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Hydrogeochemistry has always been a subject to solve the relationships between ground-
water, surface water, and aquatic systems’ chemical characteristics and their relation-
ship with the area’s geology. The phenomenon of hydrogeochemical variations depends 
on various geochemical processes, like weathering, evaporation, and dissolution, and 
diverse anthropogenic activities that control the aquatic systems’ hydrogeochemistry. 
Almost all aquatic systems are affected by human interventions, causing several 
problems. Further climate change also impacts the hydrogeochemistry of different 
ecosystems. It is, therefore, vital to understand the current status of the aquatic systems 
to manage and mitigate the impacts. This book covers current issues related to hydro-
geochemistry of natural aquatic systems, including river, glaciers, lake, and sub-surface 
ecosystems, processes involved, and human beings’ interference. This book tries to 
address all the major impending problems related to hydrogeochemistry of surface and 
sub-surface water with a certain degree of solutions to manage and conserve water 
resources. The various chapters will help to understand the processes and factors 
controlling the hydrogeochemistry of water resources. The book discusses multiple 
hydrogeochemical techniques like nutrient geochemistry, solute acquisition processes, 
water–sediment interactions, enrichment of geogenic elements like arsenic, fluoride, 
and uranium, anthropogenic addition, and biogeochemical cycling of metals, CO2 
consumption rate in the surface water bodies, sand mining in rivers, and hydrogeo-
chemical modeling. The other highlights of the book are carbon dynamics and its 
sequestration in surface water bodies, soil–water interactions, and sediment loading in 
aquatic ecosystems. The book encompasses knowledge on isotopic studies, microbial 
control in hydrogeochemistry along nutrient dynamics of the polar ice sheet and 
glaciers. The work contained in the book covers holistic and in-depth knowledge of the 
hydrogeochemistry of different aquatic ecosystems.

The chapters in the book address the impending problems with a certain degree of 
solutions to manage and conserve water resources. This book contains both practical and 
theoretical aspects of the hydrogeochemistry of aquatic systems. It will be helpful for 
undergraduate and graduate university students or researchers and teachers, environmen-
tal engineers, and scientists working in water resource management, environmental 
studies, and social issues. It will also be helpful for researchers and stakeholders from all 
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the sectors of industries and governmental agencies who are directly or indirectly associ-
ated with water resource research and management.

We tried a humble attempt to reflect upon the various aspects of aquatic hydrogeochem-
istry, hoping that it would be a significant addition to the already available literature. The 
contributors to the book having different backgrounds provide a holistic approach to the 
topic imbibing diverse practices and perspectives. We express our sincere gratitude to all 
the contributors and publishers for producing a remarkable and meaningful edited volume 
on an important issue.
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1.1  Introduction

Fluoride (F−) belongs to the halogen family and is a constituent in minerals such as fluo-
rite, fluorspar, apatite, biotite, cryolite, and muscovite (Bretzler and Johnson  2015; 
Dehbandi et  al.  2017), apart from its availabilities in plants, soil, and groundwater. 
Groundwater is one of the most important sources of drinking water and one of the funda-
mental human rights around the globe is an access to safe drinking. Contamination and 
unsustainable drinking water sources could affect human health, resulting in the transmis-
sion of diseases (WHO 2018). Fluoride is one of the ions which may lead to groundwater 
contamination if present in high concentrations. Although high F− in groundwater is a 
major concern that is still being debatable around the globe, fluoride is essential for the 
growth of the dental and skeletal frame of the body. Fluoride concentration in groundwater 
differs from one region to another based on aquifer material, geology, weathering rate, 
aquifer depth, contact time, pH, rainfall, and temperature (Brunt et  al.  2004; Onipe 
et al. 2020). The geochemical process governs fluoride mobility through leaching from soil 
and rocks to the groundwater. Studies suggest that exposure to high fluoride imparts a vul-
nerable effect on the mental ability of children. The IQ levels of children exposed to higher 
F− are lower than unaffected children (Choi et al. 2012; Das and Mondal 2016). The thyroid 
gland is susceptible to F−, which causes an increase in thyroid-stimulating hormone (TSH) 
leading to a drop in Triiodothyronine (T3) and Thyroxine (T4) levels, thereby resulting in 
hypothyroidism (McLaren 1976; Shashi 1988; Kumar et al. 2019). Fluorosis results from a 
high concentration of fluoride in drinking water and depends on other sources such as 
dietary habits that enhance the incidence of fluorosis (Brindha and Elango 2011; Srivastava 
and Flora 2020). Several countries, such as West Indies, India, Poland, China, Spain, Africa, 
and Italy, have been reported with high fluoride concentrations (Huang et al. 2017). The 
geochemical data for Cameroon, Algeria, Ghana, United Kingdom, Siri Lanka, Argentina, 
Canada, Tanzania, Kuwait, South Africa (Silom), India (Telangana), and Brazil were 
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collected from the literature to understand the geochemistry of F− (Table 1.1). Some of the 
published data for selected countries does not contain the complete analysis results. Based 
on the available ions in the analytical data, they were used for statistical analysis using 
Statistical Package for Social Sciences (SPSS) software. The same analytical data were used 

Table 1.1  Lithology and analytes considered from the literature studies of various countries but 
clay minerals like Vermiculite have also reported to be a source of F− in groundwater due to the 
process of Fluoride ion.

