ARS, Logan, UT, USA

Zhi Li

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China

Phillip McClean

Department of Plant Sciences, North Dakota State University, Fargo, ND, USA

Carlos D. Messina

Corteva Agriscience, Johnston, IA, USA Horticultural Sciences Department, University of Florida, Gainesville, FL, USA

Phillip Miklas

Grain Legume Genetics Physiology Research Unit, USDA-ARS, Prosser, WA, USA

Luis A. Monserrate

School of Integrative Plant Science, Cornell University, Geneva, NY, USA

Seth C. Murray

Department of Soil and Crop Sciences, Texas A&M University, College Station, College Station, TX, USA

James R. Myers

Department of Horticulture, Oregon State University, Corvallis, OR, USA

Juan M. Osorno

Department of Plant Sciences, North Dakota State University, Fargo, ND, USA

Travis A. Parker

Department of Plant Sciences, University of California, Davis, CA, USA

LIST OF CONTRIBUTORS

Julie S. Pasche

Department of Plant Sciences, North Dakota State University, Fargo, ND, USA

Marcial A. Pastor-Corrales

Beltsville Agricultural Center, Soybean Genomics and Improvement Center, USDA-ARS, Beltsville, MD, USA

Dean W. Podlich Corteva Agriscience, Johnston, IA, USA

Jesse A. Poland

King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia

Timothy Porch

Tropical Agriculture Research Station, USDA-ARS, Mayagüez, PR, USA

Owen M. Powell

Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland, Australia ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, Queensland, Australia

Jessica Rutkoski

Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA

James C. Schnable

Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA

Hannah M. Schneider

Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands

Christine D. Smart School of Integrative Plant Science, Cornell University, Geneva, NY, USA

Lawrence B. Smart

School of Integrative Plant Science, Cornell University, Geneva, NY, USA

George M. Stack

School of Integrative Plant Science, Cornell University, Geneva, NY, USA

James R. Steadman

Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA

Benjamin Stich

Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany

Christopher F. Strock

Breeding Insight, Cornell University, Ithaca, NY, USA

Jiabin Sun

State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China

Tom Tang Corteva Agriscience, Johnston, IA, USA

Frank Technow Corteva Agriscience, Tavistock, Ontario, Canada

Jacob A. Toth

School of Integrative Plant Science, Cornell University, Geneva, NY, USA

M. Kathryn Turner

The Land Institute, Salina, KS, USA

Carlos Urrea

Department of Agronomy and Horticulture, University of Nebraska, Scottsbluff, NE, USA

Lyle Wallace

Plant Germplasm Introduction and Testing Research Unit, USDA-ARS, Pullman, WA, USA

Lizhi Wang

Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA

Anna Westerbergh

Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden

LIST OF CONTRIBUTORS

Margaret L. Worthington

Department of Horticulture, University of Arkansas, Fayetteville, AR, USA

Zhiwu Zhang

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA

Dani Zamir: Pioneer in Tomato Genetics and Quantitative Trait Dissection

Irwin L. Goldman Department of Horticulture, University of Wisconsin-Madison, Madison, WI, USA

ABSTRACT

The dedicatory chapters for PBR have traditionally not had abstracts; but if there is a strong sense that there should be one I can write it- however this hasn't always been done.

KEYWORDS: Tomato, quantitative trait loci, introgression lines, tomato genome, overdominance, introgression breeding

OUTLINE

- I. INTRODUCTION
- II. UNDERSTANDING QUANTITATIVE GENETIC VARIATION
- III. CLONING OF QUANTITATIVE TRAIT LOCI
- IV. CHARACTERIZATION OF GENETIC PHENOMENA
- V. SEQUENCING THE TOMATO GENOME
- VI. PRACTICAL PLANT BREEDING
- VII. SCIENTIFIC IMPACT
- VIII. LIST OF SCIENTIFIC JOURNAL PUBLICATIONS OF DANI ZAMIR ACKNOWLEDGMENTS LITERATURE CITED

Plant Breeding Reviews, Volume 46, First Edition. Edited by Irwin Goldman. © 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.

