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Preface 

In the process of research on target tracking and information fusion, the authors were 
deeply impressed by the great influence of the random finite set (RFS) theory. As a 
scientific top-down method, the RFS theory provides a unified theoretical descrip-
tion framework and solution for target detection, tracking and identification, situ-
ation assessment, sensor management and other problems involved in information 
fusion, differing from the traditional methods which decompose these problems into 
independent sub-problems to be solved separately. 

The RFS theory, started at the end of the twentieth century, was created and pushed 
forward by Ronald Mahler et al. However, due to its abstraction and complexity, the 
RFS theory was not highly regarded by the academic community for a time. With 
the pioneering work of B-N Vo, such as the sequential Monte Carlo (SMC) and 
Gaussian mixture (GM) implementations of probability hypothesis density (PHD) 
filter, the realizations of the RFS theory were opened up. The above implementation 
methods were adopted with terms and symbols commonly used in the field of target 
tracking and information fusion, which greatly promotes the development of the 
RFS theory. Based on these, the implementation methods of cardinalized probability 
hypothesis density (CPHD) and multi-Bernoulli (MB) filter were proposed in a few 
years. In particular, in 2013, the labeled RFS filters such as the generalized labeled 
multi-Bernoulli (GLMB) filter were put forward, which made the RFS theory more 
and more perfect, and attracted widespread attention from famous domestic and 
foreign scholars in the field of target tracking and information fusion, resulting in 
an explosion of research results. To some extent, the RFS theory has become a new 
development direction of target tracking and information fusion. However, currently, 
there are only a few books that introduce this theory in a systematic manner—two 
books written by Mahler were published. As mentioned earlier, these books mainly 
focused on the theory, which can be difficult for beginners to understand. How can 
we popularize the RFS theory in a way that can be easily accepted by more people 
and promote the vigorous development of RFS theory? That is the purpose of this 
book. 

This book adopts terms and symbols that are friendly to the academic world of 
target tracking and data fusion, with a focus on the systematic introduction of the
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specific implementations of the RFS theory in the target tracking field. It covers most 
of the current research results in this field: PHD, CPHD, MB, labeled MB (LMB), 
GLMB, δ-GLMB and marginalized δ-GLMB (Mδ-GLMB) filters. These filters are 
the latest technologies in the target tracking field and have provided new ideas and 
effective solutions for target tracking. After a systematic introduction to the above 
filters, their extensions and popular applications are described in detail, including 
maneuvering target tracking, target tracking for Doppler radars, track-before-detect 
of dim targets, target tracking with non-standard measurements and distributed multi-
sensor target tracking. This book is well organized with systematic and comprehen-
sive contents keeping up with popular development of advanced technology, making 
it suitable for beginners, graduate students, engineering and technical personnel in 
the field. According to the authors’ learning experience, the authors suggest that 
readers can read this book first, and then study Mahler’s original work, so that the 
books can complement each other and improve the learning efficiency of readers. 

Upon the publication of this book, the author recollected that the draft had been 
revised numerous times since the end of 2015 in order to continuously absorb the 
latest research results. Although the book is completed, the author is deeply gratified 
by the fact that there are still more to learn. In addition, the authors have a lot to thank 
for. Thanks to the pioneering work of Ronald Mahler, B-N Vo and others, the authors 
have been able to feed on and draw upon their extensive work in writing; thanks to 
the National Natural Science Foundation of China (No. 61601510), the Young Talent 
Support Project of China Association for Science and Technology (No. 18-JCJQ-
QT-008) and National Defense Industry Press for their funding and strong support; 
thanks to the editors of National Defense Industry Press for their hard work; thanks 
to the reviewers as well as the experts and scholars who care about the publication 
of this book. 

This book provides a systematic and comprehensive introduction to the application 
of the RFS theory in the field of target tracking, and its application in the field of 
higher-level information fusion also has exciting and broad prospects. The authors 
sincerely hope that this book can be used to promote the further development of 
the RFS theory. Although we have made the greatest efforts to write this book, 
inadequacies are hard to avoid due to the limit of our knowledge, so we welcome 
any criticisms and corrections from readers. 

Guiyang, China 
October 2022 

Weihua Wu
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Chapter 1 
Introduction 

1.1 Basic Concepts of Target Tracking and Random Finite 
Sets 

Target tracking is a process carried out to estimate target states based on sensor 
measurements. A target is usually an object of interest, e.g. a vehicle, a ship, an 
aircraft, or a missile. The single-target refers to one target while multi-target refers 
to more-than-one targets. The target state refers to the unknown but interest infor-
mation about the target. The typical target state includes the location and speed 
in the Cartesian coordinate system and it may also include other target character-
istics such as identity, attribute, amplitude, size, shape or similarity. To estimate 
the unknown state of a target, sensor measurements are needed, which typically 
include time stamp, range, azimuth, elevation, Doppler, and amplitude information. 
The scope of measurement differs from sensors to sensors. For an active radar, the 
measurement mainly includes time stamp, range and azimuth; for a three-dimensional 
radar, elevation is also included; for an airborne Doppler radar, Doppler (or radial 
speed) information is also contained; and for the passive sensors such as IR and 
electronic support measurement (ESM) sensors, angle information such as azimuth 
and elevation is usually measured. Sensor measurements may originate from targets 
of interest, or from targets of no interest or clutters. Even if a sensor measurement 
come from a target of interest, the target may be detected with certain errors, or the 
target even missed due to limited observing capability of a sensor. Besides, sensor 
measurements may be collected by a single sensor or multiple homogeneous or 
heterogeneous sensors. 

