

Advanced Testing of Systems-of-Systems 1

Advanced Testing of
Systems-of-Systems 1

Theoretical Aspects

Bernard Homès

First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2022
The rights of Bernard Homès to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2022943899

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-749-1

Contents

Dedication and Acknowledgments . xiii

Preface . xv

Chapter 1. Introduction . 1

1.1. Definition . 1
1.2. Why and for who are these books? . 3

1.2.1. Why? . 3
1.2.2. Who is this book for? . 4
1.2.3. Organization of this book . 5

1.3. Examples . 5
1.4. Limitations . 7
1.5. Why test? . 7
1.6. MOA and MOE . 8
1.7. Major challenges . 9

1.7.1. Increased complexity . 9
1.7.2. Significant failure rate . 12
1.7.3. Limited visibility . 12
1.7.4. Multi-sources and complexity . 13
1.7.5. Multi-enterprise politics . 14
1.7.6. Multiple test levels . 16
1.7.7. Contract follow-up, measures, reporting and penalties 18
1.7.8. Integration and test environments . 19
1.7.9. Availability of components . 20
1.7.10. Combination and coverage . 21
1.7.11. Data quality . 21
1.7.12. Flows, pivots and data conversions . 22

vi Advanced Testing of Systems-of-Systems 1

1.7.13. Evolution and transition . 23
1.7.14. History and historization . 23
1.7.15. Impostors . 24

Chapter 2. Software Development Life Cycle 27

2.1. Sequential development cycles . 28
2.1.1. Waterfall . 29
2.1.2. V-cycle . 30
2.1.3. Spiral and prototyping . 32
2.1.4. Challenges of sequential developments . 34

2.2. Incremental development cycles . 34
2.2.1. Challenges of incremental development 35

2.3. Agile development cycles . 35
2.3.1. Agile Manifesto . 36
2.3.2. eXtreme Programming . 39
2.3.3. Challenges of iterative cycles . 40
2.3.4. Lean . 47
2.3.5. DevOps and continuous delivery . 49
2.3.6. Agile development challenges . 52

2.4. Acquisition . 53
2.5. Maintenance . 54
2.6. OK, what about reality? . 55

Chapter 3. Test Policy and Test Strategy. 59

3.1. Test policy . 59
3.1.1. Writing test policy . 60
3.1.2. Scope of the test policy . 60
3.1.3. Applicability of the test policy . 61

3.2. Test strategy . 61
3.2.1. Content of a test strategy . 63
3.2.2. Test strategies and Taylorism . 65
3.2.3. Types of test strategies . 66
3.2.4. Test strategy and environments . 70

3.3. Selecting a test strategy . 71
3.3.1. “Completeness” of the strategy . 71
3.3.2. Important points in the strategy . 72
3.3.3. Strategy monitoring . 73
3.3.4. Shift left, costs and time . 74
3.3.5. “Optimal” strategy . 76
3.3.6. Ensuring success . 77

Contents vii

3.3.7. Why multiple test iterations? . 78
3.3.8. Progress forecast . 80
3.3.9. Continuous improvements . 81

Chapter 4. Testing Methodologies . 83

4.1. Risk-based tests (RBT) . 83
4.1.1. RBT hypothesis . 84
4.1.2. RBT methodology . 84
4.1.3. RBT versus RRBT . 90
4.1.4. Reactions to risks . 90
4.1.5. Risk computation . 91
4.1.6. RBT synthesis . 97
4.1.7. Additional references . 97

4.2. Requirement-based tests (TBX) . 97
4.2.1. TBX hypothesis . 98
4.2.2. TBX methodology . 99
4.2.3. TBX calculation . 99
4.2.4. TBX synthesis . 100

4.3. Standard-based (TBS) and systematic tests . 101
4.3.1. TBS hypothesis . 101
4.3.2. TBS calculation . 101
4.3.3. TBS synthesis . 102

4.4. Model-based testing (MBT) . 102
4.4.1. MBT hypothesis. 103
4.4.2. MBT calculation . 104
4.4.3. MBT synthesis . 104

4.5. Testing in Agile methodologies . 105
4.5.1. Agile “test” methodologies? . 105
4.5.2. Test coverage . 105
4.5.3. Hypothesis . 112
4.5.4. Calculation methods . 114
4.5.5. Synthesis . 116