ABBREVIATIONS

- ILs Introgression Lines OTL Ouantitative Trait Locus
- CWR Crop Wild Relative

I. INTRODUCTION

For more than four decades, Dani Zamir has been among the most influential scientists in plant breeding throughout the world (Figure 1.1). Professor Zamir has spent his career at the Hebrew University of Jerusalem, in Rehovot, Israel, where he and his students have made great strides in improving our understanding of the genetic basis of quantitative traits in crop plants and in developing tools for advancing the science of plant breeding. Zamir was able to combine those efforts with practical plant breeding, leading to the development of highly productive cultivars and the establishment of practical breeding programs in horticultural species. He also mentored many undergraduate and graduate students in plant genetics and taught a popular course. Now Professor Emeritus, Dani Zamir's work on tomato genomics, genetics, and breeding continues into his fifth decade of work on

Fig. 1.1. Dani Zamir, Professor Emeritus, Hebrew University of Jerusalem, Israel. *Source:* Photo credit: D. Zamir.

the crop. This dedication focuses on a few of his key accomplishments in the field of plant breeding and plant genetics.

Dani Zamir was born in 1950 in Israel. Following his military service, he received degrees from the Hebrew University of Jerusalem (undergraduate) and the University of California-Davis (graduate), completing his doctorate in 1981. He started his career as a lecturer in genetics at the Hebrew University's Faculty of Agriculture in Rehovot, Israel, in 1982 and was appointed senior lecturer in 1985. In 1992, he became associate professor and in 1996, professor of Genetics. He retired from his formal teaching and research at the University in 2018 and is now Professor Emeritus. Zamir also held adjunct appointments in genetics at Seoul University in South Korea and Cornell University in Ithaca, New York. Throughout his career, Zamir taught a popular course in general genetics to undergraduates at Hebrew University and was a mentor for numerous students.

Zamir has also founded two companies, each of which has achieved substantial success. The first, AB Seeds, initiated approximately 20 years ago, is a breeding and genetics company specializing in crop seeds including tomato. The company was sold to De Ruiter in 2008 and later purchased by Monsanto. More recently, Zamir and his student Yaniv Semel established the company Phenome Networks, which has developed proprietary software for managing complex breeding programs and the phenotypic and genotypic data that they generate. The company, based in Rehovot, Israel, serves a wide variety of public and private customers and helps users track crossing, trialing, phenotyping, and genotyping activities that are core components of breeding programs.

Zamir has served on the advisory boards of a number of institutions, journals, and projects, including Genoplante (France), the Max Planck Institute for Plant Breeding (Germany), the Department of Plant Molecular Biology at the University of Barcelona (Spain), the Grapevine Genome Project (Italy), the International SOL Genome Project, and the journals *G3: Genes, Genomes, Genetics; Scientific Data; The Plant Journal*; and *Scientific Reports.*

Zamir was also recipient of the Kaye Innovation Prize from the Hebrew University of Jerusalem in 2007, the EMET Prize in Agriculture in 2015, which recognizes excellence in academic and professional achievements that have significant influence on society, and the highly prestigious Israel Prize 2020. The Israel Prize is awarded by the State of Israel and is considered the highest honor the state bestows on an individual. It is highly selective and awarded annually in a formal state ceremony attended by the President, Prime Minister, and other dignitaries. The recipients of the prize are Israeli citizens or organizations who have displayed excellence in their field(s) or have contributed strongly to the culture of Israel. Receipt of this award is a singular achievement and a powerful indicator of the impact of Dani Zamir's work in agricultural science.

II. UNDERSTANDING QUANTITATIVE GENETIC VARIATION

Dani Zamir has long been a proponent of understanding and utilizing genetic variability, particularly that from crop wild relatives (CWRs), to improve modern crops. Among his most well-known projects was the development of tomato (Solanum lycopersicon) introgression lines (ILs) containing small, molecular marker-defined chromosomal segments from the wild species Solanum pennellii. His approach, which became known as *Introgression Breeding*, is predicated on the idea that crop domestication may have left behind useful allelic variation. In a publication that has been cited nearly 1,300 times, Eshed and Zamir (1995) argued that some of this variation may be valuable in a modern breeding context and that genetic tools could be developed to identify and introgress that variation into modern cultivars without the disadvantages of using CWRs directly as parents in a breeding program. The approach gained worldwide acclaim and has been attempted in a number of crop species. The resulting progenies from these types of approaches are called *Introgression Lines*, or ILs.