Generally speaking, the Bayesian filter is often used in target tracking. The main-
stream Bayesian filter includes the Kalman filter (KF), extended KF (EKF), unscented 
KF (UKF), cubature KF (CKF), Gaussian sum filter (GSF) and particle filter (PF). 
The Bayesian filter usually involves “two models” and “two steps”. The two models 
are the motion model (also known as dynamic model) and the measurement model, 
both of which are collectively referred to as the state-space model. The motion 
model describes the evolution of the target state over time. Common motion models
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include constant velocity (CV), constant acceleration (CA), and coordinate turning 
(CT). The measurement model describes the linear or nonlinear relationship between 
the measurement and the target state. The two steps are prediction and update. The 
prediction step utilizes the motion model to predict the target state, while the update 
step utilizes the collected measurement to update the target state according to the 
measurement model. 

The above filters are mainly used to reduce the impact of noise and, generally, 
only applied to ideal conditions (e.g. a single target is always present and there is 
no clutter). In fact, due to the limitation of sensor detection capabilities, in addi-
tion to noise interference, missed detection of targets occurs from time to time, and 
is inevitably accompanied by interference from non-target items (e.g. clutter) and 
other targets. The real challenge of target tracking is multi-target tracking (MTT) in 
clutter environment. Multi-target tracking refers to the estimation of unknown and 
time-varying number of targets and their tracks based on sensor observations. While 
the terms “multi-target tracking” and “multi-target filtering” are often interchange-
able, there are still subtle differences between the two. Multi-target filtering involves 
estimation of unknown and time-varying number of targets and their independent 
states based on sensor observations; but for multi-target tracking, target tracks (track 
labels are required in the actual multi-target tracking system to distinguish different 
targets) are also of interest [1]. Therefore, multi-target tracking is essentially multi-
target filtering that can provide target track estimation. Strictly speaking, multi-target 
tracking should be referred to as multi-target tracking filter. 

Compared with the (single-target) Bayesian filtering algorithm, the main diffi-
culty of multi-target tracking is the further increase of uncertainty. In addition to 
the uncertainty caused by the measurement noise and missed detection of targets, 
there is also the association uncertainty caused by the corresponding relationship 
between the measurement, clutter and each target. To overcome the association 
uncertainty, data association (DA) is usually carried out before Bayesian filtering 
in multi-target tracking to determine whether a measurement is from a clutter or 
to which target the measurement belongs. Through data association, multi-target 
tracking is thus decomposed into multiple single-target tracking problems. Famous 
DA-based MTT algorithms mainly are the joint probabilistic data association (JPDA) 
and multiple hypothesis tracking (MHT). However, the DA-based MTT problem is a 
non-deterministic polynomial (NP) problem, which requires a lot of computation and 
has the problem of combination explosion. In addition, it is difficult for these algo-
rithms to give satisfactory results when multiple targets are close to each other and 
behaviors such as newborn, spawning, merging and death of targets are considered. 
Essentially, in these algorithms, the target state is modeled as a random variable (or 
random vector). Because of the birth1 and death processes of each target, the number 
and states of moving targets are time-varying and unknown, hence it is difficult to 
model the finite and time-varying targets and measurements mentioned above with 
random variables. In order to track multiple targets with time-varying numbers, a 
complete and practical multi-target tracking should include track management (such

1 Target birth includes target newborn and target spawning. 
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as track initiation and track termination) for behaviors such as target birth, merging 
and death, in addition to data association. Therefore, in a certain sense, the DA-based 
MTT algorithms adopt a divide-and-conquer, bottom-up approach. 

In recent years, a type of tracking algorithm based on random finite sets (RFS) 
has emerged and attracted great attention. The RFS approach provides a multi-target 
Bayesian formula for the problem of multi-target filtering/tracking, where a set of 
target states (referred to as the multi-target state) is regarded as a finite set. Both 
random variables and RFS are random, except that the number of elements (referred 
to as the “cardinality”) in the RFS is random and out of order. In particular, random 
variables take values according to a certain probability distribution in a certain space, 
while the RFS is a set. Unlike the traditional concept of a set, the number of elements 
in the RFS is uncertain, namely, the cardinality of the set is a random variable, and 
every element of the set is also random, which means it may or may not exist. If it 
does exist, its value follows a certain distribution. Therefore, an RFS is a set-valued 
random variable, which is the generalization of the concept of the random variable 
in probability theory. In fact, an RFS is actually a set in which elements and their 
number are also random variables. A random variable is used for solving random 
point functions while the RFS is used for solving random set-valued functions. The 
RFS theory is a generalization of point variable (vector) statistics to “set variable” 
statistics (finite set statistics). The RFS theory is also known as the point process 
theory, or more accurately, simple point process theory.2 

In conclusion, different from the DA-based tracking algorithms, the RFS-based 
tracking algorithm models the multi-target state and the multi-target measurement 
as RFSs, and naturally incorporates the mechanism for track initiation and track 
termination. Hence, it is a top-down scientific approach and can realize the simulta-
neous estimation of the number of targets and their states. In addition to the MTT 
application, it also provides a unified theoretical framework and solution for target 
detection, tracking and identification, situation assessment, multi-sensor (MS) data 
fusion and sensor management [2]. 

Due to the systematic and scientific features of the RFS theory, it has developed 
into the 4th generation filter (Here, the 2nd, 3rd, and 4th generation filters refer to 
the cardinalized probability hypothesis density (CPHD) [3], multi-Bernoulli (MB) 
[4, 5], and generalized labeled multi-Bernoulli (GLMB) filters, respectively; see the 
following for details) in just over 10 years since the proposal of the 1st generation 
probability hypothesis density (PHD) [6, 7] filter, and has rapidly penetrated into 
various applications in the tracking field, showing its tenacious vitality. On top of 
the detailed introduction of the four generations of filters, this book also respectively 
introduces the main extensions and applications of each filter, including maneuvering 
target tracking, target tracking with Doppler radars, track-before-detect (TBD) for 
dim targets, target tracking with non-standard measurements, and distributed multi-
sensor target tracking.