4.6. Selecting a multi-level methodology . 116
4.6.1. Hypothesis . 117
4.6.2. Calculation . 118

4.7. From design to delivery . 119

Chapter 5. Quality Characteristics . 121

5.1. Product quality characteristics . 122
5.2. Quality in use . 125
5.3. Quality for acquirers . 125

viii Advanced Testing of Systems-of-Systems 1

5.4. Quality for suppliers . 126
5.5. Quality for users . 126
5.6. Impact of quality on criticality and priority . 127
5.7. Quality characteristics demonstration . 128

5.7.1. Two schools . 128
5.7.2. IADT proofs . 129
5.7.3. Other thoughts . 130

Chapter 6. Test Levels . 131

6.1. Generic elements of a test level . 132
6.1.1. Impacts on development cycles . 133
6.1.2. Methods and techniques . 134
6.1.3. Fundamental principles . 134

6.2. Unit testing . 137
6.3. Component integration testing . 139

6.3.1. Types of interfaces to integrate . 140
6.3.2. Integration challenges . 140
6.3.3. Integration models . 141
6.3.4. Hardware–software integration tests . 142

6.4. Component tests . 143
6.5. Component integration tests . 144
6.6. System tests . 145
6.7. Acceptance tests or functional acceptance . 147
6.8. Particularities of specific systems . 148

6.8.1. Safety critical systems . 148
6.8.2. Airborne systems . 148
6.8.3. Confidentiality and data security . 149

Chapter 7. Test Documentation . 151

7.1. Objectives for documentation . 152
7.2. Conformity construction plan (CCP) . 153
7.3. Articulation of the test documentation . 153
7.4. Test policy . 154
7.5. Test strategy . 155
7.6. Master test plan (MTP) . 156
7.7. Level test plan . 158
7.8. Test design documents . 159
7.9. Test case specification . 160
7.10. Test procedure specification . 160
7.11. Test data specifications . 161
7.12. Test environment specification . 161

Contents ix

7.13. Reporting and progress reports . 161
7.14. Project documentation . 162
7.15. Other deliverables . 163

Chapter 8. Reporting . 165

8.1. Introduction . 165
8.2. Stakeholders . 167
8.3. Product quality . 168
8.4. Cost of defects . 168
8.5. Frequency of reporting . 170
8.6. Test progress and interpretation . 170

8.6.1. Requirements coverage . 171
8.6.2. Risk coverage . 172
8.6.3. Component or functional coverage . 174

8.7. Progress and defects . 175
8.7.1. Defect identification . 176
8.7.2. Defects fixing . 177
8.7.3. Defect backlog . 177
8.7.4. Number of reopened defects . 179

8.8. Efficiency and effectiveness of test activities 180
8.9. Continuous improvement . 181

8.9.1. Implementing continuous improvements 181
8.10. Reporting attention points . 184

8.10.1. Audience . 184
8.10.2. Usage . 185
8.10.3. Impartiality . 185
8.10.4. Evolution of reporting . 186
8.10.5. Scrum reporting . 187
8.10.6. KANBAN reporting . 188
8.10.7. Test design reporting . 188
8.10.8. Test execution reporting . 189
8.10.9. Reporting software defects . 190
8.10.10. UAT progress reporting . 194
8.10.11. Reporting for stakeholders . 194

Chapter 9. Testing Techniques . 197

9.1. Test typologies . 197
9.1.1. Static tests and reviews . 198
9.1.2. Technical tests . 198

9.2. Test techniques . 199
9.3. CRUD . 200

x Advanced Testing of Systems-of-Systems 1

9.4. Paths (PATH) . 200
9.4.1. Operation . 200
9.4.2. Coverage . 204
9.4.3. Limitations and risks . 204

9.5. Equivalence partitions (EP) . 204
9.5.1. Objective . 207
9.5.2. Operation . 207
9.5.3. Coverage . 207
9.5.4. Limitations and risks . 207

9.6. Boundary value analysis (BVA) . 207
9.6.1. Objective . 208
9.6.2. Operation . 208
9.6.3. Coverage . 208
9.6.4. Limitations and risks . 208

9.7. Decision table testing (DTT) . 208
9.7.1. Objective . 209
9.7.2. Operation . 209
9.7.3. Coverage . 212
9.7.4. Limitations and risks . 212