Zamir (2001) later suggested that a genetic infrastructure could be developed based on "exotic libraries" where individual breeding lines or cultivars in the library would contain a marker-defined chromosomal segment from a CWR that had been introgressed through sexual recombination. A full set of lines of this sort would constitute a library of the genome of the CWR, albeit nested inside the genome of cultivated crop accessions. A scientist could obtain lines from the library to screen for traits of interest and potentially identify one or more lines carrying segments with valuable traits. These lines could then be easily introgressed into breeding material or cultivars using the markers flanking the introgression. These ideas were later more fully expanded to consider how this approach could be used to source natural variation for plant breeding programs (Zamir 2008).

Zamir's key insights into the value of allelic variation in CWRs were (1) that there were ways to access their value without using their entire genome as a parent in a breeding program and (2) that the genome of the wild relative could be assembled piece by piece into a library that

was based on a cultivated genetic background. Plant breeders have long been aware of the pitfalls of using CWR as parents, including substantial linkage drag with undesirable traits, introduction of sterility and incompatibility, and limited recombination between wild and cultivated chromosomes. Granted, there are numerous examples of introgressions of important alleles from CWRs into cultivated crops; though these almost always involved substantial backcrossing to the cultivated parent to remove the genome of the wild parent and retain only the small segment associated with the trait of interest. In a number of these cases, unwanted segments of wild species chromosomes remain and are difficult to remove because of limited recombination at or near the unwanted genes of interest. The IL approach circumvents this problem by pre-developing a set of marker-defined ILs and allowing for a more custom-designed breeding approach (Figure 1.2).

But of even greater value may be the use of CWRs as a source for valuable quantitative trait locus (QTL) variation. Zamir and his students and colleagues were among the first to propose and demonstrate a practical approach to utilizing the potential of CWRs as sources of important quantitative variation (Zamir 2008). Prior to this time, CWRs were primarily considered as sources of valuable qualitative genetic variants, particularly for traits such as disease resistance. Traits like yield and productivity were considered mainly in the context of cultivated genetic

Fig. 1.2. The *S. pennellii* Introgression Line (IL) population. (a) Genome introgressions in the 76 *S. pennellii* ILs, which are nearly isogenic to each other and to M82 and differ only for the marked introgressed chromosome segments. (b) Green fruits of the wild species, *S. pennellii*, the lycopene-rich red fruits of *S. lycopersicum*, their F_1 hybrid and six ILs. *Source:* D. Zamir.

backgrounds. But an important insight offered by Zamir and colleagues focused on the observation that bottlenecks caused by domestication and modern breeding may have left behind valuable quantitative traits. By going back to CWRs, some of these valuable quantitative traits could be accessed; however, introgressing them carefully into cultivated backgrounds using very precise marker-delineated segments was the key to harnessing their potential. The IL concept provided a framework for how this could be accomplished.

More specifically, Eshed et al. (1996) conducted a series of field trials with ILs and their hybrids in two distinct genetic backgrounds. Seven out of 8 hybrids displayed from 7 to 13% higher yield than their near-isogenic controls (without introgressions). This finding demonstrated a significant interaction between the introgression and genetic background for yield in tomato. When the two introgressions with the largest yield advantage were combined into a single genetic background, a 20% yield increase compared to the control was realized.

The IL system is used by hundreds of researchers and breeders in academia and industry around the world. It has become the most helpful tool for identifying and introducing beneficial genes into cultivated varieties from their wild relatives. Moreover, the success of the tomato ILs has become a model for the development of similar systems in other agricultural crops (rice, barley, and wheat, for example) in China, Japan, Korea, and other countries.

