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Introduction to Smart Power Systems
Sivaraman Palanisamy1, Zahira Rahiman2, and Sharmeela Chenniappan3

1World Resources Institute (WRI) India, Bengaluru, India
2Department of Electrical and Electronics Engineering, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
3Department of Electrical and Electronics Engineering, Anna University, Chennai, India

1.1 Problems in Conventional Power Systems

The conventional power system is generally classified as power generation, power transmission, and power dis-
tribution systems. The power is generated from thermal plants, nuclear plants, or hydroplants at remote locations
and this is transmitted to the load center through a power transmission system [1]. The distribution system is
used to distribute the electric power to various end-users. It has limited control and visibility of power flows from
generation to the end user’s load. Some of the problems associated with conventional systems are limited visibil-
ity in power flows, limited control, delay in measurement and control, higher energy losses in transmission and
distribution systems, poor power quality, etc. [2].

1.2 Distributed Generation (DG)

The distributed generation (DG) is used to produce the electric power closer to the load center or end-user loads
to reduce the energy loss in the transmission as well as distribution system and improve the voltage profile. The
sources of DG can be both renewable energy sources (like solar, wind, and fuel cells), and nonrenewable energy
sources (like diesel generators). These sources as simply called distributed energy resources (DERs) [3]. Generally,
these DGs are interconnected with the primary or secondary distribution systems based on their rating. Figure 1.1
shows the single-line diagram of a 100 kW rooftop solar PV system as DG connected to the 415 V, 50 Hz secondary
distribution system.

Figure 1.2 shows the single-line diagram of a 1 MW rooftop solar PV system as DG connected to the 11 kV, 50 Hz
primary distribution system.

The intermittency is one of the major challenges of using renewable energy sources such as solar PV and wind
energy conversion systems as DG. Due to intermittence, the output power from the solar PV system and wind
energy conversion system also varies throughout the operation resulting in power balance and stability issues [4].
The impact of intermittency can be reduced to a certain extent by using a complex software program/tool to predict
the energy output based on various historical data.

Artificial Intelligence-based Smart Power Systems, First Edition.
Edited by Sanjeevikumar Padmanaban, Sivaraman Palanisamy, Sharmeela Chenniappan, and Jens Bo Holm-Nielsen.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 1.1 Single line diagram of a rooftop solar PV system connected to the secondary distribution system.

1.3 Wide Area Monitoring and Control

Power grids are the most complicated and essential systems in today’s life. The risk of experiencing a wide variety
of faults and failures is increasing [5]. The unpredictable and cascaded events of faults lead to a blackout, and they
have an impact on a large range of consumers. Many grid codes allow the frequency within the specified tolerance
limits. Hence, flexibility in frequency leads to under drawl or over drawl of real power, as well as under generation
or over a generation by the utilities. This results in the overloading of transmission lines and under voltage or over
voltage of the grid. Also, unpredictability, intermittency, and variability of renewable energy integration pose chal-
lenges in grid operation. Conventional Supervisory Control and Data Acquisition (SCADA) systems are limited
to steady-state measurements and cannot be used for observing the system dynamics behavior. To overcome the
drawbacks of a conventional system, one of the most recent advancements in modern power grids is wide-area
monitoring (WAM). With the developments of WAM, power system dynamic behavior is monitored closely in
real-time. So that the faults in the power grid can be identified and protected in a wider range [6].

The overall goal of using WAM is to improve protection and to develop new protection concepts that will make
blackouts less probable and much less severe even if they do occur. The following are the key areas where WAM
can help to protect power systems.

1. Dealing with large-scale interruptions
2. Taking the appropriate precautions to mitigate the impact of failed systems
3. Ignoring relay settings that are incompatible with the current system configuration
4. Achieving a reasonable balance between security and dependability
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Figure 1.2 Single line diagram of a rooftop solar PV system connected to the primary distribution system.

The purpose of protection is to safeguard specific elements of the power system as well as the security of the
power system as a whole.

