Mathematical Engineering

Yuri B. Zudin

Theory of Periodic Conjugate Heat Transfer

Fourth Edition

Mathematical Engineering

Series Editors

Jörg Schröder, Institute of Mechanics, University of Duisburg-Essen, Essen, Germany

Bernhard Weigand, Institute of Aerospace Thermodynamics, University of Stuttgart, Stuttgart, Germany

Jan-Philip Schmidt, Universität of Heidelberg, Heidelberg, Germany

Advisory Editors

Günter Brenn, Institut für Strömungslehre und Wärmeübertragung, TU Graz, Graz, Austria

David Katoshevski, Ben-Gurion University of the Negev, Beer-Sheva, Israel Jean Levine, CAS- Mathematiques et Systemes, MINES-ParisTech, Fontainebleau,

Gabriel Wittum, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany

Bassam Younis, Civil and Environmental Engineering, University of California, Davis, Davis, CA, USA

Today, the development of high-tech systems is unthinkable without mathematical modeling and analysis of system behavior. As such, many fields in the modern engineering sciences (e.g. control engineering, communications engineering, mechanical engineering, and robotics) call for sophisticated mathematical methods in order to solve the tasks at hand.

The series Mathematical Engineering presents new or heretofore little-known methods to support engineers in finding suitable answers to their questions, presenting those methods in such manner as to make them ideally comprehensible and applicable in practice.

Therefore, the primary focus is—without neglecting mathematical accuracy—on comprehensibility and real-world applicability.

To submit a proposal or request further information, please use the PDF Proposal Form or contact directly: Dr. Thomas Ditzinger (thomas.ditzinger@springer.com) Indexed by SCOPUS, zbMATH, SCImago.

Theory of Periodic Conjugate Heat Transfer

Fourth Edition

Yuri B. Zudin National Research Center "Kurchatov Institute" Moscow, Russia

ISSN 2192-4732 ISSN 2192-4740 (electronic) Mathematical Engineering ISBN 978-3-031-25166-5 ISBN 978-3-031-25167-2 (eBook) https://doi.org/10.1007/978-3-031-25167-2

 4^{th} edition Originally published under the title Theory of Periodic Conjugate Heat Transfer. $1^{st}-3^{rd}$ editions: © Springer-Verlag Berlin Heidelberg 2007, 2012, 2017 4^{th} edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To my beloved wife Tatiana, who has always been my source of inspiration, to my children Maxim and Nataliya, and to my grandchildren Alexey and Darya

Preface

The material presented in this book crowns my long-term activity in the field of conjugate periodic heat transfer. Its first stage, which had passed under the scientific supervision of my teacher Professor Labuntsov (1929–1992), started with the publication (1977) of our first article and was completed in 1984 with the publication of our book in Russian: Labuntsov D. A., Zudin Y. B., "Processes of heat transfer with periodic intensity". This stage was marked with the defense of my Candidate Thesis: Zudin Y. B., "Analysis of heat transfer processes with periodic intensity" (1980). The subsequent period of interpretation of the already gained results, and accumulation of new knowledge had taken seven years. In 1991, I started working on a new series of publications on this subject, which culminated in this book, the first edition of which appeared in 2007, the second one, in 2011, and the third one, in 2017. This stage was also marked with my habilitation script (Zudin Y. B., "Approximate theory of heat transfer processes with periodic intensity", 1996), as well as with fruitful scientific collaborations with my respected German colleagues: Prof. U. Grigull, Prof. F. Mayinger, and Prof. J. Straub (TU München), Prof. W. Roetzel (University BW Hamburg), Prof. J. Mitrovic and Prof. D. Gorenflo (University Paderborn), Prof. K. Stephan, Prof. M. Groll, and Prof. B. Weigand (University Stuttgart).

The objective of the present monograph is to give an exhaustive answer to the question of how thermophysical and geometrical parameters of a body govern the heat transfer characteristics under conditions of thermohydraulic pulsations. An applied objective of this book is to develop a universal method for calculation of the average heat transfer coefficient for periodic conjugate processes of heat transfer.

As a rule, real "steady" processes of heat transfer can be looked upon as steady ones only on the average. In the actual fact, periodic, quasiperiodic, and various random fluctuations of parameters (velocities, pressure, temperatures, momentum and energy fluxes, vapor content, interface boundaries, etc.) around their average values always exist in any type of fluid flow, except for purely laminar flows. Owing to the conjugate nature of the "fluid flow–streamlined body" interface, both the fluctuation and the average values of temperatures and heat fluxes on the heat transfer surface generally depend on thermophysical and geometrical characteristics of the heat transferring wall.

viii Preface

This suggests the principle question about the possible effect of the material and the thickness of the wall on the key parameter of convective heat transfer, namely the heat transfer coefficient. Such an effect was earlier manifested in experimental investigations of heat transfer at nucleate boiling, dropwise condensation, and in some other cases. In these studies, the heat transfer coefficients, as defined as the ratio of the average heat flux on the surface and the average temperature difference "wall—fluid", could differ markedly for various materials of the wall (and also for different thicknesses of walls).

In 1977, a concept of a true heat transfer coefficient was first proposed by Labuntsov and Zudin. According to this concept, the actual values of the heat transfer coefficient (for each point of the heat transferring surface and at each moment of time) are determined solely by the hydrodynamic characteristics of the fluid flow; as a result, they are independent of the parameters of a body. Fluctuations of parameters occurring in the fluid flow will result in the respective fluctuations of the true heat transfer coefficient, which is also independent of the material and thickness of the wall. This being so, from the solution of the heat conduction equation with a boundary condition of third kind, it is possible to find the temperature field in the body (and, hence, on the heat transfer surface), and as a result, to calculate the required experimental heat transfer coefficient as the ratio of the average heat flux to that of the temperature difference. This value (as determined in traditional heat transfer experiments and employed in applied calculations) should in general case depend on the conjugation parameters.

The study of relations between the heat transfer coefficients averaged by different methods (the true and experimental ones) laid the basis for the first edition of the present book, in which the following fundamental result was obtained: the average experimental value of the heat transfer coefficient is always smaller than the average true value of this parameter.

Chapter 1 gives a qualitative description of the method for investigations of periodic conjugate convective–conductive "fluid flow–streamlined body" problems. An analysis of physical processes representing heat transfer phenomena with periodic fluctuations is also given.

In Chap. 2, a boundary problem for the two-dimensional unsteady heat conduction equation with a periodic boundary condition of third kind is examined. To characterize the thermal effects of a solid body on the average heat transfer, a concept of the factor of conjugation is introduced. The quantitative effect of the conjugation in the problem is shown to be rather significant.

Chapter 3 puts forward a construction of a general solution for the boundary value problem for the equation of heat conduction with periodic boundary condition of the third kind. Analytic solutions are obtained for the characteristic laws of variation of the true heat transfer coefficient, namely the harmonic, inverse harmonic, stepwise, and delta-like ones.

In Chap. 4, a universal algorithm of a general approximate solution of the problem is developed. On its basis, solutions are obtained for a series of problems with different laws of periodic fluctuations of the true heat transfer coefficient.