9.8. Use case testing (UCT) . 212
9.8.1. Objective . 212
9.8.2. Operation . 213
9.8.3. Coverage . 213
9.8.4. Limitations and risks . 213

9.9. Data combination testing (DCOT) . 214
9.9.1. Objective . 214
9.9.2. Operation . 214
9.9.3. Coverage . 214
9.9.4. Challenge . 214

9.10. Data life cycle testing (DCYT) . 215
9.10.1. Objective . 215
9.10.2. Operation . 215
9.10.3. Coverage . 215
9.10.4. Challenge . 215

9.11. Exploratory testing (ET) . 216
9.11.1. Objective . 216
9.11.2. Operation . 216
9.11.3. Coverage . 217
9.11.4. Limitations and risks . 217

9.12. State transition testing (STT) . 218
9.12.1. Objective . 218
9.12.2. Operation . 219
9.12.3. Coverage . 219

Contents xi

9.13. Process cycle testing (PCT) . 219
9.13.1. Objective . 219
9.13.2. Operation . 219
9.13.3. Coverage . 220
9.13.4. Limitations and risks . 220

9.14. Real life testing (RLT) . 221
9.14.1. Objective . 221
9.14.2. Operation . 221
9.14.3. Coverage . 222
9.14.4. Limitations and risks . 222

9.15. Other types of tests . 223
9.15.1. Regression tests or non-regression tests (NRTs) 223
9.15.2. Automated tests . 224
9.15.3. Performance tests . 225
9.15.4. Security tests . 226

9.16. Combinatorial explosion . 227
9.16.1. Orthogonal array testing (OAT) . 228
9.16.2. Classification tree testing (CTT) . 229
9.16.3. Domain testing (DOM) . 230
9.16.4. Built-in tests (BIT, IBIT, CBIT and PBIT) 231

Chapter 10. Static Tests, Reviews and Inspections 233

10.1. What is static testing? . 235
10.2. Reviews or tests? . 236

10.2.1. What is a review? . 236
10.2.2. What can be subjected to reviews? . 236

10.3. Types and formalism of reviews . 237
10.3.1. Informal or ad hoc reviews . 239
10.3.2. Technical reviews . 239
10.3.3. Checklist-based reviews . 240
10.3.4. Scenario-based reviews . 240
10.3.5. Perspective-based reviews (PBRs) . 241
10.3.6. Role-based reviews . 241
10.3.7. Walkthrough . 241
10.3.8. Inspections . 241
10.3.9. Milestone review . 242
10.3.10. Peer review . 242

10.4. Implementing reviews . 242
10.5. Reviews checklists . 243

10.5.1. Reviews and viewpoint . 243
10.5.2. Checklist for specifications or requirements review 244
10.5.3. Checklist for architecture review . 245

xii Advanced Testing of Systems-of-Systems 1

10.5.4. Checklist for high-level design review 247
10.5.5. Checklist for critical design review (CDR) 248
10.5.6. Checklist for code review . 250

10.6. Defects taxonomies . 251
10.7. Effectiveness of reviews . 252
10.8. Safety analysis . 253

Terminology . 255

References . 263

Index . 269

Summary of Volume 2 . 271

Dedication and Acknowledgments

Inspired by a dedication from Boris Beizer1, I dedicate these two books
to many very bad projects on software and systems-of-systems development
where I had the opportunity to – for a short time – act as a consultant. These taught
me multiple lessons on difficulties that these books try and identify and led me to
realize the need for this book. Their failure could have been prevented; may they rest
in peace.

I would also like to thank the many managers and colleagues I had the privilege
of meeting during my career. Some, too few, understood that quality is really
everyone’s business. We will lay a modest shroud over the others.

Finally, paraphrasing Isaac Newton, If I was able to reach this level of
knowledge, it is thanks to all the giants that were before me and on the shoulders of
which I could position myself. Among these giants, I would like to mention (in
alphabetical order) James Bach, Boris Beizer, Rex Black, Frederic Brooks, Hans
Buwalda, Ross Collard, Elfriede Dustin, Avner Engel, Tom Gilb, Eliahu Goldratt,
Dorothy Graham, Capers Jones, Paul Jorgensen, Cem Kaner, Brian Marick, Edward
Miller, John Musa, Glenford Myers, Bret Pettichord, Johanna Rothman, Gerald
Weinberg, James Whittaker and Karl Wiegers.