In the case of main equipment protection, WAM plays a significant role. This is due to the fact that primary
protection must consistently offer a very fast response to any failure on the element that it safeguards. WAM,
on the other hand, can be a beneficial tool for increasing system performance due to the slower response time
necessary for backup protection and the fact that it protects a zone of the system. Wide-area measurements have
the potential to enable the development of supervisory methods for backup protection, more complex types of
system protection, and altogether new protection concepts. Examples of these protection functions are

1. Dynamic relays adjust their parameters in response to changes in the system condition.
2. Multiterminal line protection has been improved.
3. Predictive end-of-line protection, which monitors the distant location breaker and replaces the under-reaching

Zone 1 with an instantaneous characteristic if it is open.
4. Modify relay settings temporarily to prevent malfunction during cold load pickup.
5. Employ the capability of modern relays to self-monitor to find hidden faults and use the IEC 61850 hot-swap

capabilities to eliminate them.
6. Artificial controlled microgrids provide an adaptive controlled divergence to prevent an uncontrolled system

separation.

WAM gathers data from remote places throughout the power grid and integrates them in real-time into a single
snapshot of the power system for a given time. Synchronized measurement technology (SMT) is a crucial com-
ponent of WAM because it allows measurements to be correctly timestamped, typically using global positioning
system (GPS) timing signals. The data may be simply merged with these timestamps, and phase angle measure-
ments can be made with a common reference [7]. Figure 1.3 shows the generic WAMS architecture based on phasor
measurement units (PMUs). PMUs, phasor data concentrators (PDCs), communication networks, data storage,
and application software are the primary components of WAM. The number of substation PDCs is determined
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Figure 1.3 Block diagram of wide-area monitoring and
control.

by the power system requirements. Voltage, current, and frequency are measured by PMUs placed in substations.
These readings are routed straight to the central PDC or a substation PDC.

The following functions are available at the PDC substation:

✓ Synchronization of date and time
✓ Gathers info from PMUs
✓ Analyzes collected data
✓ Data is sent to the central PDC
✓ Communicates data with the regional SCADA
✓ Data is archived locally
✓ Carries out local data analysis and security actions

1.4 Automatic Metering Infrastructure

The name Advanced Metering Infrastructure or simply AMI refers to the entire infrastructure, which includes
everything from smart meters to two-way communication networks to control center equipment, as well as all
the applications that allow for the gathering and transfer of energy usage data in real-time. The backbone of the
smart grid [8] is AMI, which enables two-way connectivity with customers. Error-free meter reading from remote,
network problem and its diagnosis, load profile/patterns, energy audits/consumptions, and partial load curtail-
ment in place of load shedding are all potential objectives of AMI. The typical building blocks of AMI are shown
in Figure 1.4.

AMI is made up of several hardware and software components that all work together to measure energy con-
sumption and send data about it to utility companies and customers [8]. The key technological components of
AMI are,

◽ Smart Meters: Advanced meter devices that could gather data of electrical parameters at various intervals
and transfer the data to the utility via fixed communication networks, as well as receiving information from
the utility such as pricing signals and relaying it to the consumer [9].
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Figure 1.4 Basic building blocks of AMI.

• Communication Network: Smart meters can provide data to utility companies and vice versa. The
advanced communication networks allow two-way communication between smart meters and utility com-
panies. For these applications, networks like Broadband over Powerline (BPL), Power Line Communications
(PLC), Fiber Optic Communication, Fixed Radio Frequency (RF), or public networks (e.g. landline, cellular,
paging) are used [10].

• Meter Data Acquisition System: Data is collected from smart meters over a communication network and
sent to the meter data management system (MDMS) using software applications on the Control Centre hard-
ware and DCUs (Data Concentrator Units).
MDMS Metering: receives the information, stores it, and analyzed it by the host system.

◽ Home Area Network (HAN): It can be a consumer-side extension of AMI, allowing for easier communication
between household appliances and AMI, and thus better load control by both the utility and the consumer [11].

The benefits of AMI are multifold and can be generally categorized as follows:

Operational Benefits: The entire system benefits from AMI since it improves meter reading accuracy, detects
energy theft, and responds to power outages while removing the need for an on-site meter reading.

Financial Benefits: Utility companies financially benefit from AMI because it lowers equipment and mainte-
nance costs, enables faster restoration of electric service during outages, and streamlines the billing process.

Customer Benefits: Electric customers benefit from AMI because it detects meter faults early, allows for speed-
ier service restoration, and improves billing accuracy and flexibility. AMI also offers time-based tariff choices,
which can help consumers save money and better manage their energy usage.

Security Benefits: AMI technology allows for better monitoring of system resources, reducing the risk of
cyber-terrorist networks posing a threat to the grid.