Preface

Chapter 5 deals with conjugate periodic heat transfer for involved cases of external heat supply: the heat transfer at a contact either with environment or with a second body. A generalized solution for the factor of conjugation for the bodies of the "standard form" is obtained. A problem of conjugate heat transfer for the case of bilateral periodic heat transfer is also investigated. The cases of asymmetric and nonperiodic fluctuations of the true heat transfer coefficient are examined.

Chapter 6 includes some applied problems of the periodic conjugate heat transfer theory such as jet impingement onto a surface, dropwise condensation, and nucleate boiling. We consider the conjugate heat transfer problem for turbulent flow of liquid in a pipe.

Chapter 7 studies the effects of thermophysical parameters and the channel wall thickness on the hydrodynamic instability of the so-called density waves. The boundary of stability of fluid flow in a channel at supercritical pressures is found analytically. As an application, the problem stability provision for a thermal regulation system for superconducting magnets is considered.

In Chap. 8, the Landau problem on the evaporation front stability is generalized to the case of finite thickness of the evaporating liquid layer. The analysis of the influence of additional factors, the impermeability condition of solid wall, and resulting pulsations of mass velocity is carried out. Parametric calculations of the stability boundary are performed when changing the liquid film thickness and the relationship between phase densities in the framework of the asymptotic Landau approach for large Reynolds numbers. The influence of liquid viscosity on the stability boundary is approximatively evaluated.

Chapter 9 deals with the hyperbolic heat conduction equation. An extension of the algorithm of computation of the factor of conjugation is given. The limiting case described by the telegraph equation is considered. The boundary between the Fourier and Cattaneo–Vernotte laws is found. The method of investigation of heat transfer processes with periodic intensity is extended to the case of finite heat propagation rate. For the case of a semi-infinite body, approximate solutions for characteristic types (harmonic, inverse harmonic, and stepwise) of heat transfer intensity pulsations are obtained. The phenomenon of spontaneous enhancement of the conjugation effect, which is analogous to principal properties of self-oscillating systems is revealed.

Chapter 10 is concerned with derivation of the generalized Rayleigh equation that describes the dynamics of a gas bubble. Its solution has spherical and cylindrical asymptotics. A periodic quantum-mechanical model is offered for the process of homogeneous bubble nucleation. A thermally controlled vapor bubble growth in a bulk of uniformly superheated liquid is studied. Analysis of asymptotics of the analytical Scriven solution is carried out. A refined approximation of the Scriven integral with error <1.5% for all rangers of parameters is provided.

Chapter 11 examines the periodic slug flow in a two-phase media. One of the important parameters of periodic two-phase flows (the rise velocity of the Taylor bubbles in round pipes) is determined.

Chapter 12 develops an analytic method for calculation of heat exchange for a turbulent flow in a channel of fluid in a region of supercritical pressures. This method is capable of taking into account the effect of variability of thermophysical x Preface

properties of a fluid on the heat transfer coefficient, as averaged over the period of turbulent pulsations. A periodic model of mass transfer through the interface surface is considered. The mass transfer coefficient is evaluated for various realizations of the channel flow (a flow in pipes, a flat gap, an open channel, a bubble flow). The effect of heat sources (sinks) on the turbulent heat exchange in a tube is studied. The dependence of the relative heat exchange flow on the source function is evaluated.

In Chap. 13, we consider a boundary value problem for the heat conduction equation with a transient heat transfer coefficient. Analytical solutions for the above cases are given. A general approximation of the solution is provided, from which the temperature for several variants is evaluated. Within the class of quasiperiodic functions of true heat transfer coefficient, the temperature and the factor of conjugation are evaluated. It is shown that the solutions or the periodic and quasiperiodic προблем are practically equal in the entire range of variation of the Biot number. On this basis, a conjecture on universality of this method of analysis of the problem of transient conjugate heat transfer is put forward.

Chapter 14 is devoted to the problem of evaporating meniscus on the interface of three phases. An approximate method for solution of this problem is proposed. Expressions for the meniscus profile and the length-averaged heat transfer coefficient are given. A periodic stationary problem for nucleate boiling simulation is put forward. The limiting degree of thermal influence of the heated wall on the heat transfer characteristics is evaluated.

In Appendix A, proofs are given of some properties of the two-dimensional unsteady equation of heat conduction with a periodic boundary condition of the third kind. As a corollary, we find the limiting values of the factor of conjugation.

Appendix B examines the eigenfunctions of the solution to the two-dimensional unsteady equation of heat conduction, as obtained by the method of separation of variables.

In Appendix C, the problem of convergence of infinite continued fraction is considered. An extension of the proof of Khinchin's third theorem to the case where the terms in the fraction possess a negative sign is obtained.

In Appendix D, a proof of divergence of infinite series obtained in Chap. 3 for the particular solution of the heat conduction equation is given.

In Appendix E, the approximate solutions from Chap. 4 are corrected for various laws of THTC oscillation (the harmonic, inverse harmonic, and step laws).

In Appendix F, the heat balance integral method is studied. An approximate solution of the one-dimensional unsteady heat conduction equation for a semi-infinite body is given. Approximation of the complementary error function is used to deliver an expression for the dimensionless temperature on the surface. An approximate solution is shown to coincide with error at most 2.5% with the classical solution available in the literature.

In Appendix G, we briefly discuss the peculiarities of self-oscillating systems: dissipation of the oscillatory energy and its replenishment from instability, fast and slow motions, relaxation oscillations, limit cycles, and strange attractor.

I would like to deeply thank the Director of the ITLR, Series Editor Mathematical Engineering of Springer-Verlag, Prof. Dr.-Ing. habil. B. Weigand for his strong

Preface xi

support of my aspiration to successfully accomplish this work, as well as for his numerous valuable advices and fruitful discussions concerning all aspects of the analytical solution methods. Prof. B. Weigand repeatedly invited me to visit the Institute of Aerospace Thermodynamics to perform joint research. Our collaboration was of great help for me in the preparation of this book. I am deeply indebted to Dr. T. Ditzinger, Editor of Springer-Verlag, for his interest in the publication and very good cooperation during the preparation of this manuscript.

The work on this book would be impossible without the long-term financial support of my activity at German universities (Uni. Stuttgart, TU München, Uni. Paderborn, HSU/UniBw Hamburg) from the German Academic Exchange Service (DAAD), from which for quarter of a century I was awarded nine (!) grants. I also wish to express my sincere thanks to Dr. P. Hiller, Dr. W. Trenn, Dr. H. Finken, Dr. T. Prahl, Dr. G. Berghorn, Dr. M. Krispin, Dr. A. Hoeschen, Dr. H. Schmidt, M. Linden-Schneider and also to all other DAAD employees both in Bonn and in Moscow.

I would like to thank my dear wife Tatiana for her invaluable moral support of my work, especially in these tough and challenging times.

I am also thankful to Dr. A. Alimov (Moscow State University) for his very useful comments, which contributed much toward considerable improvement of the English translation of this book.

In conclusion, I cannot but stress the most crucial role played in my academic career by the prominent Russian scientist Prof. Labuntsov who was my scientific advisor.