After 15 years in software development, I had the opportunity to focus on
software testing for over 25 years. Specialized in testing process improvements, I
founded and participated in the creation of multiple associations focused on software
testing: AST (Association of Software Tester), ISTQB (International Software

1 Beizer, B. (1990). Software Testing Techniques, 2nd edition. ITP Media.

xiv Advanced Testing of Systems-of-Systems 1

Testing Qualification Board), CFTL (Comité Français des Tests Logiciels, the
French Software Testing committee) and GASQ (Global Association for Software
Quality). I also dedicate these books to you, the reader, so that you can improve your
testing competencies.

Preface

The breadth of the subject justifies splitting this work in two books. Part I, this
book, covers the general aspects applicable to systems-of-systems testing, among
them the impact of development life cycle, test strategy and methodology, the added
value of quality referential, test documentation and reporting. We identified the
impact of various test levels and test techniques, whether static or dynamic.

In the second book, we will focus on project management, identifying human
interactions as primary elements to consider, and we will continue with practical
aspects such as testing processes and their iterative and continuous improvement.
We will also see additional but necessary processes, such as requirement
management, defects management and configuration management. In a case study,
we will be able to ask ourselves several useful questions. We will finish this second
book with a rather perilous prospective exercise by listing the challenges that testing
will need to face in the coming years.

These two books make a single coherent and complete work building on more
than 40 years of experience by the author. The main aspect put forward is the
difference between the traditional vision of software testing – focused on one system
and one version – and the necessary vision when multiple systems and multiple
versions of software must be interconnected to provide a service that needs to be
tested thoroughly.

August 2022

1

Introduction

1.1. Definition

There are many definitions of what a system-of-systems (or SoS) is. We will use
the following one: “A system-of-systems is a set of systems, software and/or
hardware, developed to provide a service by collaborating together, by organizations
that are not under the same management”. This simple definition entails challenges
and adaptations that we will identify and study.

A system-of-systems can be considered from two points of view: on the one
hand, from the global systemic level (we could take the image of a company
information system) and, on the other hand, from the unitary application system
(which we may call a subsystem, application system or application, software-
predominant equipment or component). We will thus have at the upper level a
system-of-systems that could be a “information system” that is made of multiple
systems that we will call subsystems. For example, a company may have in their
information system one accounting system, a CRM, a human resource management
system, a stock management system, etc. These different systems are most likely
developed by different editors and their interaction provides a service to the
company. Other examples of systems-of-systems are air traffic systems, aircrafts and
satellite systems, vehicles and crafts. In these systems-of-systems, the service is
provided to the users when all subsystems work, correctly and quickly exchanging
data between them.

Systems-of-systems, even if they are often complex, are intrinsically different
from complex systems: a complex system, such as an operating system, may be
developed by a single organization (see Figure 1.1) and thus does not respond
exactly to the definition as the subsystems are developed under the same hierarchy.
The issue of diverse organizations and directions (see Figure 1.2) implies technical,
economic and financial objectives that may diverge between the parties and thus

2 Advanced Testing of Systems-of-Systems 1

multiple separate systems creating, when put together, a system-of-systems. A more
exhaustive description is presented in ISO21840 (2019).

Figure 1.1. Complex system

Figure 1.2. System-of-systems

Usually, a system-of-systems tend to have:

– multiple levels of stakeholders, sometimes with competing interests;

– multiple and possibly contradictory objectives and purposes;

– disparate management structures whose limits of responsibility are not always
clearly defined;

– multiple life cycles with elements implemented asynchronously, resulting in
the need to manage obsolescence of subsystems;

– multiple owners – depending on subsystems – making individual resource and
priority decisions.

Introduction 3

It is important to note that the characteristics differ between systems and
systems-of-systems and are not mutually exclusive.

1.2. Why and for who are these books?

1.2.1. Why?

Why a book on the testing of systems-of-systems? Systems-of-systems are part
of our everyday life, but they are not addressed in software testing books that focus
only on one software at a time, without taking into account the physical systems that
are required to execute them, nor the interactions between them that increase the
difficulty and combinatorial complexity of testing. To ensure quality for a system-
of-systems means to ensure for each subsystem (and sub-subsystem) the quality of
the design process for each of these systems, subsystems, components, software,
etc., that make them up.