2 A set for simple finite point process does not allow repeated elements, and only contains a limited 
number of elements. 
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1.2 Research Status of Target Tracking 

Target tracking covers a wide range of contents. From the perspective of the number 
of targets, it can be classified into single target tracking and multi-target tracking; 
from the perspective of motion models, it contains constant velocity, constant accel-
eration and coordinate turning models; from the perspective of targets’ environment, 
it can be classified into target tracking with clutter and target tracking without clutter; 
from the perspective of the number of sensors, it can be classified into single-sensor 
target tracking and multi-sensor target tracking; from the perspective of sensor prop-
erty, it contains active sensors and passive sensors; and from the perspective of the 
spatial dimensions, it can be classified into two-dimensional target tracking and 
three-dimensional target tracking. The main process of target tracking generally 
includes data pre-processing, track initiation, filtering/tracking, and track termina-
tion. A variety of implementation methods are available for each process, especially 
for filtering/tracking. In addition, the integration of target tracking and detection, 
recognition, sensor management and decision-making is also the current research 
focus. In recent years, the emerging RFS approach provides a unified theoretical 
framework for the development of integration, and it is developing vigorously. 

The following will briefly introduce the research status of single-target tracking 
and classical multi-target tracking [8–13], and then focus on the development status 
of RFS-based multi-target tracking [14, 15]. 

1.2.1 Single Target Tracking 

The mainstream single target tracking filters mainly include: KF [16, 17], EKF [18, 
19], converted measurement KF (CMKF) [20, 21], UKF [22, 23], CKF [24, 25], 
and PF [26, 27]. The KF is the optimal solution for linear Gaussian (LG) systems, 
which has made important contributions to the development of filtering theory, and 
the subsequent advanced filters are derived and developed from it to some extent. 
However, almost all practical systems are nonlinear and non-Gaussian. For example, 
measurements such as slant distance, azimuth and Doppler in the tracking problem are 
nonlinear functions of unknown states. Generally, the optimal solution for non-linear 
filtering can not be obtained. The EKF had once become the “standard solution” for 
nonlinear systems. It obtains the sub-optimal solution by linearizing the nonlinear 
system. However, the Jacobian matrix needs to be solved in the EKF method, 
which limits its scope of application. Compared with first-order EKF, the perfor-
mance improvement for high-order EKF is small, but its computational complexity 
increases greatly. The converted measurement KF (CMKF), as the name implies, is 
to reconstruct the linear measurement equation after the measurement is converted, 
and to derive the corresponding covariance of converted measurement errors, and 
then execute the KF. It has been proved that the performance (estimation accuracy, 
robustness, consistency, etc.) of the CMKF is better than that of the EKF for nonlinear
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measurement systems [20, 21]. Based on the unscented transformation (UT) [28], the 
UKF approximates the statistical properties of random variables with a finite number 
of parameters. Unlike the EKF, which approximates the nonlinear dynamic and/or 
nonlinear measurement models by linearization, the UKF approximates the proba-
bility density function (PDF) of the state vector. The UKF is widely used because it 
does not need to derive and calculate the complex Jacobian matrix or higher order 
Hessian matrix, but its estimation can reach the 2nd order accuracy. The CKF is a new 
filtering algorithm based on the principles of cubature numerical integration. It has 
the advantages of high numerical accuracy and strong robustness, and its estimation 
can reach the 3rd order accuracy for the nonlinear Gaussian system. All the above 
algorithms assume that the PDF approximately complies with Gaussian or Gaussian 
mixture (GM) distribution. For (nonlinear) non-Gaussian systems, the PF method, 
which is also known as sequential Monte Carlo (SMC) [29] method, is required. A 
large number of improved methods have emerged, which have promoted the signifi-
cant development of the PF algorithm, but its computational amount is significantly 
increased, compared with the aforementioned filtering algorithms. 

The above filtering algorithms are mainly for single target non-maneuvering 
models. When a target maneuvers, it will lead to the mismatch between the motion 
model used in the filtering algorithms and the actual motion model of the target, 
causing the filter to diverge. For maneuvering target tracking, the algorithms adopted 
can be classified into tracking algorithms with maneuvering detection and adap-
tive tracking algorithms. The former category mainly includes tunable white noise 
model [30], variable-dimensional filtering [31], and input estimation algorithm [32]. 
However, these algorithms have problems such as detection delay and detection relia-
bility; and the latter category mainly includes the first-order temporal correlated noise 
model [33], current statistics (CS) model, Singer model, Jerk model [34], multiple 
model (MM), and interacting MM (IMM) [35]. The IMM is a suboptimal filter with 
good cost-effectiveness ratio. In addition, it has strong extensibility and can be easily 
combined with other algorithms, such as IMM probabilistic data association (PDA) 
[36], IMM-JPDA [37], and IMM-MHT [38]. Due to its excellent performance, the 
IMM has gradually become the mainstream for maneuvering target tracking. 

1.2.2 Classical Multi-target Tracking 

Due to the complexity of the actual environment and since the tracking performance is 
affected by factors such as clutter, sensor performance (such as missed detection) and 
multiple targets, it is difficult for pure filtering algorithms to achieve effective target 
tracking. A classic tracker generally consists of two steps: data association (DA) 
and filtering. Filtering is meaningful only if it is based on correct data association. 
Data association refers to the process of determining the one-to-one correspondence 
between measurements and targets. Through DA processing, multi-target tracking is 
decomposed into multiple single-target tracking tasks. Therefore, data association, 
as the core of DA-based MTT algorithms, is mainly classified into two categories:
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maximum likelihood data association and Bayesian data association. The former 
includes the track splitting method [39], the joint maximum likelihood method, and 
0–1 integer programming method. They are usually achieved by batch processing, 
and their basic ideas are to maximize the likelihood function. The latter includes 
PDA [40], global nearest neighbor (GNN) [41], S-dimensional (S-D) assignment 
[42], integrated PDA (IPDA) [43], joint probabilistic data association (JPDA) [44], 
joint IPDA (JIPDA) [45], integrated track splitting (ITS) [46, 47], belief propaga-
tion (BP) method [48, 49] based on sum-product algorithm [50, 51], Markov Chain 
Monte Carlo (MCMC) data association [52, 53], and MHT [54]. The advantage of 
these methods is that they have recursive forms and can obtain the state estimation 
in real time. As mentioned earlier, the DA-based MTT problem is an NP problem, 
which requires a lot of computation and has the problem of combination explo-
sion. In tracking algorithms, 60–90% of the computation time is consumed by data 
association [11], among which, the maximum likelihood data association is usually 
larger than the Bayesian data association. Therefore, one of the important research 
contents of classic MTT algorithms is to reduce the calculation amount and improve 
the real-time performance. For example, the m-best S-D assignment algorithm [55] 
and K-best MHT method [56] constrain the number of hypotheses by limiting the 
optimal m (or K) number of association hypotheses. 