Stuttgart, Germany November 2022

Yuri B. Zudin

Contents

1.1	duction Heat Transfer Processes Containing Periodic Oscillations
1.1	1.1.1 Oscillation Structure of Convective Heat
	Transfer
	1.1.2 Correct Averaging of Heat Transfer Coefficients
1.2	Physical Examples
1.3	Numerical Modeling
1.4	Oscillatory Mechanism of Near-Wall Turbulence
1.4	1.4.1 Van Driest Model
	1.4.2 Periodic Model of the Reynolds Analogy
	1.4.3 Model of Periodical Contacts
1.5	One-Time Thermal Contact Model
1.6	Hydrodynamic Heat Transfer Coefficient
1.7	Previous Investigations
1./	1 Tevious investigations
1.2	
1.8	Analytical Methods
1.9	Analytical Methods
1.9 Refer	Analytical Methods Summary ences
1.9 Refer	Analytical Methods
1.9 Refer	Analytical Methods Summary ences
1.9 Refer	Analytical Methods
1.9 Refer	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation
1.9 Refer	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation
1.9 Refer Cons 2.1	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients
1.9 Refer Cons 2.1	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients of Heat Transfer
1.9 Refer Cons 2.1	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients of Heat Transfer
1.9 Refer Cons 2.1	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients of Heat Transfer 2.2.1 Notation of the Boundary Condition (First Form) 2.2.2 Notation of the Boundary Condition (Second
1.9 Refer Cons 2.1	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients of Heat Transfer 2.2.1 Notation of the Boundary Condition (First Form) 2.2.2 Notation of the Boundary Condition (Second Form)
1.9 Refer Cons 2.1 2.2	Analytical Methods Summary ences truction of a General Solution Boundary Value Problem for the Heat Conduction Equation 2.1.1 Spatial and Temporal Types of Oscillations Interrelation Between the Two Averaged Coefficients of Heat Transfer 2.2.1 Notation of the Boundary Condition (First Form)

xiv Contents

3	Soluti	on of Characteristic Problems	37
	3.1	Construction of the General Solution	37
	3.2	Harmonic Law of Oscillations	39
	3.3	Inverse Harmonic Law of Oscillations	44
	3.4	Delta-Like Law of Oscillations	54
	3.5	Step Law of Oscillations	56
	3.6	Comparative Analysis of the Conjugation Effects	74
	3.7	Particular Exact Solution	76
	3.8	Asymptotic Solution for Thin Wall	77
	3.9	The Method of Separation of Variables	79
	3.10	Summary	81
	Refere	ences	81
4	Algori	ithm of Computation of the Factor of Conjugation	83
	4.1	Smooth Oscillations	83
		4.1.1 Harmonic Law of Oscillations	84
		4.1.2 Inverse Harmonic Law of Oscillations	86
	4.2	Boundary Condition (Series Expansion)	86
	4.3	Derivation of a Computational Algorithm	88
	4.4	Approximate Solution for Smooth Oscillations	90
	4.5	Phase Shift Between Oscillations	91
	4.6	Method of Small Parameter	95
	4.7	Arbitrary Law of Oscillations	98
	4.8	Filtration Property of the Computational Algorithm	105
	4.9	Generalized Parameter of the Thermal Effect	105
	4.10	Advantages of the Computational Algorithm	106
	4.11	Summary	107
	Refere	ences	107
5	Soluti	on of Special Problems	109
	5.1	Introduction	109
	5.2	Complex Case of Heating	110
		5.2.1 Linear Interrelation of Fluctuations	110
		5.2.2 Heat Supply from an Ambience	110
		5.2.3 Thermal Contact to Another Body	113
	5.3	Heat Transfer on the Surface of a Cylinder	116
	5.4	Heat Transfer on the Surface of a Sphere	117
	5.5	Parameter of Thermal Effect (Different Geometrical	
		Bodies)	118
	5.6	Overall Averaged True Heat Transfer Coefficient	120
		5.6.1 Overall Experimental Heat Transfer Coefficient	120
		5.6.2 Issues of the Heat Transfer Intensification	123
		5.6.3 Bilateral Spatio-Temporal Periodicity of Heat	
		Transfer	123
	5.7	Step and Nonperiodic Oscillations of the Heat Transfer	
		Intensity	125

Contents xv

		5.7.1 Asymmetric Step Oscillations	125
		5.7.2 Semi-Infinite Body	126
	5.8	Nonperiodic Oscillations	130
	5.9	Summary	134
	Refere	ences	134
6	Engin	neering Applications of the Theory	135
	6.1		135
	6.2	1	136
	6.3	•	141
		· · · · · · · · · · · · · · · · · · ·	141
		·	143
	6.4		149
			149
			150
		•	153
			156
		•	158
	6.5	· · · · · · · · · · · · · · · · · · ·	162
	Refere	· · · · · · · · · · · · · · · · · · ·	163
7	Wall 7	Thermal Effect on Hydrodynamic Flow Stability	167
•	7.1		167
	7.2		169
			169
		· · · · · · · · · · · · · · · · · · ·	170
		<u> </u>	173
	7.3	**	174
	7.4		175
	7.5	1	176
	7.6		178
	7.10	·	178
			179
			181
	7.7	· · · · · · · · · · · · · · · · · · ·	184
		· · · · · · · · · · · · · · · · · · ·	184
8	Liquid	d Film Evaporation (Landau Instability)	187
0	8.1		187
	8.2	Problem Statement	188
	8.3		191
	8.4	•	192
	UT		196
	8.5	· · · · · · · · · · · · · · · · · · ·	197
	8.6		199
	Refere	· · · · · · · · · · · · · · · · · · ·	200

xvi Contents

9	Hyper	rbolic He	at Conduction Equation	201
	9.1	Advanc	ed Topics of Theory of Heat Conduction	201
	9.2		o-Vernotte Law	203
	9.3	Mathem	natical Statement	205
	9.4	Limiting	g Cases	207
	9.5	Pulse H	eating of Surface	209
	9.6		tational Algorithm	211
	9.7	Telegra	ph Equation	213
	9.8	Fourier	Law and Cattaneo-Vernotte Law (Land-Mark)	214
	9.9	Practica	d Applications	215
	9.10	Approx	imate Solution	216
		9.10.1	Algorithm for Approximate Solution	216
		9.10.2	Analysis of the Approximation Solution	218
		9.10.3	Self-Oscillating Systems	221
		9.10.4	Spatially Inhomogeneous Structures	222
		9.10.5	Estimate of the Relaxation Time	224
	9.11	Summa	ry	226
	Refere	ences		226
10	Dubbl	log Dynon	nics in Liquid	229
IU	10.1		etion	229
	10.1		ized Rayleigh Equation	229
	10.2	10.2.1		229
		10.2.1	Classical Rayleigh Equation	230
		10.2.2	Bubble Dynamics in a Tube	230
		10.2.3	Derivation of the Generalized Rayleigh	232
		10.2.4	Equation	234
		10.2.4	Physical Analogies	236
			Collapse of a Bubble in a Long Tube	
	10.2	10.2.6	Practical Applications	237
	10.3		eneous Nucleation (Quantum–Mechanical Model)	237
		10.3.1	Homogeneous Nucleation	237
		10.3.2	Classical Theory	238
		10.3.3	Quantum–Mechanical Model	240
		10.3.4	Limiting Frequency of Homogeneous	241
	10.4	Th	Nucleation	241 242
	10.4		Illy Controlled Vapor Bubble Growth	
		10.4.1	Vapor Bubble Growth in a Superheated Liquid	242
		10.4.2	Problem Statement	243
		10.4.3	Solution of the Problem	245
		10.4.4	Asymptotics Analysis	247
		10.4.5	Approximation of the Scriven Integral	250
		10.4.6	A Refined Approximation	253
	10.5	10.4.7	Bubble Dynamics on a Rigid Surface	258
	10.5		ry	262
	Refere	ences		262

