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Preface

The material presented in this book crowns my long-term activity in the field of
conjugate periodic heat transfer. Its first stage, which had passed under the scientific
supervision of my teacher Professor Labuntsov (1929—1992), started with the publi-
cation (1977) of our first article and was completed in 1984 with the publication of
our book in Russian: Labuntsov D. A., Zudin Y. B., “Processes of heat transfer with
periodic intensity”. This stage was marked with the defense of my Candidate Thesis:
Zudin Y. B., “Analysis of heat transfer processes with periodic intensity” (1980). The
subsequent period of interpretation of the already gained results, and accumulation of
new knowledge had taken seven years. In 1991, I started working on a new series of
publications on this subject, which culminated in this book, the first edition of which
appeared in 2007, the second one, in 2011, and the third one, in 2017. This stage
was also marked with my habilitation script (Zudin Y. B., “Approximate theory of
heat transfer processes with periodic intensity”, 1996), as well as with fruitful scien-
tific collaborations with my respected German colleagues: Prof. U. Grigull, Prof.
F. Mayinger, and Prof. J. Straub (TU Miinchen), Prof. W. Roetzel (University BW
Hamburg), Prof. J. Mitrovic and Prof. D. Gorenflo (University Paderborn), Prof. K.
Stephan, Prof. M. Groll, and Prof. B. Weigand (University Stuttgart).

The objective of the present monograph is to give an exhaustive answer to the
question of how thermophysical and geometrical parameters of a body govern the heat
transfer characteristics under conditions of thermohydraulic pulsations. An applied
objective of this book is to develop a universal method for calculation of the average
heat transfer coefficient for periodic conjugate processes of heat transfer.

Asarule, real “steady” processes of heat transfer can be looked upon as steady ones
only on the average. In the actual fact, periodic, quasiperiodic, and various random
fluctuations of parameters (velocities, pressure, temperatures, momentum and energy
fluxes, vapor content, interface boundaries, etc.) around their average values always
exist in any type of fluid flow, except for purely laminar flows. Owing to the conjugate
nature of the “fluid flow—streamlined body” interface, both the fluctuation and the
average values of temperatures and heat fluxes on the heat transfer surface generally
depend on thermophysical and geometrical characteristics of the heat transferring
wall.

vii
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This suggests the principle question about the possible effect of the material and
the thickness of the wall on the key parameter of convective heat transfer, namely
the heat transfer coefficient. Such an effect was earlier manifested in experimental
investigations of heat transfer at nucleate boiling, dropwise condensation, and in
some other cases. In these studies, the heat transfer coefficients, as defined as the
ratio of the average heat flux on the surface and the average temperature difference
“wall—fluid”, could differ markedly for various materials of the wall (and also for
different thicknesses of walls).

In 1977, a concept of a true heat transfer coefficient was first proposed by
Labuntsov and Zudin. According to this concept, the actual values of the heat transfer
coefficient (for each point of the heat transferring surface and at each moment of
time) are determined solely by the hydrodynamic characteristics of the fluid flow;
as a result, they are independent of the parameters of a body. Fluctuations of param-
eters occurring in the fluid flow will result in the respective fluctuations of the true
heat transfer coefficient, which is also independent of the material and thickness
of the wall. This being so, from the solution of the heat conduction equation with
a boundary condition of third kind, it is possible to find the temperature field in
the body (and, hence, on the heat transfer surface), and as a result, to calculate the
required experimental heat transfer coefficient as the ratio of the average heat flux
to that of the temperature difference. This value (as determined in traditional heat
transfer experiments and employed in applied calculations) should in general case
depend on the conjugation parameters.

The study of relations between the heat transfer coefficients averaged by different
methods (the true and experimental ones) laid the basis for the first edition of the
present book, in which the following fundamental result was obtained: the average
experimental value of the heat transfer coefficient is always smaller than the average
true value of this parameter.

Chapter 1 gives a qualitative description of the method for investigations of peri-
odic conjugate convective—conductive “fluid flow—streamlined body” problems. An
analysis of physical processes representing heat transfer phenomena with periodic
fluctuations is also given.