1.2.3 RFS-Based Multi-target Tracking 

The first to use the RFS theory to systematically process multi-sensor multi-target 
filtering is Mahler’s FISST (FInite Set STatistics) [14, 15]. The FISST is a systematic 
and unified method for multi-sensor multi-target detection, tracking and information 
fusion. It can realize the Bayesian unification of detection, classification, tracking, 
decision-making, sensor management, group target processing, expert system theo-
ries (fuzzy logic, DS theory, etc.), and performance evaluation for multi-platform, 
multi-source, multi-evidence, multi-target, and multi-group problems. It has the 
following advantages: it is an explicit, comprehensive and unified statistical model 
based on multi-sensor multi-target systems; it can combine the two independent 
purposes of multi-target tracking, namely target detection and state estimation, into 
a single, seamless, Bayesian optimal step; it serves as a rich soil for cultivating 
new methods of multi-source multi-target tracking and information fusion, and 
has promoted new multi-target tracking algorithms, such as the PHD, CPHD and 
MB filters. Although these new algorithms do not require data association between 
measurements and tracks, their tracking performance (in terms of tracking accuracy 
and execution efficiency) is comparable to or even better than that of conventional 
multi-target tracking algorithms [2]. 

The core of Mahler’s RFS theory is multi-target Bayesian filter [57]. This 
filter, similar to single target Bayesian filter, is also composed of prediction and 
update. Although the form is elegant and simple, the RFS-based optimal multi-target 
Bayesian filter is not practical due to the combinatorial nature of multi-target density
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and the multiple integration of infinite-dimensional multi-target state space. To this 
end, Mahler derived a variety of principle approximations, such as the PHD, CPHD, 
and MB filters. Specifically, the PHD filter is obtained by the first-order moment 
approximation of the optimal multi-target Bayesian filter. Based on the classic point 
process theory, another derivation method of the PHD filter is presented in [58]. 
Then, the Poisson hypothesis condition for the number of targets is further relaxed, 
and the CPHD filter, the second-order moment approximation of the optimal multi-
target filter, is derived. It not only propagates the intensity, but also propagates the 
cardinality distribution (the probability distribution of the number of targets). At the 
cost of increasing the computation amount, both of its filtering accuracy and esti-
mation accuracy for number of targets are better than those of the PHD filter. In 
addition, Mahler also proposed the MB filter, also known as the multi-target multi-
Bernoulli filter (MeMBer) [14, 59–61]. Different from the PHD and CPHD filters, 
which approximate the first- and second-order moments of the optimal filter, the MB 
filter is the probability density approximation of the optimal filter. 

Despite the approximate processing, there are still complex operations such as 
multiple integrals in recursive expressions of the above three filters, resulting in no 
analytical solutions under general conditions. To this end, Vo developed an SMC 
implementation (also known as particle implementation) method [62] for the PHD 
filter under general conditions, denoted as the SMC-PHD filter. Then, under the 
linear Gaussian condition, the analytic form of the PHD recursion was derived, and 
the Gaussian mixture (GM) implementation of the PHD filter was developed, denoted 
as the GM-PHD filter [63]. By using linearization and unscented transformation, the 
closed-form recursive formula applicable only to linear models can be extended to 
moderate nonlinear models. Based on this, Vo et al. developed two CPHD imple-
mentation methods [64], namely the SMC-CPHD and GM-CPHD filters. Vo et al. 
also found that the MeMBer filter proposed by Mahler was biased in estimating the 
number of targets. Therefore, a cardinality balanced MeMBer (CBMeMBer) filter 
was proposed, and two corresponding versions were also developed, namely the 
SMC-CBMeMBer [4] and GM-CBMeMBer [5] filters. The above approximation 
algorithms have been proved to have fine convergence properties [65–68]. Never-
theless, these filters are not multi-target trackers in principle and cannot provide 
track labels [62]. In order to solve the problem of target track output, the concept 
of labeled RFS was introduced in [69, 70], in which the first GLMB analytical 
implementation of multi-target Bayesian filter was derived by using the conjugacy 
of the GLMB family (with respect to the standard measurement model), and the 
GLMB and δ-GLMB filters (also referred to as Vo-Vo filters) were put forward. 
Simulation results showed that the δ-GLMB filter is superior to the approximations 
of multi-target Bayesian filter. However, the δ-GLMB filter requires a large amount 
of computation. Inspired by the PHD and CPHD filters, the labeled multi-Bernoulli 
(LMB) [71] and marginalized δ-GLMB (Mδ-GLMB) [72] filters were developed 
respectively. Among them, the LMB filter only matches the first-order statistical 
moment of the δ-GLMB posterior, while the Mδ-GLMB filter matches the first-order 
moment of the δ-GLMB posterior and cardinality distribution. In addition to these 
filters, multi-target trackers incorporating the label in the target state also include
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the particle marginal Metropolis-Hasting tracker [73]. The monographs [14, 15] and 
Refs. [74, 75] have provided systematic and comprehensive introductions to this 
field. It is worth pointing out that, under the harsh conditions of high false alarm rate, 
high missed detection rate and high uncertainty of measurement source (because 
targets are very close to each other), Ref. [76] first verified that, the GLMB filter was 
able to track multiple targets with a peak value of 1 million on ordinary commercial 
computers. The work above has laid a solid foundation for the research of RFS-based 
tracking algorithms. 