Contents xvii

11	Taylor	Bubble (Rise Velocity and Geometric Characteristics)	265
	11.1	Solutions of Prandtl and Taylor	265
	11.2	Velocity Potential	266
	11.3	Problem Statement	267
		11.3.1 Elementary Flows	267
		11.3.2 Flow Parameters	270
		11.3.3 Stagnation Point Flow	271
	11.4	Analytical Solution	273
		11.4.1 Collocation Method	273
		11.4.2 Asymptotical Solution	273
	11.5	Plane Taylor Bubble	276
	11.6	Summary	278
	Refere	nces	279
12	Pariod	ical Model of Turbulent Heat Transfer	281
12	12.1	Introduction	281
	12.1	Quasi-Ordered Structures of Wall Turbulence	283
	12.3	Surface Rejuvenation Model	284
	12.3	12.3.1 Bursting Effect	284
		12.3.2 Variable Thermophysical Properties	285
	12.4	Method of Relative Correspondence	286
	12.4	Mathematical Description	288
	12.3	12.5.1 The Main Equation	288
		12.5.2 Universal Parameter	289
	12.6	Laminar Boundary Layer	290
	12.7	Solving the Main Equation	292
	12.7	12.7.1 Exact Solution	292
		12.7.2 Approximate Analytical Solution	293
		12.7.3 Solution Validation (Laminar Boundary Layer)	295
	12.8	Turbulent Supercritical Flow	298
	12.0	12.8.1 Modes of Turbulent Supercritical Flow	298
		12.8.2 Relative Law of Heat Transfer	300
		12.8.3 Heat Transfer Regimes	303
	12.9	Mass Transfer Through the Interfacial Surface	305
	12.0	12.9.1 Reynolds and Chilton-Colburn Analogies	305
		12.9.2 Locally Isotropic Turbulence	307
		12.9.3 Small-Scale Turbulence Modeling	308
		12.9.4 Turbulent Flow in a Tube	309
		12.9.5 Effective Dissipation Value	311
		12.9.6 Mass Transfer Through the Interface	313
		12.9.7 Periodic Model	314
		12.9.8 Mass Transfer in Channel Flow	315
		12.9.9 Bubble Flow	319
	12.10	Internal Heat Generation	321
	12.10	12.10.1 The Molten Salt Reactor	321

xviii Contents

		12.10.2 Thermal Perturbation Front	322
		12.10.3 Heat Source	324
		12.10.4 Heat Sink	325
		12.10.5 Definition of the Source Parameter	326
	12.11	Summary	330
	Refere	nces	331
13	Variab	ole Heat Transfer Coefficient (Heat Conduction Problem)	335
	13.1	Introduction	335
	13.2	Method of Separation of Variables	336
	13.3	Integral Laplace Transform	337
	13.4	Boundary Value Problem of Heat Conduction	338
	13.5	Picard Method	339
	13.6	The Cauchy Problem	342
	13.7	Proof of the Convergence of the Series	346
	13.8	Representative Examples	348
	13.9	Green Function Method	349
	13.10	Representative Functions	351
	13.11	Approximation of the Analytical Solution	355
	13.12	Almost Periodic and Quasiperiodic Functions	358
	13.13	Quasiperiodic Heat Transfer Problem	361
	13.14	Factor of Conjugation	363
	13.15	Summary	369
	Refere	nces	369
14	Model	of the Evaporating Meniscus	371
	14.1	Introduction	371
	14.2	Hydrodynamics of the Moving Film	372
		14.2.1	
		14.2.1 Statement of the Problem	372
		14.2.1 Statement of the Problem	372 373
		14.2.2 Method of the Solution	373
	14.3	14.2.2Method of the Solution14.2.3The Effect of Microfilm Thickness	373 375
	14.3	14.2.2Method of the Solution14.2.3The Effect of Microfilm Thickness14.2.4Generalized SolutionThermohydrodynamics of the Evaporating Meniscus14.3.1Theoretical Investigation	373 375 375
	14.3	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus	373 375 375 377
	14.3 14.4	14.2.2Method of the Solution14.2.3The Effect of Microfilm Thickness14.2.4Generalized SolutionThermohydrodynamics of the Evaporating Meniscus14.3.1Theoretical Investigation	373 375 375 377 377
		14.2.2Method of the Solution14.2.3The Effect of Microfilm Thickness14.2.4Generalized SolutionThermohydrodynamics of the Evaporating Meniscus14.3.1Theoretical Investigation14.3.2Method of the Solution	373 375 375 377 377 379
		14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem	373 375 375 377 377 379 380
		14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations	373 375 375 377 377 379 380 380
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties	373 375 375 377 377 379 380 380 381
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties Analytical Solution	373 375 375 377 377 379 380 380 381 382
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties Analytical Solution 14.5.1 Reduction of Order	373 375 375 377 377 380 380 381 382 382
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties Analytical Solution 14.5.1 Reduction of Order 14.5.2 Method of Small Parameter	373 375 375 377 377 380 380 381 382 382 383
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties Analytical Solution 14.5.1 Reduction of Order 14.5.2 Method of Small Parameter 14.5.3 Meniscus Profile	373 375 375 377 377 380 380 381 382 383 383
	14.4	14.2.2 Method of the Solution 14.2.3 The Effect of Microfilm Thickness 14.2.4 Generalized Solution Thermohydrodynamics of the Evaporating Meniscus 14.3.1 Theoretical Investigation 14.3.2 Method of the Solution Mathematical Description of the Problem 14.4.1 System of Equations 14.4.2 Mathematical and Physical Difficulties Analytical Solution 14.5.1 Reduction of Order 14.5.2 Method of Small Parameter 14.5.3 Meniscus Profile 14.5.4 Nanoscale Film	373 375 375 377 377 380 380 381 382 383 384 386

Contents xix

	14.6.2	Boundary Condition $q = \text{const}$	390
14.7	Nucleate	Boiling	391
	14.7.1	Nucleate Boiling Model	391
	14.7.2	Simulation of the Conjugate Problem	391
	14.7.3	Empirical Model of Nucleate Boiling Heat	
		Transfer	395
14.8	Summar	y	398
Refere	ences		399
Appendix A	A: Proof o	of the Basic Levels	401
Appendix 1	B: Functi	ons of Thickness	413
Appendix (C: Infinite	e Continued Fractions	417
Appendix 1	D: Proof	of Divergence of Infinite Series	421
Appendix 1	E: Correc	ction of Approximate Solutions	425
Appendix 1	F: Heat B	salance Integral Method	429
Appendix (G: Period	ical Self-Oscillations	437

Abbreviations

APF Almost Periodic Function

ATHTC Averaged True Heat Transfer Coefficient

BC Boundary Condition
BVP Boundary Value Problem

CP Cauchy Problem

DDF Dimensionless Dissipative Function

EF Evaporation Front

EHTC Experimental Heat Transfer Coefficient

FC Factor of Conjugation FT Fourier Transform FT Film Thickness GM Growth Modulus