In Chap. 2, aboundary problem for the two-dimensional unsteady heat conduction
equation with a periodic boundary condition of third kind is examined. To charac-
terize the thermal effects of a solid body on the average heat transfer, a concept of
the factor of conjugation is introduced. The quantitative effect of the conjugation in
the problem is shown to be rather significant.

Chapter 3 puts forward a construction of a general solution for the boundary value
problem for the equation of heat conduction with periodic boundary condition of the
third kind. Analytic solutions are obtained for the characteristic laws of variation of
the true heat transfer coefficient, namely the harmonic, inverse harmonic, stepwise,
and delta-like ones.

In Chap. 4, a universal algorithm of a general approximate solution of the problem
is developed. On its basis, solutions are obtained for a series of problems with different
laws of periodic fluctuations of the true heat transfer coefficient.
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Chapter 5 deals with conjugate periodic heat transfer for involved cases of external
heat supply: the heat transfer at a contact either with environment or with a second
body. A generalized solution for the factor of conjugation for the bodies of the
“standard form” is obtained. A problem of conjugate heat transfer for the case of
bilateral periodic heat transfer is also investigated. The cases of asymmetric and
nonperiodic fluctuations of the true heat transfer coefficient are examined.

Chapter 6 includes some applied problems of the periodic conjugate heat transfer
theory such as jet impingement onto a surface, dropwise condensation, and nucleate
boiling. We consider the conjugate heat transfer problem for turbulent flow of liquid
in a pipe.

Chapter 7 studies the effects of thermophysical parameters and the channel
wall thickness on the hydrodynamic instability of the so-called density waves.
The boundary of stability of fluid flow in a channel at supercritical pressures is
found analytically. As an application, the problem stability provision for a thermal
regulation system for superconducting magnets is considered.

In Chap. 8, the Landau problem on the evaporation front stability is generalized to
the case of finite thickness of the evaporating liquid layer. The analysis of the influ-
ence of additional factors, the impermeability condition of solid wall, and resulting
pulsations of mass velocity is carried out. Parametric calculations of the stability
boundary are performed when changing the liquid film thickness and the relation-
ship between phase densities in the framework of the asymptotic Landau approach for
large Reynolds numbers. The influence of liquid viscosity on the stability boundary
is approximatively evaluated.

Chapter 9 deals with the hyperbolic heat conduction equation. An extension of
the algorithm of computation of the factor of conjugation is given. The limiting case
described by the telegraph equation is considered. The boundary between the Fourier
and Cattaneo—Vernotte laws is found. The method of investigation of heat transfer
processes with periodic intensity is extended to the case of finite heat propagation rate.
For the case of a semi-infinite body, approximate solutions for characteristic types
(harmonic, inverse harmonic, and stepwise) of heat transfer intensity pulsations are
obtained. The phenomenon of spontaneous enhancement of the conjugation effect,
which is analogous to principal properties of self-oscillating systems is revealed.

Chapter 10 is concerned with derivation of the generalized Rayleigh equation that
describes the dynamics of a gas bubble. Its solution has spherical and cylindrical
asymptotics. A periodic quantum-mechanical model is offered for the process of
homogeneous bubble nucleation. A thermally controlled vapor bubble growth in
a bulk of uniformly superheated liquid is studied. Analysis of asymptotics of the
analytical Scriven solution is carried out. A refined approximation of the Scriven
integral with error <1.5% for all rangers of parameters is provided.

Chapter 11 examines the periodic slug flow in a two-phase media. One of the
important parameters of periodic two-phase flows (the rise velocity of the Taylor
bubbles in round pipes) is determined.

Chapter 12 develops an analytic method for calculation of heat exchange for
a turbulent flow in a channel of fluid in a region of supercritical pressures. This
method is capable of taking into account the effect of variability of thermophysical
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properties of a fluid on the heat transfer coefficient, as averaged over the period of
turbulent pulsations. A periodic model of mass transfer through the interface surface
is considered. The mass transfer coefficient is evaluated for various realizations of
the channel flow (a flow in pipes, a flat gap, an open channel, a bubble flow). The
effect of heat sources (sinks) on the turbulent heat exchange in a tube is studied. The
dependence of the relative heat exchange flow on the source function is evaluated.