In short, as the RFS-based tracking algorithm becomes more and more mature, its 
scope of application becomes more and more extensive, such as sonar image tracking 
[77, 78], audio signal tracking [79], video tracking [80, 81], robot simultaneous local-
ization and mapping (SLAM) [82, 83], traffic surveillance [84], ground moving target 
indication (GMTI) tracking [85], track-before-detect [86], multi-station passive radar 
tracking [87], angle-only tracking [88], multiple input multiple output (MIMO) 
radar tracking [89], sensor networks and distributed estimation [90–92], as well 
as target tracking with non-standard measurement models, such as tracking of unre-
solved targets (or tracking with merging measurement) [93, 94], extended target (ET) 
tracking [95], and group target tracking [96, 97]. 

1.2.3.1 Probability Hypothesis Density Filter 

The PHD filter recursively propagates the posterior intensity (first-order moment) of 
the multi-target state set, and projects the posterior probability density of the multi-
target state set onto the single-target state space with “minimum loss” [6]. In this 
way, the PHD filter only needs to implement recursion in single-target state space, 
which significantly reduces the complexity of computation. However, calculating the 
posterior probability by Bayes rule requires the integration of the product of prior 
and likelihood functions to obtain the normalization constant. Practically, it is still 
very difficult to implement multi-dimensional integration, and there is generally no 
closed analytic form available under nonlinear non-Gaussian conditions. Therefore, 
Mahler and Vo et al. studied the implementation of the PHD filter, and presented the 
SMC-PHD filter [62] for nonlinear non-Gaussian conditions and the GM-PHD filter 
[63] for linear Gaussian conditions. 

In order to improve the effectiveness of particle implementation in the SMC-PHD 
filter, an auxiliary random variable was introduced in [98] to incorporate the measure-
ment information into the importance function, and the auxiliary particle implemen-
tation of the PHD filter was proposed as well. In [99], the authors used the Gaussian 
mixture expression to approximate the importance function and predicted density 
function through the unscented information filter, and then put forward the Gaussian 
mixture unscented SMC-PHD filter. Reference [100] called the Rao-Blackwellisation 
to achieve a more effective SMC implementation for some specific formal models. 
In order to avoid the degradation and not be limited to the Gaussian system, consid-
ering that any curve can be represented by splines, the spline PHD (SPHD) filter 
was proposed in [101]. However, this algorithm is only suitable for tracking a few
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valuable targets under severe conditions because of its high complexity. In addition, 
considering that the statistical characteristics of noise are usually unknown in most 
of the actual systems, the robustness of a filter is very important. Taking into account 
the unknown characteristics of nonlinear models and uncertain noise, the H∞ filter 
is more robust than the Kalman filter in terms of model errors and noise uncertainty. 
Therefore, based on the H∞ filter, a new GM implementation for the PHD recur-
sion was proposed in [102]. In order to solve the problem of close target occlusion 
in multi-target tracking, considering the “one-to-one correspondence” assumption 
of measurement-target in the GM-PHD filter, a competitive GM-PHD method is 
proposed in [103] by calling a re-normalization scheme to reset the weight assigned 
to each target in the GM-PHD recursion. In [104, 105], the PHD filter is applied to 
joint detection, tracking and classification (JDTC) of multiple targets. The goal of 
JDTC is to simultaneously estimate the time-varying number, kinematic states, and 
class labels of targets. 

State extraction is a necessary step for PHD filters. For the SMC-PHD filter, state 
extraction is usually carried out according to the spatial distribution of particles and 
by k-mean method [106, 107] or clustering technology based on the finite mixture 
model (FMM) [108]. Reference [107] compared the state extraction performances 
of k-mean clustering and the expectation maximization (EM)-based FMM, and the 
results indicated that compared with the EM method, k-mean algorithm significantly 
reduced the complexity of computation. In fact, the EM is a deterministic method 
and is not suitable for estimating parameters of complex multi-mode distribution. 
Therefore, the random method of Markov Chain Monte Carlo (MCMC) was used 
for FMM parameter estimation in [108]. In addition to the spatial distribution of 
particles, the weight information of particles can also be used to better extract the 
states of close or near targets [109, 110]. Different from the SMC-PHD filter, the 
GM-PHD filter can easily extract state estimation without clustering (which requires 
a lot of computation and may lead to inaccurate estimation), but it is still limited to 
the linear Gaussian system. To this end, a hybrid GM/SMC implementation method 
of the PHD filter was proposed in [111]. Reference [112] proposed a new particle 
implementation algorithm for the PHD filter based on the GM-PHD filter, which can 
not only extract target states without clustering technology, but also be applicable to 
highly nonlinear non-Gaussian models. 

Standard PHD filters cannot provide the track information of targets [62]. One 
way to solve this problem is to use estimation-track association [106, 113]. The idea 
is to take the multi-target state estimation output by the PHD filter as the “measure-
ment” input of another data association-based multi-target tracker, and then imple-
ment the estimation-track association through the tracker to obtain each target track; 
another approach is to use the PHD filter as a clutter filter to eliminate the clutter in 
the measurement set that are unlikely to originate from targets, and then input the 
remaining measurements into the tracker [106]. It can be considered a gate operation 
at the global level, which eliminates most clutter measurements. Both methods have 
reduced the number of measurements used for data association, nevertheless, the 
track information is output by the tracker, and the PHD filter itself does not utilize 
the track information of targets. Besides the estimation-track association method,
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another method called labeling is also commonly used for track output. It has be 
used for the GM-PHD [114] and SMC-PHD [106, 107, 115] filters. The labeling 
method can effectively provide track information. However, when targets are passing 
across or close to each other, the labeling method is prone to misjudgment of targets. 
For this reason, in [114], the estimation-track association method was used for state 
association when targets were passing across or close to each other, and the labeling 
method was used to carry out state association when targets were far away. Addition-
ally, [116] combined the PHD filter with multi-frame association to further reduce 
the false association rate. 