HHCM Hyperbolic Heat Conduction Model

HN Homogeneous Nucleation
HTC Heat Transfer Coefficient
LT Laplace Transform
MSR Molten Salt Reactor
MTP Mass Transfer Parameter

PTE Parameter of the Thermal Effect

RANS Reynolds-Averaged Navier-Stokes Equations

SCP Supercritical Pressures SI Scriven Integral SP Stagnation Point

SRM Surface Rejuvenation Model

ST Scriven Table
TB Taylor Bubble

TBC Thermal Boundary Condition
THTC True Heat Transfer Coefficient

VC Vapor Cluster WN Wave Number

Symbols

Set Theory Symbols

- ∀ Universal quantifier
- \mathbb{R} Set of real numbers
- ∈ Is an element of
- ⊆ Subset
- : Such that

List of Figures

Fig. 1.1	True and experimental laws of the averaging of the heat	
	transfer coefficient. a Heat flux density on the heat	
	transfer surface, b temperature difference wall-ambience,	
	and c heat transfer coefficient	-
Fig. 1.2	Slug flow of a two-phase fluid. a Schematic of the process	
	and b variation of the THTC with the longitudinal	_
F: 1.0	coordinate	
Fig. 1.3	Flow over a body in the vicinity of a critical point	8
Fig. 1.4	Wave flow of a liquid film. a Schematic of the process	
	and b variation of the THTC with the longitudinal	
	coordinate	Ģ
Fig. 1.5	Schematic of the near-wall turbulent flow. 1 Laminar	
	boundary layer and 2 turbulent core of the flow	14
Fig. 1.6	Schematic of the periodical contacts of two media.	
	1 Body, 2 ambient fluid	16
Fig. 2.1	Schematic of the heat transfer process with periodic	
	intensity	26
Fig. 3.1	Harmonic law of oscillations of the true heat transfer coefficient	4(
Fig. 3.2	Harmonic oscillations. Spatial problem for a semi-infinite	
	body $(m = 0)$. Values of the factor of conjugation	47
Fig. 3.3	Harmonic oscillations. Time-dependent problem	
	for a semi-infinite body $(m = \infty)$. Values of the factor	
	of conjugation	47
Fig. 3.4	Inverse harmonic law of oscillations of the true heat	
_	transfer coefficient. $1 b = 0.5$, $2 b = 0.9$, and $3 b = 0.95 \dots$	48
Fig. 3.5	Inverse harmonic oscillations. Spatial problem	
-	for a semi-infinite body $(m = 0)$. Values of the factor	
	of conjugation	5 1

xxvi List of Figures

Fig. 3.6	Inverse harmonic oscillations. Time-dependent problem for a semi-infinite body ($m = \infty$). Values of the factor	
	of conjugation	51
Fig. 3.7	Delta-like law of oscillations of the true heat transfer coefficient	53
Fig. 3.8	Step law of oscillations of the true heat transfer coefficient	57
Fig. 3.9	Step oscillations. Spatial problem for a semi-infinite body	
	(m = 0). Values of the factor of conjugation	69
Fig. 3.10	Step oscillations. Time-dependent problem	
	for a semi-infinite body $(m = \infty)$. Values of the factor	
	of conjugation	69
Fig. 3.11	Step oscillations. Time-dependent problem $(m = \infty)$.	
	Thermal boundary condition $\vartheta_0 = \text{const. Values}$	
	of the factor of conjugation	70
Fig. 3.12	Step oscillations. Time-dependent problem $(m = \infty)$.	
	Thermal boundary condition $q_0 = \text{const. Values}$	
	of the factor of conjugation	70
Fig. 3.13	Step oscillations. Spatial problem $(m = 0)$. Thermal	
	boundary condition $\vartheta_0 = \text{const.}$ Values of the factor	
	of conjugation	71
Fig. 3.14	Step oscillations. Spatial problem $(m = 0)$. Thermal	
	boundary condition $q_0 = \text{const.}$ Values of the factor	
E: 2.15	of conjugation	71
Fig. 3.15	Dimensionless temperature difference versus	
	dimensionless time for a thin wall. Time-dependent	78
Fig. 3.16	problem $(m = \infty)$. 1 $A = 10$, 2 $A = 15$, and 3 $A = 30$	70
Fig. 5.10	Factor of conjugation versus the parameter for a thin wall. Time-dependent problem $(m = \infty)$	7 9
Fig. 4.1	Inverse harmonic law of oscillations of the true heat	19
11g. 4.1	transfer coefficient. 1: symmetric functions $\psi(\xi)$, Eq.	
	(4.31), and 2 : asymmetric functions $\psi(\xi)$, Eq. (4.32)	99
Fig. 4.2	Sawtooth oscillations of the true heat transfer coefficient.	
1181 112	1: Eq. (4.34), and 2 : Eq. (4.33)	100
Fig. 4.3	Spatial problem, $b = 0.9$. Values of the factor	100
8	of conjugation. 1: one-dimensional oscillations	
	of the true heat transfer coefficient, Eq. (4.13),	
	and 2: two-dimensional oscillations of the true heat	
	transfer coefficient, Eq. (4.38)	102
Fig. 4.4	Minimal value of the factor of conjugation.	
	1: two-dimensional oscillations of the true heat	
	transfer coefficient, Eq. (4.37), and 2: one-dimensional	
	oscillations of the true heat transfer coefficient, Eq. (4.13)	103
Fig. 5.1	Heat supply from the ambience. 1 Ambience, 2 body,	
	and 3 cooling fluid	111
Fig. 5.2	Equilibrium case of the external heat transfer	113