Frequently, actors on a system-of-systems project focus only on their own
activity, resecting contractual obligations, without considering the requirements of
the overall system-of-systems or the impact their system may have on the system-of-
systems. This focus also applies when developing software to be used in a
company’s information system: the development teams seldom exchange with the
teams in charge of support or production. This slowly changes with the introduction
of DevOps in some environments, but the gap between IT and business domains
remains large.

As more projects become increasingly complex, connected to one another in
integrated systems-of-systems, books on advanced level software testing in the
frame of these kinds of systems become necessary.

Most books on software testing focus on testing one software for one structure,
where those that define requirements, design the software and test it are in the same
organization, or – at least – under the same hierarchy. These are thus a common
point for decisions. In a system-of-systems, there are at least two sets of
organizations: the client and the contractors. A contractual relationship exists and
directs the exchanges between these organizations.

Many specific challenges are associated with these contractual relationships:

– Are requirements and specifications correctly defined and understood by all
parties?

– Are functionalities and technical characteristics coherent with the rest of the
system-of-systems with which the system will be merged?

4 Advanced Testing of Systems-of-Systems 1

– Have evolutions, replacements and possible obsolescence been considered for
the whole duration of the system-of-systems being developed?

In a system-of-systems, interactions with other systems are more numerous than
in a simple system. Thus, the verification of these numerous exchanges between
components and systems will be a heavier load than for other software. In case of
defect, it will be necessary to identify which party will have to implement the fixes,
and each actor will prefer to reject the responsibility to others. These decisions may
be influenced by economic factors (it may be cheaper to fix one system instead of
another), regulatory factors (conformance may be easier to demonstrate on one
system instead of another), contractual or technical (one system may be simpler to
change than another).

Responsibilities are different between the client and the organization that
executes the development. The impact is primarily felt by the client, and it is up to
the development organization to ensure the quality of the developments.

The increase in the complexity of IT solutions forces us to envisage a more
efficient management of specific challenges linked to systems-of-systems to which
we are increasingly dependent.

1.2.2. Who is this book for?

Design of software, systems and systems-of-systems requires interaction
between many individuals, each with different objectives and different points of
view. The notion of “quality” of a deliverable will vary and depend on the relative
position of each party. This book tries to cover each point of view and shows the
major differences between what is described in many other books – design and test
of a single software application – with regard to the complexity and reality of
systems-of-systems. The persons who could benefit from reading this book are as
follows:

– design organization project managers who must ensure that the needs of users,
their customers and their clients are met and therefore that the applications, systems
and systems-of-systems are correctly developed and tested (i.e. verified and
validated);

– by extension, the design organization we will have assistant Project Managers,
who will have to ensure that the overall objectives of the designing organization are
correctly checked and validated, especially taking into account the needs of the users
– forever changing given the length of systems-of-systems projects – and that the
evidence provided to justify a level of quality is real;

Introduction 5

– customer project managers, whether for physical (hardware) production or for
digital (software) production, and specifically those responsible for programs,
development projects or test projects, in order to ensure that the objectives of Design
organizations are correctly understood, deduced and implemented in the solutions
they put in place;

– test managers in charge of quality and system-of-systems testing (at design
organization level), as well as test managers in charge of quality and system testing
(at design and at client level), applications and predominant software components
entering into the composition of systems-of-systems, with the particularity that the
so-called “end-to-end” (E2E) tests are not limited to a single application or system,
but cover all the systems making up the system-of-systems;

– testers, test analysts and technical test analysts wishing to obtain a more global
and general vision of their activities, to understand how to implement their skills and
knowledge to further develop their careers;

– anyone wishing to develop their knowledge of testing and their impact on the
quality of complex systems and systems-of-systems.

1.2.3. Organization of this book

These books are part of a cycle of three books on software testing:

– the first book (Fundamentals of Software Testing, ISTE and Wiley, 2012)
focuses on the ISTQB Foundation level tester certification and is an aid to obtaining
this certification; it was elected third best software testing book of all time by
BookAuthority.org;

– this present book on the general aspects of systems-of-systems testing;

– a third book on practical implementation and case studies showing how to
implement tests in a system-of-systems, Advanced Testing of Systems-of-Systems 2:
Practical Aspects (ISTE and Wiley, 2022).