1.2.3.2 Cardinalized Probability Hypothesis Density Filter 

In the PHD filter, since the mean and variance of the Possion distribution are equal, 
when the number of targets is high, it is easy to cause strong fluctuations in the 
estimation of the number of targets under the condition of missed detections or high 
false alarm density, which makes the estimation unreliable and leads to the missing 
measurement problem [64]. In response to this problem, Ref. [117] pointed out that 
for the PHD filter, not only the propagation of the first-order multi-target moment, 
but also the propagation of the higher-order number of targets is required. Based on 
this, a CPHD filter with the cardinality distribution is proposed in [3] using FISST 
tools such as the probability generating functional (PGFl) or functional derivative. 
The CPHD is a general version of the PHD. It not only propagates the posterior 
intensity of the multi-target state set, but also propagates the posterior cardinality 
distribution of the set at the same time. Its recursion formula is more complex and 
has the cubic complexity, but it still has better performance than the JPDA with 
the non-polynomial complexity [64]. Different from [3], Ref. [118] obtained a new 
derivation of the PHD and CPHD filters by directly performing the Kullback–Leibler 
divergence (KLD) minimization on predicted and posterior multi-target densities. 
Due to the introduction of cardinality distribution, the CPHD improves the accuracy 
and stability of the estimation of the number of multiple targets and their states, but 
the response speed of the CPHD to target birth and target death is not as fast as 
that of the PHD [64]. In addition, although the update formula of the overall CPHD 
cardinality distribution is accurate, when targets are missed, it will exhibit a local 
singular behavior—the “spooky effect” [119], i.e., the weight of the PHD will shift 
from the missed part to the detected part, no matter how far apart the two parts are, 
resulting in a significant underestimation of the number of local targets in the vicinity 
of the missed measurements [119]. To this end, the surveillance area was divided 
into different regions in [119], and then the CPHD was applied to each region in turn. 
However, the clutter density needs to be modified after the division, which in turn 
may increase the uncertainty of the cardinality estimation. Reference [120] reduced 
the influence of weight drift and estimation error through a dynamic reweighting 
scheme. 

Unlike the PHD filter, in the standard CPHD filter [64], the prediction step does 
not include the target spawning model. Although the CPHD filter for birth targets
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can be used to solve the target spawning issue, it is obviously more appropriate 
to use a spawning model that can consider specific issues. Taking resident space 
object (RSO) as an example, the natural and artificial earth orbiting satellites are 
composed of space shuttles, scrapped payloads, and debris. If there is no spawning 
model, the best option is to use diffused birth regions; however, this requires a large 
birth area to cover the corresponding spatial volume. To improve the performance of 
the CPHD filter when tracking the spawning RSO, a spawning model with accurate 
description of the physical process of generating a birth RSO is proposed in [121], 
which can obtain better accuracy and faster confidence time for birth targets. In 
[122], Poisson or Bernoulli spawning models are incorporated into the CPHD filter, 
while in [123], the CPHD prediction equation suitable for any spawning process 
is derived through partial Bell polynomials [124]. Moreover, for the three specific 
models (Poisson, zero-inflated Poisson, and Bernoulli models), a GM-CPHD filter 
applicable to spawning targets can be obtained without additional approximations. 
Other literatures on CPHD filters considering spawning targets also include [125]. 

1.2.3.3 Multi-Bernoulli Filter 

Unlike the PHD (CPHD), which recursively propagating the moment (and cardinality 
distribution) of the posterior multi-target density, the Bernoulli RFS models the target 
track [14] through two parameter pairs, the probability of target existence and the 
PDF when the target exists, which has some similarity with the IPDA filter [43] that 
simultaneously estimates the existence probability of a single target and its state. In 
[126], the Bernoulli RFS was used to derive the optimal Bayesian solution to the 
single-target detection and tracking problem, and the Bernoulli filter, also known as 
the joint target detection and tracking (JoTT) filter [14, 127–131], was obtained. The 
JoTT here refers to the joint estimation of the number of targets and their states from 
sensor measurements. 

The JoTT filter in the multi-target background is called the multi-Bernoulli (MB) 
filter. As the name implies, the MB RFS is the union of multiple Bernoulli RFSs. In 
essence, the MB filter propagates the parameters for approximating the MB distri-
bution of the posterior multi-target RFS density. The multi-target multi-Bernoulli 
(MeMBer) update equation proposed in [14] has a significant bias (overestimation) 
in the estimation of the number of targets, and this bias disappears only when the 
detection probability is 1 [4]. For this reason, literature [4] deduced the analytical 
expression of the “cardinality bias” in the MeMBer filter, calculated the updated exis-
tence probability by using the accurate probability generating functional, eliminated 
the cardinality bias problem by correcting the measurement updated track parameters, 
and gave an unbiased cardinality balanced MeMBer (CBMeMBer) filter, as well as 
two implementation methods: SMC-CBMeMBer and GM-CBMeMBer. However, 
in order to calculate the effective spatial PDF, the filter makes strict assumptions 
about the target detection probability. For this reason, Ref. [132] eliminated this bias 
by introducing a fake Bernoulli target without any strict assumption, and proposed
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an improved MeMBer filter. Reference [59] balanced the posterior cardinality distri-
bution by multiplying the probability of missed detection. The new algorithm has 
better performance than the CBMeMBer method. However, the approximation of the 
missed detection probability in the new algorithm is based on the assumption that 
the tracks are separable. In order to solve the problem of close targets, Ref. [133] 
extended [134] and presented a principled, highly efficient approximation method to 
find the MB distribution that minimizes the KLD with the full RFS distribution. To 
overcome the problem that the parameters such as clutter intensity, detection proba-
bility and sensor field-of-view (FoV) need to be known a priori in the MB filter, Ref. 
[60, 61] respectively proposed the MeMBer filters under the conditions of unknown 
detection probability and clutter intensity, as well as unknown non-uniform clutter 
intensity and sensor FoV. 