List of Figures xxvii

Fig. 5.3	Heat supply from an external body. 1 External body, 2 body, and 3 ambient fluid	114
Fig. 5.4	Asymmetric step oscillations of the true heat transfer	117
	coefficient	125
Fig. 5.5	Asymmetric step oscillations of the true heat	
	transfer coefficient. Dependence of the factor	
	of conjugation on the Biot number. $1 s = 0.65$,	
	$2 s = 0.5, 3 s = 0.3, \text{ and } 4 s = 0 \dots$	129
Fig. 5.6	Nonperiodic oscillations of the true heat transfer	
8	coefficient of the kind $\sin(1/t)$	131
Fig. 5.7	Nonperiodic oscillations of the true heat transfer	
118.017	coefficient of the kind $\sin(\sqrt{t})$	133
Fig. 5.8	Nonperiodic oscillations of the true heat transfer	133
11g. 3.6	coefficient of the kind $\sin(t^2)$	133
Eig. 6.1	Model experiment. 1 Brass rod of the length 300 mm	133
Fig. 6.1		
	and diameter 8 mm, 2 nozzle (of the diameter 2 mm,	
	3 mm, 5 mm, 6 mm), 3 electromagnetic valve,	
	4 mirror-galvanometer oscillograph, 5 thermostat,	
	6 nickel–chromium heater, 7 sink arrangement,	
	8 Dewar flask, 9 thermocouple in the brass rod,	100
	and 10 thermocouple in the thermostat	136
Fig. 6.2	Dependence of the temperature of the water-cooled	
	surface on time. 1 $\tau_0 = 120 \text{s}$, 2 $\tau_0 = 60 \text{s}$, 3 $\tau_0 = 30 \text{s}$,	
	$4 \tau_0 = 15 \mathrm{s}, 5 \tau_0 = 5 \mathrm{s}, \text{and } 6 \tau_0 = 1.6 \mathrm{s} \dots$	138
Fig. 6.3	Experimental (points) and theoretical (line) dependencies	
	of the factor of conjugation on the Biot number. $\bigcirc d_0 = 2$	
	mm, $\Delta d_0 = 3$ mm, $\Box d_0 = 5$ mm, and $\nabla d_0 = 6$ mm	138
Fig. 6.4	Schematic of the process of dropwise condensation	139
Fig. 6.5	Effect of heat conduction in the body on the experimental	
	heat transfer coefficient at dropwise condensation	140
Fig. 6.6	Effect of the maximal length scale of a droplet	
	on the experimental heat transfer coefficient at dropwise	
	condensation	140
Fig. 6.7	Periodic model of nucleate boiling. 1 Heated surface,	
	2 oscillating liquid film, and 3 vapor conglomerates	144
Fig. 6.8	Illustration to the determination of the effective length	
	of the liquid film	145
Fig. 6.9	Relation of thickness of the conductive and viscous	
	sublayers as a function of the Prandtl number. 1 Formula	
	(6.19) and 2 formula (6.35)	160
Fig. 6.10	Ratio of the Stanton numbers for the boundary	
<i>U</i>	conditions $\Theta = \text{const}$ and $q = \text{const}$.	
	1 Re = 10^4 , 2 Re = 10^5 , and 3 Re = 10^6	161
		1

xxviii List of Figures

Fig. 7.1	Schematic of thermostatting of the superconducting	170
Fig. 7.2	magnets	170
Fig. 7.3	Results of the solution of Eqs. (7.36) and (7.37).	1//
115. 7.5	Dependence of the pressure parameter on the parameter	
	of expansion on the stability boundary	180
Fig. 7.4	Results of the solution of Eqs. (7.36) and (7.37).	100
115. 7.1	Dependence of the oscillation frequency on the parameter	
	of expansion on the stability boundary	181
Fig. 7.5	Effect of the thermal conjugation upon the location	101
116. 7.5	of the initial point of the stability boundary in accordance	
	with Eq. (7.38)	182
Fig. 7.6	Dependence of the pressure parameter on the parameter	102
115. 7.0	of expansion on the stability boundary for different values	
	of the parameter of thermal effect	182
Fig. 7.7	Dependence of the oscillation frequency on the parameter	102
115. 7.7	of expansion on the stability boundary for different values	
	of the parameter of thermal effect	183
Fig. 7.8	Comparisons of the calculated stability boundary	103
1 ig. 7.0	with the experimental data [1]. 1 Region of stability	
	and 2 region of instability	183
Fig. 8.1	Schematic of development of evaporation front instability	188
Fig. 8.2	Dependence of the minimum mass flow rate	100
11g. 6.2	at the stability boundary on the wave number	
	in dimensionless form. 1 Landau solution. Values	
	of Bond number. 2 Bo = 10^{-3} , 3 Bo = $5 * 10^{-3}$,	
	4Bo = 10^{-2} , 5Bo = $5 * 10^{-2}$, and 6Bo = 10^{-1} ,	
	$a \chi = 10^{-3}, b \chi = 10^{-4}, \text{ and } c \chi = 10^{-5} \dots$	194
Fig. 8.3	Dependence of the minimum evaporation mass flux	1)4
1 ig. 0.5	corresponding to minimum evaporation mass flux	
	on Bond number at stability boundary in a dimensionless	
	form. $1 \chi = 10^{-5}$, $2 \chi = 1$, and $3 \chi = 10^{-3}$	195
Fig. 8.4	Landau solution 1 and curve rounding minima	1)3
11g. 0.4		
	of dependences $\tilde{j}(\tilde{k})$ 2	195
Fig. 8.5	Illustration of the influence of hydrodynamic boundary	
C	condition on the wall on the stability boundary	
	for the $\chi = 10^{-3}$. 1 Landau solution, and 2 stability	
	boundary for the $F = \coth(kh)$	199
Fig. 9.1	Dependence of the factor of conjugation on the Biot	
	number for various values of relaxation parameter:	
	$1\sigma = 0, 2\sigma = 1, 3\sigma = 10, 4\sigma = 100, \text{ and } 5\sigma = 1000.$	
	a the harmonic function $h(t)$, b the inverse harmonic	
	function $h(t)$, and c the step function $h(t)$	219

List of Figures xxix

Fig. 9.2	Dependence of the factor of conjugation on the relaxation	
	parameter for various values of the Biot number.	
	$1\left\langle \tilde{h}\right\rangle = 0.1, 2\left\langle \tilde{h}\right\rangle = 1, 3\left\langle \tilde{h}\right\rangle = 10, \text{and } 4\left\langle \tilde{h}\right\rangle = 100.$	
	a the harmonic function $h(t)$, b the inverse harmonic	
	function $h(t)$, and c the step function $h(t)$	221
Fig. 9.3	Dependence of the factor of conjugation on the Reynolds	221
11g. 9.3	number for wave asymptotics for $b = 0.9$. Turbulent	
	water flow in a tube of polymethylmethacrylate. $1 d = 10$	
	mm, and $2 d = 100 \text{ mm}$	225
Fig. 10.1	Growth of a vapor bubble in a long tube. a Symmetrical	223
116.10.1	case and b asymmetrical case	231
Fig. 10.2	Superimposition of the spherical (1) and cylindrical (2)	231
118, 10,2	components of the axial liquid velocity	234
Fig. 10.3	Schematic of thermally controlled vapor bubble growth	244
Fig. 10.4	Dependence of the growth modulus on the Stefan number.	
8	1 $\varepsilon = 10^{-3}$, 2 $\varepsilon = 10^{-2}$, 3 $\varepsilon = 10^{-1}$, and 4 $\varepsilon = 10^{0}$	257
Fig. 10.5	Dependence of the growth modulus on the phase density	
	ratio. 1 $S = 10^{-3}$, 2 $S = 10^{-1}$, 3 $S = 8 * 10^{-1}$, and 4	
	$S = 10^0 \dots $	258
Fig. 11.1	Schematic of the flow superimposition. a Source	
	in the infinite space, b injection flow, and c source	
	in an impermeable pipe	267
Fig. 11.2	Schematic of the flow of an ideal fluid	
	over an axisymmetric body in a pipe	270
Fig. 11.3	Dependence of the Froude number on the parameter x	278
Fig. 12.1	Stepwise (discontinuous) law of variation of the parameter	
	of thermophysical properties	292
Fig. 12.2	Stepwise (discontinuous) law of variation	
	of the parameter of thermophysical properties.	
	Comparisons of the calculations of the relative law of heat	
	transfer by the approximate Eq. (12.29) and the exact	• • •
	solution, Eqs. (12.25) and (12.26)	294
Fig. 12.3	Dependences of the thermophysical properties of helium	200
E: 10.4	on the enthalpy at the pressure of 0.25 MPa	299
Fig. 12.4	Dependence of the parameter of thermophysical	
	properties of helium on the enthalpy at the pressure	200
E:- 10.5	of 0.25 MPa	300
Fig. 12.5	Dependence of the parameter of thermophysical	
	properties of helium on the enthalpy in a nondimensional	201
Eig. 12.6	form Effect of the relation of densities on the relative law	301
Fig. 12.6	of heat transfer for the case of the flow of helium	
	at the pressure of 0.25 MPa	301
	at the pressure of 0.23 wif a	301