III. CLONING OF QUANTITATIVE TRAIT LOCI

Dani Zamir has been among the world pioneers in applying molecular markers for mapping quantitative traits in plants. One of the most important achievements in this area was the first example of cloning and characterization of a QTL, performed by Zamir and his student Eyal Fridman, currently a researcher in Israel's Volcani Institute. This was the first example of a cloned QTL from any organism. Their efforts identified a QTL for levels of soluble solids, primarily sugars, in tomato fruit that was determined by a variant of the enzyme invertase. The milestone article, published in April 2000 (Fridman et al. 2000), has been one of the most notable achievements of Israeli science in genetics and agriculture. In parallel with Zamir's work, a QTL gene for fruit size in tomato that segregated in one of the ILs was identified by Steven Tanksley from Cornell University, one of Zamir's research partners for many years, and this article was published in July 2000 (Frary et al. 2000).

DANI ZAMIR

To clone this QTL, Fridman et al. (2000) first identified a moderate QTL known as Brix-9-2-5, which increases sugar yield of tomatoes without compromising yield. This QTL was mapped to a single-nucleotide polymorphism (SNP)-defined region of 484 base pairs within a flowerand fruit-specific cell wall invertase gene (*LIN5*). *LIN5* is considered a "sink gene" that is involved with the unloading of sugars into the fruit. Further QTL analysis with segregating populations from five tomato species localized the functional polymorphism of Brix-9-2-5 to an amino acid near the catalytic site of the invertase crystal, which affects enzyme kinetics and fruit sink strength (Fridman et al. 2004). The work helped demonstrate the relationship between genetic variation at the sequence level and the manifestation of a QTL. This first cloning of an important crop QTL highlighted the value of the IL approach, and the enormous collection of characterized lines, advanced by Zamir and colleagues over many years.

IV. CHARACTERIZATION OF GENETIC PHENOMENA

Dani Zamir's commitment to working with tomato extends through five decades, and he is therefore in an enviable position to study and describe the history of tomato genetics and breeding. Working with a large multinational team, Zamir and colleagues examined the modern history of tomato domestication and breeding through the lens of the cumulative genetic information collected by researchers throughout the years (Lin et al.2014). Their work revealed that modern tomato can be partially described by two independent sets of QTLs that conferred important changes to tomato fruit. These QTL, particularly fruit mass QTLs known as fw1.1, fw5.2, fw7.2, fw12.1, and len12.1, are responsible for the large size of modern tomato fruit, which is more than 100× larger than its wild progenitor. They also proposed a two-step evolution of tomato fruit mass through domestication sweeps associated with these QTL. In addition to changes in fruit mass, they reported several QTL on chromosome 5 that confer greater fruit firmness (fir5.1) and higher soluble solids (ssc5.1, ssc5.2, and ssc5.3) were likely selected during the development of processing tomatoes. Processing tomatoes are largely used for the production of tomato paste, which is a staple of processed foods such as ketchup. This genetic signature of processing tomato was facilitated by the presence of a very large centromere on chromosome 5, which likely reduced the amount of recombination present in the region where these QTL reside (Lin et al. 2014) (Figure 1.3).

Fig. 1.3. Dani Zamir with multi-loculed tomato germplasm. *Source:* Photo credit: M. Schwartz.

Among Zamir's important contributions to agricultural research are his insights into understanding the genetic basis of overdominance (Semel et al. 2006), epistasis (Eshed and Zamir 1995), and heterosis itself (Lippman and Zamir 2007; Lippman et al. 2007; Krieger et al. 2010). For as long as humans have bred plants and animals, they have recognized the phenomenon of hybrid vigor, or heterosis, in which the F_1 progeny of a cross exceeds the value of the parents in terms of productivity. Despite the obvious importance of heterosis to global food production, its genetic basis has remained poorly understood; perhaps in part because many loci contribute to yield and productivity traits, and these loci behave in a variety of different ways.