For approximation algorithms such as the PHD, CPHD and CBMeMBer, the GM-
CPHD algorithm has the best performance in the linear Gaussian case, while the GM-
CBMeMBer has the similar performance as the GM-PHD, not showing advantages. 
However, under highly nonlinear non-Gaussian conditions, the MB filter should be 
a better option. Unlike the particle realization of the PHD/CPHD filter, which needs 
particle clustering to extract target states, requiring a large amount of computation and 
being unreliable, the SMC-CBMeMBer filter, however, does not require additional 
clustering operation, and can directly extract the multi-target state estimation. Under 
the condition of high signal-to-noise ratio (SNR), the SMC-CBMeMBer filter not 
only has lower computation but also has better performance compared with the 
SMC-PHD/CPHD filter. Additionally, the MB filter can also provide the existence 
probability of targets. As a result, the GM-CPHD filter has the best performance 
under linear Gaussian conditions, while the SMC-CBMeMBer filter has obvious 
advantages under nonlinear non-Gaussian conditions. 

In terms of the amount of computation, Ref. [135] has verified the real-time 
performance of the RFS algorithm using actual data. In general, the complexity 
of algorithms such as the PHD, CPHD, and MeMBer are O(mn), O(m3n), and 
O(mn), respectively, where m and n represent the number of measurements and 
targets respectively. In other words, the MeMBer and PHD filters have the same 
linear complexity, while the CPHD filter has a higher cubic complexity. By reducing 
the cardinality of the measurement set, the calculation amount of the algorithm 
can be reduced. In [136, 137], the computational amount was reduced without any 
significant performance loss by incorporating the ellipsoid gate technique used in 
conventional tracking algorithms. In addition, Ref. [138] proposed a CPHD filter 
with linear complexity based on a relatively simple clutter model. 

1.2.3.4 Labeled Random Set Filters 

It should be noted that the filters mentioned above are not multi-target trackers in 
nature, because the target states are unresolved, which is one of the reasons why the 
RFS framework was once criticized: the algorithms derived from the RFS frame-
work cannot obtain target labels. Besides, they are all approximate filters, and even
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assuming special observation models, such as the standard point target observation 
model, they are not closed-form solutions of the optimal Bayesian filter. Therefore, 
in [69], the concept of labeled RFS is introduced to solve the problem of target 
track and its uniqueness, and a new RFS distribution class called GLMB distribu-
tion was proposed. The GLMB distribution is conjugated with respect to the multi-
target observation likelihood, and is closed with respect to the multi-target transition 
kernel under the multi-target Chapman-Kolmogorov (C-K) equation, thus providing 
an analytical solution for the multi-target inference and filtering problems, namely 
the δ-GLMB filter, which exploits the conjugation of the GLMB family to accurately 
forward propagate the (labeled) multi-target filtering density over time. It is an exact 
closed-form solution of multi-target Bayesian recursion, yielding the joint estimation 
of states and labels (or tracks) in the presence of clutter, missed detection, and asso-
ciation uncertainties, and is the first tractable RFS-based multi-target tracking filter 
that can generate track estimation in a principled way, refuting the view that the the 
RFS methods cannot generate track estimates. Reference [139] further extended the 
GLMB filter to be suitable for spawning target conditions, Refs. [140, 141] extended 
it to multi-frame sliding window processing, and Ref. [142] extended it to be suit-
able for related multi-target systems. In view of the complex and lengthy derivation 
process in [69], the probability generating functional (PGFl) method was proposed 
in [143] to provide a simplified derivation of the GLMB filter, and another tractable 
multi-target tracker, namely labeled multi-Bernoulli mixture (LMBM) filter, with an 
accurate closed form was derived using the PGFl method. The LMBM filter may 
be more practical because the LMB mixture is simpler to calculate than the GLMB 
distribution. 

Nevertheless, the specific implementation of the δ-GLMB filter was not given 
in [69] and [143]. Therefore, an efficient and highly parallel implementation of the 
δ-GLMB filter was given in [70], which complements the theoretical contribution of 
[69] with practical algorithms. Specifically speaking, each iteration of the δ-GLMB 
filter involves multi-target predicted density and filtering density, both of which are 
weighted sums of multi-object exponentials (MoE). Despite these weighted sums 
have a closed form, the number of component terms in the posterior grows super-
exponentially over time due to the explicit data association in the δ-GLMB filter. It 
is obviously infeasible to adopt the pruning strategy, which first exhaustively calcu-
lates all items of the multi-target density and then discards the secondary components. 
Hence, a pruning strategy that does not need to exhaustively calculate all components 
of the multi-target density is proposed in [70], in which the multi-target predicted 
density and filtering density are pruned using the K shortest path and ranked assign-
ment algorithms [144] respectively. Meanwhile, the relatively low-computational 
PHD filter derived from the same RFS framework is used as a look ahead strategy to 
significantly reduce the number of calls of the K shortest path and ranked assignment 
algorithms. 