xxx List of Figures

Fig. 12.7	Comparisons of the calculations by the surface	
	rejuvenation model with the experimental data [23]	
	on heat transfer at heating of water in the area	
	of the supercritical pressures. 1 Ascending flow, 2	
	descending flow, 3 calculation by Eq. (12.54), and 4 mass	
	average temperature of the coolant	302
Fig. 12.8	Comparisons of the calculations by the surface	002
1 ig. 12.0	rejuvenation model with the experimental data [23]	
	on heat transfer at heating of helium in the area	
	of the supercritical pressures. 1 $q = 1700 \text{ W/m}^2$, 2	
	$q = 3840 \text{ W/m}^2$, and $3 q = 7850 \text{ W/m}^2$	303
E: 12.0		303
Fig. 12.9	The dependencies $\Psi(H)$, as calculated by using Eqs.	
	(12.50)–(12.54). a Heating case. 1 $H_{\infty} = 20 \text{kJ/kg}$, 2	
	$H_{\infty} = H_{\rm m}$, 3 $H_{\infty} = 25 \text{kJ/kg}$, 4 $H_{\infty} = 30 \text{kJ/kg}$, 5	
	$H_{\infty} = 40 \text{ kJ/kg}$, and $6 H_{\infty} = 45 \text{ kJ/kg}$. b Cooling case. 1	
	$H_{\infty} = 50 \text{ kJ/kg}, 2 H_{\infty} = 40 \text{ kJ/kg}, 3 H_{\infty} = 30 \text{ kJ/kg}, 4$	
	$H_{\infty} = 30 \mathrm{kJ/kg}$, and 5 $H_{\infty} = H_{\mathrm{m}}$	304
Fig. 12.10	Radial dissipation profile	310
Fig. 12.11	Radial profile of turbulent Reynolds number	311
Fig. 12.12	Dependence of the effective dimensionless dissipative	
	functions on the Reynolds number. 1 Section-averaged	
	evaluation, 2 energy balance evaluation	312
Fig. 12.13	Dependence of the effective turbulent Reynolds numbers	
	on the Reynolds number. 1 Section-averaged evaluation	
	and 2 energy balance evaluation	313
Fig. 12.14	Dependence of the mass transfer parameter	
8	on the Reynolds number. 1 Evaluation by (12.69) and 2	
	evaluation by formula (12.71)	315
Fig. 12.15	Dependence of the effective mass transfer parameters	313
11g. 12.13	on the Reynolds number. 1 The true section-averaged, 2	
	evaluation from the averaged dissipation, and 3 evaluation	
	from the energy balance	317
Ein 10 16		317
Fig. 12.16	Dependence of the effective mass transfer parameter	
	on the Reynolds number for various types of flow. 1	
	Round tube, 2 rectangular gap, and 3 open rectangular	210
E: 10.15	channel	319
Fig. 12.17	Dependence of the modified Sherwood number	
	on the Reynolds number. 1 The method of the present	
	paper and 2 evaluation by formula (12.82)	320
Fig. 12.18	Radial profile of the mass transfer parameter for various	
	values of the Reynolds number. $1 \text{ Re} = 10^3$, $2 \text{ Re} = 10^4$,	
	3 Re = 10^5 , and 4 Re = 10^6	320

List of Figures xxxi

Fig. 12.19	The heat source case for $Pr = 1$. Dependence	
	of the relative heat transfer law on the source function	
	for different Reynolds numbers. 1 Re = 10^3 , 2 Re = 10^4 ,	
	$3 \text{ Re} = 10^5$, and $4 \text{ Re} = 10^6$	329
Fig. 12.20	The heat source case for $Re = 10^4$. Dependence	
	of the relative heat transfer law on the source function	
	for different Prandtl numbers. 1 Pr = 10^0 , 2 Pr = 10^1 , 3	
	$Pr = 10^2$, and $4 Pr = 10^3$	329
Fig. 12.21	The heat sink case for $Pr = 1$. Dependence of the relative	
118, 12,21	heat transfer law on the source function for different	
	Reynolds numbers. 1 Re = 10^3 , 2 Re = 10^4 , 3 Re = 10^5 ,	
	and $4 \operatorname{Re} = 10^6 \dots$	330
Fig. 12.22	The heat sink case for $Re = 10^4$. Dependence	
116. 12.22	of the relative heat transfer law on the source function	
	for different Prandtl numbers. 1 Pr = 10^0 , 2 Pr = 10^1 , 3	
	$Pr = 10^2$, and $4 Pr = 10^3$	330
Fig. 13.1	Example 1. Dimensionless temperature on the heat	330
115. 13.1	transfer surface. The function Bi(Fo) is linear. 1 The	
	first approximation, 2 the second approximation, and 3	
	the third approximation	348
Fig. 13.2	Example 1. Dimensionless temperature on the inner plane	540
11g. 13.2	of the body. The function Bi(Fo) is linear. 1 Bi* = 0.5 ,	
	and 2 Bi* = 1	349
Fig. 13.3	Example 2. Dimensionless temperature on the inner	347
11g. 13.3	plane of the body. 1 Constant heat transfer coefficient,	
	and 2 variable heat transfer coefficient for the exponential	
	dependence Bi(Fo)	349
Fig. 13.4	Dimensionless temperature on the heat transfer surface.	347
11g. 13.4	The linear function Bi(Fo). 1 Approximation, 2 minorant	
	θ_{\min} , and 3 majorant θ_{\max}	355
Fig. 13.5	Dimensionless temperature for linear and exponential	333
11g. 15.5	functions $h(t)$. 1 Heat transfer surfaces, and 2 inner plane	
	of the body. Solid line, analytical solution. Dotted line,	
	approximation	356
Fig. 13.6	Dimensionless temperature on the inner plane of the body.	330
11g. 15.0	The exponential function $h(t)$. 1 analytical solution, 2	
	approximation	357
Fig. 13.7	Dimensionless temperature on the heat transfer surface.	331
Fig. 15.7		
E'. 12.0	Approximation for a decaying exponential dependence $h(t)$ 1 $a = 0.1.2$ $a = 1$ and 3 $a = 10$	257
	h(t). 1 $a = 0.1$, 2 $a = 1$, and 3 $a = 10$	357
Fig. 13.8	Dimensionless temperature on the heat transfer surface.	
	Approximation for an increasing exponential dependence	250
	h(t). 1 $a = 0.1$, 2 $a = 1$, and 3 $a = 10$	358