The last two books complement each other and form one. They are independent
of the first.

1.3. Examples

We are in contact with and use systems-of-systems of all sizes every day: a car,
an orchestra, a control-command system, a satellite telecommunications system, an
air traffic control management system, an integrated defense system, a multimodal
transport system, a company, all are examples of systems-of-systems. There is no
single organizational hierarchy that oversees the development of all the components

6 Advanced Testing of Systems-of-Systems 1

integrated into these systems-of-systems; some components can be replaced by
others from alternative sources.

In this book, we will focus primarily on software-intensive systems. We use
them every day: a company uses many applications (payroll, inventory management,
accounting, etc.) developed by different companies, but which must work together.
This company information system is thus a system-of-systems.

Our means of transportation are also systems-of-systems: the manufacturers (of
metros, cars, planes, trains, etc.) are mainly assemblers integrating hardware and
software designed by others.

Operating systems – for example, open source – integrating components from
various sources are also systems-of-systems. The developments are not carried out
under the authority of an organization, and there is frequently integration of
components developed by other structures.

The common elements of systems-of-systems – mainly software-intensive
systems – are the provision of a service, under defined conditions of use, with
expected performance, providing a measurable quality of service. It is important to
think “systems” at the level of all processes, from design to delivery to the
customer(s) of the finished and operational system-of-systems.

Often, systems-of-systems include, within the same organization, software of
various origins. For example, CRM software such as SAP, a Big-Data type data
analysis system, vehicle fleet management systems, accounting monitoring or
analysis of various origins, load sharing systems (load balancing), etc.

The examples in this book come from the experience of the author during his
career. We will therefore have examples in space, military or civil aeronautics,
banking systems, insurance and manufacturing.

To fully understand what a system-of-system is in our everyday life, let’s take
the example of connecting your mobile phone to your vehicle. First of all, we have
your vehicle, and the operating system which interacts via a Bluetooth connection
with your phone. Then, we have your phone, which has an operating system version
that evolves separately from your car; then, we have the version of the software app
which provides the services to your phone and is available on a store. Finally, we
have the subscription that your car manufacturer provides you with to ensure the
connection between your vehicle and your phone. This subscription is certainly
supported by a series of mainframes, legacy applications and these must also be
accessible via the Web. The information reported by your vehicle will certainly be
included in a repository (Big Data, Datalake, etc.) where it can be aggregated and

Introduction 7

allow maintenance of your vehicle as well as improvement in the maintenance of
vehicles of your type. This maintenance information will allow your dealer to warn
you if necessary (e.g. failure identified while the vehicle is not at the garage, and
need to go to a garage quickly). You can easily identify all the systems that need to
communicate correctly so that you – the user – are satisfied with the solution offered
(vehicle + mobile + application + subscription + information reported + emergency
assistance + vehicle monitoring + preventive or corrective maintenance + … etc.).

1.4. Limitations

This book will focus primarily on systems-of-systems and software-intensive
systems, and how to test such systems. The identified elements can be extrapolated
to physical systems-of-systems.

As we will focus on testing, the view we will have of systems-of-systems will be
that of Test Managers: either the person in charge of testing for the client or for the
design organization, or in charge of testing a component, product, or subsystem of a
system-of-systems, in order to identify the information to be provided within the
framework of a system-of-systems. We will also use this view of the quality of
systems and systems-of-systems to propose improvements to the teams in charge of
implementation (e.g. software development teams, developers, etc.).

This work is not limited to the aspects of testing – verification and validation –
of software systems, but also includes the point of view of those in charge of
improving the quality of components – software or hardware – and processes
(design, maintenance, continuous improvement, etc.).

As part of this book, we will also discuss the delivery aspects of systems-of-
systems in the context of DevOps.

