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Dani Zamir: Pioneer in Tomato 
Genetics and Quantitative Trait 
Dissection

Irwin L. Goldman
Department of Horticulture, University of Wisconsin-Madison, 
Madison, WI, USA

ABSTRACT

The dedicatory chapters for PBR have traditionally not had abstracts; but if 
there is a strong sense that there should be one I can write it- however this 
hasn’t always been done.

KEYWORDS: Tomato, quantitative trait loci, introgression lines, tomato 
genome, overdominance, introgression breeding
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ABBREVIATIONS

ILs	 Introgression Lines
QTL	 Quantitative Trait Locus
CWR	 Crop Wild Relative

I.  INTRODUCTION

For more than four decades, Dani Zamir has been among the 
most influential scientists in plant breeding throughout the world 
(Figure 1.1). Professor Zamir has spent his career at the Hebrew Uni-
versity of Jerusalem, in Rehovot, Israel, where he and his students have 
made great strides in improving our understanding of the genetic basis 
of quantitative traits in crop plants and in developing tools for advanc-
ing the science of plant breeding. Zamir was able to combine those 
efforts with practical plant breeding, leading to the development of 
highly productive cultivars and the establishment of practical breeding 
programs in horticultural species. He also mentored many undergrad-
uate and graduate students in plant genetics and taught a popular 
course. Now Professor Emeritus, Dani Zamir’s work on tomato geno-
mics, genetics, and breeding continues into his fifth decade of work on 

Fig. 1.1.  Dani Zamir, Professor Emeritus, Hebrew University of Jerusalem, Israel. 
Source: Photo credit: D. Zamir.
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the crop. This dedication focuses on a few of his key accomplishments 
in the field of plant breeding and plant genetics.

Dani Zamir was born in 1950 in Israel. Following his military service, 
he received degrees from the Hebrew University of Jerusalem (under-
graduate) and the University of California-Davis (graduate), completing 
his doctorate in 1981. He started his career as a lecturer in genetics at 
the Hebrew University’s Faculty of Agriculture in Rehovot, Israel, in 
1982 and was appointed senior lecturer in 1985. In 1992, he became 
associate professor and in 1996, professor of Genetics. He retired from 
his formal teaching and research at the University in 2018 and is now 
Professor Emeritus. Zamir also held adjunct appointments in genetics 
at Seoul University in South Korea and Cornell University in Ithaca, 
New  York. Throughout his career, Zamir taught a popular course in 
general genetics to undergraduates at Hebrew University and was a 
mentor for numerous students.

Zamir has also founded two companies, each of which has achieved 
substantial success. The first, AB Seeds, initiated approximately 
20 years ago, is a breeding and genetics company specializing in crop 
seeds including tomato. The company was sold to De Ruiter in 2008 
and later purchased by Monsanto. More recently, Zamir and his stu-
dent Yaniv Semel established the company Phenome Networks, which 
has developed proprietary software for managing complex breeding 
programs and the phenotypic and genotypic data that they generate. 
The company, based in Rehovot, Israel, serves a wide variety of public 
and private customers and helps users track crossing, trialing, pheno-
typing, and genotyping activities that are core components of breeding 
programs.

Zamir has served on the advisory boards of a number of institu-
tions, journals, and projects, including Genoplante (France), the Max 
Planck Institute for Plant Breeding (Germany), the Department of Plant 
Molecular Biology at the University of Barcelona (Spain), the Grape-
vine Genome Project (Italy), the International SOL Genome Project, and 
the journals G3: Genes, Genomes, Genetics; Scientific Data; The Plant 
Journal; and Scientific Reports.

Zamir was also recipient of the Kaye Innovation Prize from the 
Hebrew University of Jerusalem in 2007, the EMET Prize in Agriculture 
in 2015, which recognizes excellence in academic and professional 
achievements that have significant influence on society, and the highly 
prestigious Israel Prize 2020. The Israel Prize is awarded by the State 
of Israel and is considered the highest honor the state bestows on an 
individual. It is highly selective and awarded annually in a formal 
state ceremony attended by the President, Prime Minister, and other 
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dignitaries. The recipients of the prize are Israeli citizens or organizations 
who have displayed excellence in their field(s) or have contributed 
strongly to the culture of Israel. Receipt of this award is a singular 
achievement and a powerful indicator of the impact of Dani Zamir’s 
work in agricultural science.