xxxii List of Figures

Fig. 13.9	Dimensionless temperature on the heat transfer surface.	
	Approximation for a linear dependence $h(t)$. 1 $a = 0.1$,	250
E' 10.10	2 a = 1, and $3 a = 10$	358
Fig. 13.10	Dimensionless temperature on the heat transfer surface.	
	Approximation for a logarithmic dependence $h(t)$. 1	
	a = 0.1, 2 $a = 1, $ and 3 $a = 10$	359
Fig. 13.11	Dimensionless temperature on the heat transfer surface.	
	Approximation of the power-law dependence $h(t)$. 1	
	$a = 0.1, 2$ $a = 1, $ and 3 $a = 10 \dots$	359
Fig. 13.12	Periodic problem. Stationary heat transfer. a Heat	
	removal and b heat supply	362
Fig. 13.13	Quasiperiodic problem. A nonstationary heat transfer. a	
	Heat removal and b heat supply	363
Fig. 13.14	Dimensionless temperature on the heat transfer surface.	
	Approximation for $a = 0.5$. 1 Harmonic function $h(t)$,	
	formula (13.39), and 2 inverse harmonic function $h(t)$,	
	formula (13.40)	364
Fig. 13.15	Dimensionless temperature on the heat transfer surface.	
	Approximation for $b = 0.95$. 1 Harmonic function $h(t)$,	
	formula (13.39), and 2 inverse harmonic function $h(t)$,	
	formula (13.40)	364
Fig. 13.16	Factor of conjugation versus the Biot number. The	
	harmonic function $h(t)$, the periodic problem (solid line),	
	the quasiperiodic problem (dotted line). 1 $b = 0.5, 2$	
	b = 0.7, 3 $b = 0.8$, 4 $b = 0.9$, 5 $b = 0.95$, and 6 $b = 1$	366
Fig. 13.17	Factor of conjugation versus the Biot number. The inverse	
	harmonic function $h(t)$, the periodic problem (solid line),	
	the quasiperiodic problem (dotted line). 1 $b = 0.6, 2$	
	b = 0.85, 3 b = 0.95, 4 b = 0.98, 5 b = 0.995, 6	
	b = 0.999, and 7 $b = 0.9997$	366
Fig. 13.18	Comparison of solutions for harmonic (dotted	
	line) and inverse harmonic (solid line) functions. 1	
	$\chi = 0.15$, $2 \chi = 5 * 10^{-2}$, and $3 \chi = 2 * 10^{-2}$.	
	Dotted line, calculations from the theoretical relation	
	for the quasiperiodic problem. Solid line, evacuation	
	from the semi-empirical relation for the periodic problem	367
Fig. 13.19	Effect of asymmetry on the factor of conjugation	
	for the periodic problem. Moderate asymmetry. 1	
	$\chi = 0.4, 2 \chi = 0.15, 3 \chi = 5 * 10^{-2}, 4 \chi = 2 * 10^{-2},$	
	and 5 $\chi = 5 * 10^{-3}$. Dotted line, calculations	
	from the theoretical relation for the quasiperiodic	
	problem. Solid line, evacuation from the semi-empirical	
	relation for the periodic problem	367
	• • • • • • • • • • • • • • • • • • •	

List of Figures xxxiii

Fig. 13.20	Effect of asymmetry on the factor of conjugation	
	for the periodic problem. Strong asymmetry. 1	
	$\chi = 1 * 10^{-4}, 2 \chi = 1 * 10^{-5}, 3 \chi = 1 * 10^{-6}, 4$	
	$\chi = 1*10^{-7}$, and $5\chi = 1*10^{-8}$. Dotted line, calculations	
	from the theoretical relation for the quasiperiodic	
	problem. Solid line, evacuation from the semi-empirical	
	relation for the periodic problem	367
Fig. 13.21	Factor of conjugation calculated from algorithm (13.43)	
	for a function of the form (13.48). 1 $n = 1$, 2 $n = 2$, 3	
	n = 3, and $4 n = 4$	368
Fig. 13.22	Factor of conjugation calculated from algorithm (13.43)	
	for a function of the form (13.49). 1 $n = 1$, 2 $n = 2$, 3	
	n = 3, and $4n = 4$	368
Fig. 14.1	Schematic of the flow in the meniscus of an evaporating	
	film. 1 Adsorbed microfilm, 2 evaporating film of variable	
	thickness (viz. the meniscus of the liquid film), and 3	
	macrofilm	377
Fig. 14.2	Analytical solution for the evaporating meniscus	
	parameters. 1 $\tilde{\delta}$, 2 d $\tilde{\delta}$ /d \tilde{x} , and 3 d ² $\tilde{\delta}$ /d \tilde{x} ²	385
Fig. 14.3	Dependence of the minimal value of the conjugation	
	factor on the heat flux for boiling helium	393
Fig. 14.4	Dependence of the minimal value of the conjugation	
	factor on the heat flux for nitrogen boiling	394
Fig. 14.5	Theoretical curves $h_m(q)$ under the conditions	
	of the experiments of [40, 41] for helium boiling. 1	
	Boiling on copper surface (majorant), 2 boiling on nickel	
	surface, 3 boiling on stainless steel surface, and 4	
	smallest possible value of the experimental heat transfer	
	coefficient (minorant)	394
Fig. 14.6	Theoretical curves $h_m(q)$ under the conditions	
	of the experiments of [40, 41] for nitrogen boiling.	
	1 Boiling on copper surface (majorant), 2 boiling	
	on bronze surface, 3 boiling on brass surface, 4 boiling	
	on stainless steel surface, and 5 smallest possible value	
	of the experimental heat transfer coefficient (minorant)	394
Fig. 14.7	Flow calculation schematic of liquid near the boundary	
	of a dry spot in the regime of vapor conglomerates	396

List of Tables

Table 3.1	Harmonic oscillations. Spatial problem for a semi-infinite	4.5
T-1-1-2-2	body $(m = 0)$. Values of the factor of conjugation	45
Table 3.2	Harmonic oscillations. Time-dependent problem	
	for a semi-infinite body $(m = \infty)$. Values of the factor	
	of conjugation	46
Table 3.3	Inverse harmonic oscillations. Spatial problem	
	for a semi-infinite body $(m = 0)$. Values of the factor	
	of conjugation	49
Table 3.4	Inverse harmonic oscillations. Time-dependent problem	
	for a semi-infinite body $(m = \infty)$. Values of the factor	
	of conjugation	50
Table 3.5	Step oscillations. Spatial problem for a semi-infinite	
	body $(m = 0)$. Values of the factor of conjugation	60
Table 3.6	Step oscillations. Time-dependent problem	
	for a semi-infinite body $(m = \infty)$. Values of the factor	
	of conjugation	61
Table 3.7	Step oscillations. Time-dependent problem $(m = \infty)$.	
	Thermal boundary condition $\vartheta_0 = \text{const. Values}$	
	of the factor of conjugation	62
Table 3.8	Step oscillations. Time-dependent problem $(m = \infty)$.	
	Thermal boundary condition $q_0 = \text{const. Values}$	
	of the factor of conjugation	64
Table 3.9	Step oscillations. Spatial problem $(m = 0)$. Thermal	
	boundary condition $\vartheta_0 = \text{const.}$ Values of the factor	
	of conjugation	66
Table 3.10	Spatial problem $(m = 0)$. Thermal boundary condition	
	$q_0 = \text{const. Values of the factor of conjugation} \dots$	67
Table 6.1	Parameters of the model experiment	137
Table 9.1	Comparison of the values of thermometric conductivity	
	a_e and the relaxation t_r , from experiments in [21–25]	224
Table 10.1	Values of the coefficients in the polynomial in Eq. (10.59)	255