In Chap. 13, we consider a boundary value problem for the heat conduction equa-
tion with a transient heat transfer coefficient. Analytical solutions for the above
cases are given. A general approximation of the solution is provided, from which
the temperature for several variants is evaluated. Within the class of quasiperiodic
functions of true heat transfer coefficient, the temperature and the factor of conju-
gation are evaluated. It is shown that the solutions or the periodic and quasiperiodic
npobsem are practically equal in the entire range of variation of the Biot number.
On this basis, a conjecture on universality of this method of analysis of the problem
of transient conjugate heat transfer is put forward.

Chapter 14 is devoted to the problem of evaporating meniscus on the interface
of three phases. An approximate method for solution of this problem is proposed.
Expressions for the meniscus profile and the length-averaged heat transfer coeffi-
cient are given. A periodic stationary problem for nucleate boiling simulation is put
forward. The limiting degree of thermal influence of the heated wall on the heat
transfer characteristics is evaluated.

In Appendix A, proofs are given of some properties of the two-dimensional
unsteady equation of heat conduction with a periodic boundary condition of the
third kind. As a corollary, we find the limiting values of the factor of conjugation.

Appendix B examines the eigenfunctions of the solution to the two-dimensional
unsteady equation of heat conduction, as obtained by the method of separation of
variables.

In Appendix C, the problem of convergence of infinite continued fraction is consid-
ered. An extension of the proof of Khinchin’s third theorem to the case where the
terms in the fraction possess a negative sign is obtained.

In Appendix D, a proof of divergence of infinite series obtained in Chap. 3 for the
particular solution of the heat conduction equation is given.

In Appendix E, the approximate solutions from Chap. 4 are corrected for various
laws of THTC oscillation (the harmonic, inverse harmonic, and step laws).

In Appendix F, the heat balance integral method is studied. An approximate solu-
tion of the one-dimensional unsteady heat conduction equation for a semi-infinite
body is given. Approximation of the complementary error function is used to deliver
an expression for the dimensionless temperature on the surface. An approximate
solution is shown to coincide with error at most 2.5% with the classical solution
available in the literature.

In Appendix G, we briefly discuss the peculiarities of self-oscillating systems:
dissipation of the oscillatory energy and its replenishment from instability, fast and
slow motions, relaxation oscillations, limit cycles, and strange attractor.

I would like to deeply thank the Director of the ITLR, Series Editor Mathemat-
ical Engineering of Springer-Verlag, Prof. Dr.-Ing. habil. B. Weigand for his strong
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support of my aspiration to successfully accomplish this work, as well as for his
numerous valuable advices and fruitful discussions concerning all aspects of the
analytical solution methods. Prof. B. Weigand repeatedly invited me to visit the
Institute of Aerospace Thermodynamics to perform joint research. Our collabora-
tion was of great help for me in the preparation of this book. I am deeply indebted
to Dr. T. Ditzinger, Editor of Springer-Verlag, for his interest in the publication and
very good cooperation during the preparation of this manuscript.

The work on this book would be impossible without the long-term financial
support of my activity at German universities (Uni. Stuttgart, TU Miinchen, Uni.
Paderborn, HSU/UniBw Hamburg) from the German Academic Exchange Service
(DAAD), from which for quarter of a century I was awarded nine (!) grants. I also
wish to express my sincere thanks to Dr. P. Hiller, Dr. W. Trenn, Dr. H. Finken,
Dr. T. Prahl, Dr. G. Berghorn, Dr. M. Krispin, Dr. A. Hoeschen, Dr. H. Schmidt,
M. Linden-Schneider and also to all other DAAD employees both in Bonn and in
Moscow.

I'would like to thank my dear wife Tatiana for her invaluable moral support of my
work, especially in these tough and challenging times.

I am also thankful to Dr. A. Alimov (Moscow State University) for his very useful
comments, which contributed much toward considerable improvement of the English
translation of this book.

In conclusion, I cannot but stress the most crucial role played in my academic
career by the prominent Russian scientist Prof. Labuntsov who was my scientific
advisor.

Stuttgart, Germany Yuri B. Zudin
November 2022
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