1.5. Why test?

The necessity of testing the design of software, components, products or systems
before using or marketing them is evident, known and recognized as useful. The
objective of the test can be seen according to a system of five successive phases, as
proposed by Beizer (1990):

– testing and debugging are related activities in that it is necessary to test in order
to be able to debug;

– the purpose of the test is to show the proper functioning of the software,
component, product or system;

8 Advanced Testing of Systems-of-Systems 1

– the purpose of the test is to show that the software, component, product or
system does not work;

– the objective of the test is not to prove anything, but to reduce the perceived
risk of non-operation to an acceptable value;

– the test is not an action; it is a mental discipline resulting in software,
components, products or systems having little risk, without too much testing effort.

Each of these five phases represents an evolution of the previous phases and
should be integrated by all stakeholders on the project. Any difference in the
understanding of “Why we test” will lead to tensions on the strategic choices (e.g.
level of investment, prioritization of anomalies and their criticalities, level of
urgency, etc.) associated with testing.

A sixth answer to the question “why test?” adds a dimension of improving
software quality and testing processes to identify anomalies in products comprising
software such as systems-of-systems. This involves analyzing the causes of each
failure and implementing processes and procedures to ensure the non-reproducibility
of this type of failure. In critical safety areas (e.g. aeronautics), components are
added to the systems to keep information on the operating status of the systems in
the event of a crash (the famous “black boxes”). The analysis of these components is
systematic and makes it possible to propose improvements in procedures or aircraft
design, so as to make air travel even more reliable.

Adding such a way of doing things to development methods is what is planned
during sprint retrospectives (Agile Scrum methodology) and more generally in
feedback activities. This involves objectively studying anomalies or failures and
improving processes to ensure that they cannot recur.

1.6. MOA and MOE

When talking about systems-of-systems, it is common (in France) to use the
terms client project management (MOA) and designer project management (MOE).
These acronyms from cathedral building have been taken up in the world of
software engineering. They are 100% French-speaking, and represent two different
views of the same things:

– the client project owner (abbreviated MOA) represents the end users that have
the need and define the objectives, schedule and budget; MOA is responsible for the
needs of the company, of the users and of their customers, of the principals,
sponsors or stakeholders, of the business of the company. There usually is only one
MOA;

Introduction 9

– the designer project manager (abbreviated MOE) represents the person (or
company) who designs and controls the production of an element or a set of
elements making up the system-of-systems; it is all the production teams, with
constraints and objectives often different from those of the company and the
principals. There could be multiple MOE.

In a system-of-systems, we therefore must take into account this separation
between MOA (client) and MOE (supplier) and therefore the two separate views of
each of these major players.

When we deal with systems-of-systems testing, we will speak of “test manager”,
but these can be assigned to a single test level (e.g. for a software subsystem) or
cover several levels (e.g. the manager responsible for testing at the project
management level).

1.7. Major challenges

Recent statistics1 show that only 6% of large IT projects are successful and 52%
are outside budget, timeframe or lack all the expected functionalities. The remaining
42% are cancelled before their delivery, becoming losses for the organizations.

We can conclude that the most appropriate development and testing processes
should be implemented to minimize, as much as possible, the risks associated with
systems-of-systems. When compared to complex systems, Test Managers of
systems-of-systems face and must master many challenges.

1.7.1. Increased complexity

Systems-of-systems are generally more complex and larger than complex
systems developed by a single entity. We must consider:

– interfaces and interoperability of systems with each other, both logical
(messages exchanged, formats, coding, etc.) and physical (connectors, protections
against EMP, length of connectors, etc.);

– development life cycles of the organizations and their evolutions;

– obsolescence of components of the system-of-systems, as well as their versions
and compatibilities;

1 According to https://www.standishgroup.com/sample_research_files/BigBangBoom.pdf.

10 Advanced Testing of Systems-of-Systems 1

– integration of simulation and decision support tools, as well as the
representativity of these tools with regard to the components they simulate;

– governance and applicable standards – as well as their implementation – for
both process and product aspects;

– design architecture and development process frameworks;

– the quality of requirements and specifications, as well as their stability or
evolution over time;

– the duration of the design process to develop and integrate all the components,
compatibility of these with each other, as well as their level of security and the
overall security of the entire system-of-systems;

– organizational complexity resulting from the integration of various
organizations (e.g. following takeovers or mergers) or the decision to split the
organizations, to call on relocated external subcontracting (offshore) or not;

– the complexity of development cycles stemming from the desire to change the
development model, which implies the coexistence of more or less incompatible
models with each other for fairly long periods.