II.  UNDERSTANDING QUANTITATIVE GENETIC VARIATION

Dani Zamir has long been a proponent of understanding and utilizing 
genetic variability, particularly that from crop wild relatives (CWRs), 
to improve modern crops. Among his most well-known projects was 
the development of tomato (Solanum lycopersicon) introgression lines 
(ILs) containing small, molecular marker-defined chromosomal seg-
ments from the wild species Solanum pennellii. His approach, which 
became known as Introgression Breeding, is predicated on the idea that 
crop domestication may have left behind useful allelic variation. In a 
publication that has been cited nearly 1,300 times, Eshed and Zamir 
(1995) argued that some of this variation may be valuable in a modern 
breeding context and that genetic tools could be developed to iden-
tify and introgress that variation into modern cultivars without the dis-
advantages of using CWRs directly as parents in a breeding program. 
The approach gained worldwide acclaim and has been attempted in 
a number of crop species. The resulting progenies from these types of 
approaches are called Introgression Lines, or ILs.

Zamir (2001) later suggested that a genetic infrastructure could be 
developed based on “exotic libraries” where individual breeding lines 
or cultivars in the library would contain a marker-defined chromo-
somal segment from a CWR that had been introgressed through sexual 
recombination. A full set of lines of this sort would constitute a library 
of the genome of the CWR, albeit nested inside the genome of culti-
vated crop accessions. A scientist could obtain lines from the library 
to screen for traits of interest and potentially identify one or more lines 
carrying segments with valuable traits. These lines could then be eas-
ily introgressed into breeding material or cultivars using the markers 
flanking the introgression. These ideas were later more fully expanded 
to consider how this approach could be used to source natural variation 
for plant breeding programs (Zamir 2008).

Zamir’s key insights into the value of allelic variation in CWRs were 
(1) that there were ways to access their value without using their entire 
genome as a parent in a breeding program and (2) that the genome of 
the wild relative could be assembled piece by piece into a library that 
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was based on a cultivated genetic background. Plant breeders have long 
been aware of the pitfalls of using CWR as parents, including substan-
tial linkage drag with undesirable traits, introduction of sterility and 
incompatibility, and limited recombination between wild and culti-
vated chromosomes. Granted, there are numerous examples of intro-
gressions of important alleles from CWRs into cultivated crops; though 
these almost always involved substantial backcrossing to the cultivated 
parent to remove the genome of the wild parent and retain only the 
small segment associated with the trait of interest. In a number of these 
cases, unwanted segments of wild species chromosomes remain and 
are difficult to remove because of limited recombination at or near the 
unwanted genes of interest. The IL approach circumvents this problem 
by pre-developing a set of marker-defined ILs and allowing for a more 
custom-designed breeding approach (Figure 1.2).

But of even greater value may be the use of CWRs as a source for 
valuable quantitative trait locus (QTL) variation. Zamir and his students 
and colleagues were among the first to propose and demonstrate a prac-
tical approach to utilizing the potential of CWRs as sources of important 
quantitative variation (Zamir 2008). Prior to this time, CWRs were pri-
marily considered as sources of valuable qualitative genetic variants, 
particularly for traits such as disease resistance. Traits like yield and 
productivity were considered mainly in the context of cultivated genetic 
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six ILs. Source: D. Zamir.
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backgrounds. But an important insight offered by Zamir and colleagues 
focused on the observation that bottlenecks caused by domestication 
and modern breeding may have left behind valuable quantitative traits. 
By going back to CWRs, some of these valuable quantitative traits could 
be accessed; however, introgressing them carefully into cultivated back-
grounds using very precise marker-delineated segments was the key to 
harnessing their potential. The IL concept provided a framework for 
how this could be accomplished.

More specifically, Eshed et  al. (1996) conducted a series of field 
trials with ILs and their hybrids in two distinct genetic backgrounds. 
Seven out of 8 hybrids displayed from 7 to 13% higher yield than their 
near-isogenic controls (without introgressions). This finding demon-
strated a significant interaction between the introgression and genetic 
background for yield in tomato. When the two introgressions with the 
largest yield advantage were combined into a single genetic background, 
a 20% yield increase compared to the control was realized.

The IL system is used by hundreds of researchers and breeders in 
academia and industry around the world. It has become the most help-
ful tool for identifying and introducing beneficial genes into cultivated 
varieties from their wild relatives. Moreover, the success of the tomato 
ILs has become a model for the development of similar systems in other 
agricultural crops (rice, barley, and wheat, for example) in China, Japan, 
Korea, and other countries.