The two-step implementation proposed in [70] is intuitive and highly parallel, 
specifically, in the prediction step, pruning is realized by solving two different K 
shortest path problems, one for the existing tracks and the other for the birth tracks; 
in the update step, pruning is achieved by solving the ranked assignment problem for
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each predicted δ-GLMB component. However, the two-step implementation is struc-
turally inefficient, because the pruning of the predicted and updated δ-GLMB compo-
nents is carried out separately, so a large proportion of the predicted components may 
produce updated components with negligible weights. As a result, a large amount of 
computation is wasted on solving a large number of ranked assignment problems, 
each of which has at least a cubic complexity with the number of measurements. 
Therefore, Refs. [145, 146] pruned the GLMB filtering density by combining the 
prediction and update steps into a single step, and using a random Gibbs sampler with 
a linear complexity with the number of measurements and an exponential conver-
gence rate based on the Markov chain Monte Carlo (MCMC) [147] method. There 
is no need to discard samples during the burn-in phase in the pruning application, 
so it is not necessary to wait for samples from a stable distribution. The stochastic 
solution has two advantages over the deterministic ranked assignment (in the order 
of non-increasing weights) for pruning strategies: first, it eliminates the unnecessary 
computations caused by component sorting and reduces the cubic complexity with the 
number of measurements to the linear complexity; second, it automatically adjusts the 
number of generated significant components by using the statistical characteristics of 
component weights, thus resulting in a more efficient implementation of the GLMB 
filter, significantly improving the running speed without affecting the filtering perfor-
mance. It should be pointed out that the recommended Gibbs sampler also provides 
an effective solution to the data association problem or the more general ranked 
assignment problem. In conclusion, the new implementation method is an online 
multi-target tracker, which has a linear complexity with the number of measure-
ments and a quadratic complexity with the number of hypothetical tracks. It can be 
applied to complex scenarios such as nonlinear dynamic and measurement models, 
non-uniform survival probability, sensor field of view, and clutter intensity. Since it 
was proposed, the δ-GLMB filter has been rapidly promoted and applied [83, 86, 
94, 148–151], which shows that the GLMB filter is a general model with excellent 
performance. 

In addition to using the above acceleration strategies, some scholars have sought 
cheaper approximations of the δ-GLMB filter to improve the performance, the most 
famous of which are the Mδ-GLMB [72] and LMB filters [71]. As mentioned earlier, 
the performance improvement of the δ-GLMB filter is obtained at the cost of higher 
computational complexity, which mainly comes from data association. For some 
applications, such as multi-sensor tracking or distributed estimation, it is not feasible 
to apply the δ-GLMB filter due to limited computational resources. Inspired by 
Mahler’s independent and identically distributed cluster (IIDC) approximation in the 
CPHD filter, Ref. [152] derives a special tractable GLMB class: marginal δ-GLMB 
(Mδ-GLMB) density, which can be used to define a principle approximation of the 
δ-GLMB density representing the true posterior of the multi-target Bayesian filter. 
Since the δ-GLMB density can be used to optimally approximate any labeled multi-
object density [152], the Mδ-GLMB density provides a tractable multi-target density 
approximation to a general labeled RFS density that captures statistical correlations 
between targets. Especially, it matches the cardinality distribution and the first order 
moment (probability hypothesis density, PHD) of labeled multi-target distribution 
of interest (such as the true δ-GLMB density), and minimizes the Kullback-Leibler
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divergence (KLD) on tractable GLMB densities (such as the Mδ-GLMB density). 
Based on this, Ref. [72] proposes the Mδ-GLMB filter, as it can be interpreted as 
performing marginalization on the data association histories generated by the δ-
GLMB filter. Therefore, the Mδ-GLMB filter is computationally cheaper than the 
δ-GLMB filter, while preserving the key statistics of the multi-target posterior, in 
particular, it is easier to develop efficient tractable multi-sensor trackers based on 
Mδ-GLMB filter. 

Another efficient approximation to the δ-GLMB filter is given in [71], namely, 
the labeled multi-Bernoulli (LMB) filter, which uses the δ-GLMB update step in 
each iteration. However, it approximates the δ-GLMB posterior from each update 
step using the LMB distribution, to reduce the computational complexity. The LMB 
filter, a generalization of the MB filter, inherits the advantages of the MB filter 
concerning particle implementation and state estimation, and also advantages of the 
δ-GLMB filter. It delivers a more accurate update approximation than the MB filter 
by calling the conjugate prior form of the labeled RFS, without the cardinality bias 
problem. In addition, it can also output the target tracks (labels), with performance 
significantly better than performances of the PHD, CPHD and MB filters [153], 
and comparable to that of the δ-GLMB filter. Besides, it gets rid of the limitation 
that the MB filter is only suitable for high signal-to-noise ratio (low clutter and high 
detection probability) conditions. In conclusion, the LMB filter can formally estimate 
the tracks with unbiased posterior cardinality distribution even in difficult scenarios 
such as low detection probability and high false alarm. This filter has been used in 
the environment perception system of the autonomous vehicle with multiple sensors 
(radar, lidar, and video sensor) [154], which demonstrates its real-time performance 
and robustness. Reference [155] improves the real-time performance of the LMB 
filter by further approximation. 

To synthesize the advantages of the LMB and δ-GLMB filters: the low complexity 
of the LMB filter and the accuracy of the δ-GLMB filter, Ref. [156] proposes an 
adaptive LMB (ALMB) filter, which automatically switches between the LMB and 
δ-GLMB filters based on the KLD [157] and entropy [158]. Aiming at the problem 
that most methods usually discard partial or all of statistical correlations in order to 
reduce the amount of calculation, Ref. [159] proposes an improved labeled multi-
object (LMO) density approximation by adaptively decomposing the LMO density 
into the densities of several independent subsets according to the analysis of the true 
statistical correlation between target states. Considering that the labeled Poisson RFS 
and labeled IIDC RFS are special cases of the GLMB RFS, Ref. [160] derives the 
labeled PHD (LPHD) and labeled CPHD (LCPHD) filters based on the GLMB filter. 
When the targets approach each other for a long time and then separate, a mixed 
label problem will occur [161]. In such case, the label-switching improvement (LSI) 
method that is not interested in label information [134] can be applied. The basic idea 
of this approach is as follows: the label can be regarded as an auxiliary variable when 
only the inference of the label-free target set is interested. At this time, it is equivalent 
to generate an additional degree of freedom, which helps improve the approximation 
of the posterior PDF, so that any labeled posterior PDF can be selected, as long as 
the corresponding unlabeled posterior PDF remains unchanged.