Figure 1.3. Simple–complicated–complex–chaotic

We could use the CYNEFIN2 model (see Figure 1.3, simple–complicated–
complex–chaotic) to better understand the aspects of evolution between simple

2 https://www.le-blog-des-leaders.com/cynefin-framework/.

Introduction 11

systems (most software developments), complicated systems (e.g. IT systems),
complex systems (the majority of systems-of-systems) and chaotic systems, where
the number of interactions is such that it is difficult (impossible?) to reproduce
and/or simulate all the conditions of execution and operation of the system-of-
systems.

To determine if the system is simple, complicated, complex or chaotic, we can
focus on the predictability of effects and impacts. We also have the “disorder” state
which is the initial position from which we will have to ask ourselves questions to
determine which model of system we should turn to.

1.7.1.1. Simple

If the causes and effects are well known and predictable, the problem is said to
be “simple”. The steps can be broken down into feeling, categorizing and then
acting. We can look at the applicable “best practices” and select the one(s) that
is(are) appropriate, without needing to think too much.

1.7.1.2. Complicated

An environment will be said to be “complicated” when the causes and effects are
understandable but require a certain expertise to understand them. The domain of
practices – including software testing practices – is that of “best practices”, known
to experts and consultants and making it possible to reach a predefined final target.

1.7.1.3. Complex

In the realm of the “complex”, the causes and effects are difficult to identify, to
understand, to isolate and to define. It seems difficult, if not impossible, to get
around the question. We are moving here from the field of “best practices” to that of
the emergence of solutions appearing little by little, without an a priori identification
of the final target. We are no longer here in a posture of expertise but are entering
into a posture of a coach who asks questions, who enlightens through reflections and
makes the actors gain understanding.

1.7.1.4. Chaotic

In a so-called “chaotic” system, we are unable to distinguish the links between
causes and their effects. At this level, the reaction will often be an absence of
reaction, like paralysis. When you’re in chaos, the only thing you can do is get out
of the chaos as quickly as possible, by any means imaginable. Given the exceptional
side of what is happening, there are no best practices to apply. You will also not
have the time to consult experts who will take a few weeks to analyse in detail what
is happening and finally advise you on the right course of action. You will certainly

12 Advanced Testing of Systems-of-Systems 1

not have the time to do a few harmless experiments to let an original solution
emerge. The urgency is to take shelter: the urgency is to act first.

1.7.2. Significant failure rate

Most systems-of-systems are large – even very large – projects. Measured in
function points (e.g. IFPUG or SNAP), these projects easily exceed 10,000 function
points and even reach 100,000 function points. Capers Jones (2018a) tells us that on
average these projects have a 31–47% probability of failure. The Chaos Report in
2020 confirms this trend with 19% of projects failing and 50% seriously off budget,
off deadline or lacking in quality.

Since the causes of failure add up to one another, it is critical to implement
multiple quality improvement techniques throughout the project, from the start of
the project. The choice of these techniques should be made based on their measured
and demonstrated effectiveness (i.e. not according to the statements or opinions of
one or more individual). A principle applicable to QA and testing is “prevention is
better than cure”. It is better to detect a defect early and avoid introducing it into any
deliverable (requirements, codes, test cases, etc.), rather than discovering it late. This
principle also applies to tests: reviews and inspections have demonstrated their
effectiveness in avoiding the introduction of defects (measured effectiveness greater
than 50%), while test suites generally only have an effectiveness of less than 35%.
This is the basis of the “shift left” concept which encourages finding defects as early
as possible (to the left in the task schedule). This justifies providing stakeholders
with information on the level of quality of systems-of-systems from the start of
design, as well as measurable information for each of the subsystems that compose
them. Implementing metrics and a systematic reporting of measures is therefore
necessary to prevent dangerous drifts from appearing and leading the project to
failure.

1.7.3. Limited visibility

Since systems-of-systems are large projects involving several organizations, it is
difficult to have complete and detailed visibility into all the components and their
interactions with each other. It will be necessary to use documentation – paper or
electronic via tools – to transmit the information. In this type of development, these
activities will sometimes be taken over by those in charge of Quality Assurance.
Test Managers belong to Quality Assurance, focusing mainly on the execution of
tests to verify and validate requirements and needs.