In a collaboration with Uri Krieger and Zachary Lippman, Zamir worked out genetic effects at the locus known as *SINGLE FLOWER TRUSS (SFT)*, which codes for a protein that produces the flowering hormone florigen (Lifschitz et al. 2006). Heterosis has been associated with several potential explanations, including the dominance hypothesis, the overdominance hypothesis, and epistasis. The overdominance hypothesis suggests that interaction between alleles at a locus is the cause of hybrid vigor. Identification of a number of examples of putative overdominance have revealed the phenomenon of

pseudo-overdominance, where dominant loci are linked and appear as an overdominant locus. Krieger et al. (2010) examined a tomato mutant, sft-e4537, which displayed overdominant-type heterosis and possessed a missense mutation in the gene SFT. Plants carrying this mutation in the homozygous recessive condition flower very late and their flowering branches quickly revert to vegetative branches. Heterozyogtes display substantial heterosis, derived from a suppression of growth termination mediated by the SELF PRUNING (SP) gene, an antagonist of SFT. This elegant example of a mechanism for overdominance illustrates how this elusive genetic phenomenon is a plausible explanation for heterosis in tomato. That is not to say that all loci behave in this manner, but the confirmation of a truly overdominant locus goes a long way to confirming the truth of one of the most widely held hypotheses of heterosis. Interestingly, this example also confirms the importance of epistasis, one of the three primary hypotheses for heterosis, given that the *SFT* and *SP* loci interact in this example.

V. SEQUENCING THE TOMATO GENOME

Zamir was the leader of the SOL Genome Project, in which the complete DNA sequence of the tomato was deciphered (Tomato Genome Consortium 2012). To this end, Prof. Zamir organized research groups from the United States, the United Kingdom, the Netherlands, Italy, France, India, Korea, and Japan into a group known as the International Tomato Genome Sequencing Project, who worked together to sequence the tomato genome. Zamir was one of the two corresponding authors of the article on the tomato genome published in 2012 in *Nature* that garnered the issue's cover and a special feature (Tomato Genome Consortium 2012). This paper has now been cited more than 2,000 times and represents a tremendous multinational effort to sequence the genome of one of our most important crops.

The International Tomato Genome Sequencing Project was begun in 2004 by an international consortium of scientists from Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States. The group found that tomato genome was highly syntenic with other sequenced solanaceae crops and comprised more low-copy sequences than other crop genomes. They compared the cultivated genome to the related wild species *Solanum pimpinel-lifolium*, and the two genomes were divergent for only 0.6% of their nucleotides. However, the cultivated genome was 8% divergent from potato with a number of chromosomal inversions differing between the

two. The researchers found two genome triplications in the history of tomato, one of which is approximately 130 million years ago and the other about 60 million years ago. These large-scale events were key to the diversification of genes for fruit fleshiness and color, particularly the more recent triplication event.

As critically important as this international effort was, Zamir's involvement in the ultimate success of the tomato genome project goes far deeper. Over many decades, Zamir collaborated with Cornell University scientist Steve Tanskley, who played a key role in building the molecular marker linkage map that was used to piece together much of the early information about the tomato genome and the location of traits of interest. Zamir's career spans the critical period from the early 1980s through the early 2000s which saw the development of molecular markers for plant breeding applications. Beginning with allozyme markers in the 1980s, then restriction fragment length polymorphisms (RFLPs) in the late 1980s and early 1990s, polymerase chain reaction (PCR)-based markers in the 1990s, and finally sequence-based markers in the 2000s, the possibility of associating chromosome segments with some type of molecular marker improved dramatically during this period. High-density molecular marker linkage maps became common by the 1990s and expanded dramatically in the 2000s with sequence-based markers. These developments were greatly facilitated by improvements in genome sequencing, particularly next-generation technologies that became available more recently. In addition, tomato, along with maize and rice, was always among the most well-developed models for marker systems in crops. Zamir was instrumental in the iterative development of marker-based information in tomato, contributing to virtually all of these developments over a period of decades. Markerbased regions were critical to the sequencing effort. Thus, the sequencing of the tomato genome represents one of the more recent successes of Zamir's collaborations, built piece by piece on a foundation of tomato breeding and genetics knowledge.

VI. PRACTICAL PLANT BREEDING

Dani Zamir lives up to his principles by being involved in practical breeding. Based on the new methods he had developed, he has bred, together with a seed company he founded, AB Seeds, a processed tomato variety, 'AB2', which was a leading variety in California for a number of years. In many ways, this hybrid variety served as practical proof of the principles described by Zamir's scholarly work. The QTL