In spite of various advantages, AMI deployment faces three significant challenges: higher capital costs or invest-
ments, connection or interoperability with other grid systems, and standardization.

High Capital Costs: A full-scale implementation of AMI necessitates investments in all hardware and software
components, including smart meters, network infrastructures, and network management software, as well as
costs associated with meter installation and maintenance.

Integration: Customer Information Systems (CISs), Geographical Information Systems (GISs), Outage Man-
agement Systems (OMSs), Work Management System (WMS), Mobile Workforce Management (MWM),
SCADA/DMS, Distribution Automation System (DAS), and other utilities’ information technology systems
essentially integrated with AMI.

Standardization: Compatibility standards must be created, as they are the keys to properly connecting and
sustaining an AMI-based grid system. They set universal requirements for AMI technology, deployment, and
general operations.
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Investing in AMI to modernize the power grid system will alleviate several grid stresses caused by the rising
power demands. AMI will improve three critical aspects of power grid infrastructure such as system reliability,
energy cost, and electricity theft.

System Reliability: AMI technology increases electricity distribution and overall dependability by allowing elec-
tricity distributors to identify and respond to electric demand automatically, reducing power outages.

Energy Costs: Increased stability and functionality, as well as fewer power outages and streamlined billing oper-
ations, will greatly reduce the expenses involved with providing and maintaining the grid, resulting in signifi-
cantly cheaper electricity bills.

Electricity Theft: Electricity theft is a prevalent problem in Society. AMI systems that track energy usage will aid
in monitoring power in real-time, resulting in enhanced system transparency.

1.5 Phasor Measurement Unit

A phasor measurement unit or simply PMU is a crucial measurement tool that is used on electric power systems
to improve grid operators’ visibility on the huge power grid network/system [12]. It measures the parameter called
a phasor and it provides the information/data of magnitude and phase angle of voltage or current at a particular
location [13]. This information/data shall be used to find the operating frequency at a particular time instant and
examine the condition of the system as shown in Figure 1.5.

A PMU may provide up to 60 measurements per second. As compared with a typical SCADA-based system, the
measurements per second are higher in PMU. A typical SCADA-based system will provide the data (one measure-
ment data in two to four seconds time interval) [14]. The main advantage of using PMU over conventional SCADA
system is PMU can collect the data of all PMU at a particular time through GPS. This means, that collected data
across the power grid are time-synchronized. Because of this reason, PMUs are also called synchro phasors [15].

The information collected from the PMU conveys to the system operator whether the main electrical parameters
such as voltage, current, and frequency are within the specified limit with tolerance or not. The capability of the
PMU is as follows,

◾ Line congestion: prediction, analysis, and manage
◾ Analyzing the event after the disturbance or fault (post fault analysis)
◾ Instability and stress detection
◾ Inefficiencies detection

In this decade, several thousands of PMUs are successfully installed and commissioned in transmission and/or
distribution grids across the globe. A PMU can be integrated with smart controllers, and this will reduce the man-
ual operations required by the SCADA system in decision making and control. Due to this feature, the grid becomes
robust and efficient, it allows the more integration of renewable powers, DERs, and microgrids.

The report on Unified Real-Time Dynamic State Measurement (URTDSM) by Power Grid Corporation of India
Ltd. (PGCIL) shows the importance of PMU data (data from various lines at time-stamped) is useful for prediction
and post fault event analysis. PGCIL followed the philosophy stated below for installing the PMUs across India,
installation of PMUs on substations at 400 kV level above, all generating stations at 220 kV level and above, HVDC
terminals, important inter-regional connection points, inter-national connection points, etc. Also, the provision
of PDC at all State Load Dispatch Centers (SLDCs), Regional Load Dispatch Centers (RLDCs), and National Load
Dispatch Center (NLDC) [7].

The PMU is used to measure the magnitude and phase angle of bus voltage and line current phasor. PMU takes
the bus PT input for voltage and line CT input for current at the substation as well as GPS time signal. The PMU
presently available in the market can measure one set of bus voltage (three-phase) and two sets of line current
(three-phase). The typical arrangement of PMU in substation and Main Phasor Data Concentrator (MPDC)/Sub
Phasor Data Concentrator (SPDC) in load dispatch center is shown in Figure 1.6 [7].