III.  CLONING OF QUANTITATIVE TRAIT LOCI

Dani Zamir has been among the world pioneers in applying molecu-
lar markers for mapping quantitative traits in plants. One of the most 
important achievements in this area was the first example of cloning 
and characterization of a QTL, performed by Zamir and his student 
Eyal Fridman, currently a researcher in Israel’s Volcani Institute. 
This was the first example of a cloned QTL from any organism. Their 
efforts identified a QTL for levels of soluble solids, primarily sugars, in 
tomato fruit that was determined by a variant of the enzyme invertase. 
The milestone article, published in April 2000 (Fridman et al. 2000), 
has been one of the most notable achievements of Israeli science in 
genetics and agriculture. In parallel with Zamir’s work, a QTL gene for 
fruit size in tomato that segregated in one of the ILs was identified by 
Steven Tanksley from Cornell University, one of Zamir’s research part-
ners for many years, and this article was published in July 2000 (Frary 
et al. 2000).
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To clone this QTL, Fridman et al. (2000) first identified a moderate 
QTL known as Brix-9-2-5, which increases sugar yield of tomatoes with-
out compromising yield. This QTL was mapped to a single-nucleotide 
polymorphism (SNP)-defined region of 484 base pairs within a flower- 
and fruit-specific cell wall invertase gene (LIN5). LIN5 is considered a 
“sink gene” that is involved with the unloading of sugars into the fruit. 
Further QTL analysis with segregating populations from five tomato 
species localized the functional polymorphism of Brix-9-2-5 to an 
amino acid near the catalytic site of the invertase crystal, which affects 
enzyme kinetics and fruit sink strength (Fridman et al. 2004). The work 
helped demonstrate the relationship between genetic variation at the 
sequence level and the manifestation of a QTL. This first cloning of 
an important crop QTL highlighted the value of the IL approach, and 
the enormous collection of characterized lines, advanced by Zamir and 
colleagues over many years.

IV.  CHARACTERIZATION OF GENETIC PHENOMENA

Dani Zamir’s commitment to working with tomato extends through 
five decades, and he is therefore in an enviable position to study and 
describe the history of tomato genetics and breeding. Working with a 
large multinational team, Zamir and colleagues examined the modern 
history of tomato domestication and breeding through the lens of the 
cumulative genetic information collected by researchers throughout 
the years (Lin et al.2014). Their work revealed that modern tomato can 
be partially described by two independent sets of QTLs that conferred 
important changes to tomato fruit. These QTL, particularly fruit mass 
QTLs known as fw1.1, fw5.2, fw7.2, fw12.1, and len12.1, are respon-
sible for the large size of modern tomato fruit, which is more than 
100× larger than its wild progenitor. They also proposed a two-step 
evolution of tomato fruit mass through domestication sweeps associ-
ated with these QTL. In addition to changes in fruit mass, they re-
ported several QTL on chromosome 5 that confer greater fruit firmness 
(fir5.1) and higher soluble solids (ssc5.1, ssc5.2, and ssc5.3) were likely 
selected during the development of processing tomatoes. Processing 
tomatoes are largely used for the production of tomato paste, which is 
a staple of processed foods such as ketchup. This genetic signature of 
processing tomato was facilitated by the presence of a very large cen-
tromere on chromosome 5, which likely reduced the amount of recom-
bination present in the region where these QTL reside (Lin et al. 2014) 
(Figure 1.3).
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Among Zamir’s important contributions to agricultural research 
are his insights into understanding the genetic basis of overdomi-
nance (Semel et al. 2006), epistasis (Eshed and Zamir 1995), and het-
erosis itself (Lippman and Zamir 2007; Lippman et al. 2007; Krieger 
et al. 2010). For as long as humans have bred plants and animals, they 
have recognized the phenomenon of hybrid vigor, or heterosis, in which 
the F1 progeny of a cross exceeds the value of the parents in terms of 
productivity. Despite the obvious importance of heterosis to global food 
production, its genetic basis has remained poorly understood; perhaps 
in part because many loci contribute to yield and productivity traits, 
and these loci behave in a variety of different ways.

In a collaboration with Uri Krieger and Zachary Lippman, Zamir 
worked out genetic effects at the locus known as SINGLE FLOWER 
TRUSS (SFT), which codes for a protein that produces the flowering 
hormone florigen (Lifschitz et  al.  2006). Heterosis has been associ-
ated with several potential explanations, including the dominance 
hypothesis, the overdominance hypothesis, and epistasis. The over-
dominance hypothesis suggests that interaction between alleles at a 
locus is the cause of hybrid vigor. Identification of a number of exam-
ples of putative overdominance have revealed the phenomenon of 

Fig. 1.3.  Dani Zamir with multi-loculed tomato germplasm. Source: Photo credit: 
M. Schwartz.
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pseudo-overdominance, where dominant loci are linked and appear as 
an overdominant locus. Krieger et al. (2010) examined a tomato mutant, 
sft-e4537, which displayed overdominant-type heterosis and possessed 
a missense mutation in the gene SFT. Plants carrying this mutation 
in the homozygous recessive condition flower very late and their 
flowering branches quickly revert to vegetative branches. Heterozyog-
tes display substantial heterosis, derived from a suppression of growth 
termination mediated by the SELF PRUNING (SP) gene, an antagonist 
of SFT. This elegant example of a mechanism for overdominance illus-
trates how this elusive genetic phenomenon is a plausible explanation 
for heterosis in tomato. That is not to say that all loci behave in this 
manner, but the confirmation of a truly overdominant locus goes a long 
way to confirming the truth of one of the most widely held hypotheses 
of heterosis. Interestingly, this example also confirms the importance of 
epistasis, one of the three primary hypotheses for heterosis, given that 
the SFT and SP loci interact in this example.

V.  SEQUENCING THE TOMATO GENOME

Zamir was the leader of the SOL Genome Project, in which the complete 
DNA sequence of the tomato was deciphered (Tomato Genome Con-
sortium  2012). To this end, Prof. Zamir organized research groups 
from the United States, the United Kingdom, the Netherlands, Italy, 
France, India, Korea, and Japan into a group known as the International 
Tomato Genome Sequencing Project, who worked together to sequence 
the tomato genome. Zamir was one of the two corresponding authors 
of the article on the tomato genome published in 2012 in Nature that 
garnered the issue’s cover and a special feature (Tomato Genome Con-
sortium 2012). This paper has now been cited more than 2,000 times 
and represents a tremendous multinational effort to sequence the 
genome of one of our most important crops.

The International Tomato Genome Sequencing Project was begun in 
2004 by an international consortium of scientists from Korea, China, 
the United Kingdom, India, the Netherlands, France, Japan, Spain, 
Italy, and the United States. The group found that tomato genome was 
highly syntenic with other sequenced solanaceae crops and comprised 
more low-copy sequences than other crop genomes. They compared 
the cultivated genome to the related wild species Solanum pimpinel-
lifolium, and the two genomes were divergent for only 0.6% of their 
nucleotides. However, the cultivated genome was 8% divergent from 
potato with a number of chromosomal inversions differing between the 
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two. The researchers found two genome triplications in the history of 
tomato, one of which is approximately 130 million years ago and the 
other about 60 million years ago. These large-scale events were key to 
the diversification of genes for fruit fleshiness and color, particularly 
the more recent triplication event.

As critically important as this international effort was, Zamir’s 
involvement in the ultimate success of the tomato genome project goes 
far deeper. Over many decades, Zamir collaborated with Cornell Uni-
versity scientist Steve Tanskley, who played a key role in building the 
molecular marker linkage map that was used to piece together much 
of the early information about the tomato genome and the location 
of traits of interest. Zamir’s career spans the critical period from the 
early 1980s through the early 2000s which saw the development of 
molecular markers for plant breeding applications. Beginning with al-
lozyme markers in the 1980s, then restriction fragment length polymor-
phisms (RFLPs) in the late 1980s and early 1990s, polymerase chain 
reaction (PCR)-based markers in the 1990s, and finally sequence-based 
markers in the 2000s, the possibility of associating chromosome seg-
ments with some type of molecular marker improved dramatically dur-
ing this period. High-density molecular marker linkage maps became 
common by the 1990s and expanded dramatically in the 2000s with 
sequence-based markers. These developments were greatly facilitated 
by improvements in genome sequencing, particularly next-generation 
technologies that became available more recently. In addition, tomato, 
along with maize and rice, was always among the most well-developed 
models for marker systems in crops. Zamir was instrumental in the iter-
ative development of marker-based information in tomato, contributing 
to virtually all of these developments over a period of decades. Marker-
based regions were critical to the sequencing effort. Thus, the sequenc-
ing of the tomato genome represents one of the more recent successes of 
Zamir’s collaborations, built piece by piece on a foundation of tomato 
breeding and genetics knowledge.

VI.  PRACTICAL PLANT BREEDING

Dani Zamir lives up to his principles by being involved in practical 
breeding. Based on the new methods he had developed, he has bred, 
together with a seed company he founded, AB Seeds, a processed 
tomato variety, ‘AB2’, which was a leading variety in California for a 
number of years. In many ways, this hybrid variety served as practical 
proof of the principles described by Zamir’s scholarly work. The QTL 