Country Lithology type Analytes Reference

Algeria Sedimenatary (sand 
and gravel, limestone, 
clay, and shale)

pH, EC, Ca2+, Mg2+, Cl–, 
SO4

2–, HCO3
–, F–

Messaitfa (2007)

Argentina Thick sedimentary 
rock and 
volcanoclastic mineral

pH, EC, temperature, Na+, 
K+, Ca2+, Mg2+, Cl–, SO4

2–, 
HCO3

–, CO3
2– F–, NO3

–, Si, 
Fe2+, Al3+, Be2+, U, B

Ganyaglo et al. (2019); 
Jayawardana et al. 
(2012); Edmunds and 
Smedley (2013)

Brazil Sedimentary pH, EC, Ca2+, Mg2+, Cl–, 
SO4

2–, HCO3
–, F–

Rockett et al. (2013)

Canada — pH, EC, temperature, Na+, 
K+, Ca2+, Mg2+, Cl–, SO4

2–, 
HCO3

–, CO3
2– F–, NO3

–, Si, 
Fe2+, Al3+, Be2+, U, B

Ganyaglo et al. (2019); 
Jayawardana et al. 
(2012); Edmunds and 
Smedley (2013)

Central Africa 
(Cameroon)

Crystalline basement 
(granite)/ Tertiary 
sedimentary rocks

pH, EC, temperature, Na+, 
K+, Ca2+, Mg2+, Cl–, SO4

2–, 
HCO3

–, F–, NO3
–

Fantong et al. (2009)

Ghana Precambrian 
crystalline and 
igneous rocks (granite)

pH, EC, TDS, temperature, 
Na+, K+, Ca2+, Mg2+, Cl–, 
SO4

2–, HCO3
–, CO3

2– F–, NO3
–

Sunkari an Abu 
(2019)

India 
(Telangana)

Igneous rock (granite) Narsimha and 
Sudarshan (2017)

Kuwait Sedimentary 
siliciclastic and 
carbonates

pH, EC, TDS, temperature, 
Na+, K+, Ca2+, Mg2+, Cl–, 
SO4

2–, HCO3
–, CO3

2– F–, 
NO3

–, B, NH4+, PO4
3–, 

SiO2, Fe2+, Al3+, Ba2+, Li+, 
Mn2+, Mo, Ni2+, Zn2+

Al-Senafy et al. (2011)

South Africa 
(Silom)

— pH, EC, TDS, temperature, 
Na+, K+, Ca2+, Mg2+, Cl–, 
SO4

2–, HCO3
–, CO3

2– F–, 
NO3

–, PO4
3–

Onipe et al. (2021)

Sri Lanka High-grade 
metamorphic rock

pH, EC, temperature, Na+, 
K+, Ca2+, Mg2+, Cl–, SO4

2–, 
HCO3

–, CO3
2– F–, NO3

–, Si, 
Fe2+, Al3+, Be2+, U, B

Ganyaglo et al. (2019); 
Jayawardana et al. 
(2012); Edmunds and 
Smedley (2013)

Tanzania Volcanic rock and 
metamorphic

United 
Kingdom

—
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for different plots developed from the output results of WATEQ4F and AQUACHEM. The 
objective of this review is to emphasize the global distribution, sources, analysis, and 
treatment strategies for excessive fluoride levels in groundwater. Also, the review presents 
geochemical plots, statistical techniques, thermodynamic and modeling approaches to 
determine processes governing the fluoride release and distribution in groundwater.

1.2  Permissible Limits of Fluoride in Drinking Water

According to the WHO (2006), the maximum permitted level of F−in drinking water is 
1.5 mg/L. While the USPHS (1987) established a range of allowable F− concentration in 
drinking water for regions based on their climatic conditions, because the amount of water 
consumed and, the amount of F− ingested is primarily influenced by the air temperature. 
The rise in air temperature decreases the concentration of F−. The maximum permissible 
level in tropical climates with temperatures above 26 °C is 1.4 mg/L. In light of the Indian 
subcontinent’s environmental and socioeconomic situation, the F− desirable limit is estab-
lished at 0.6–1.2 mg/L, and the highest allowed level in the absence of any other source is 
set at 1.5 mg/L for drinking water (ISI 1995). The limit was set based on the daily consump-
tion rate of water, about 2 L/day for an adult body mass, and contains about 0.2–0.5 mg 
fluorine as a standard diet (WHO 1994). A range of environmental, social, cultural, eco-
nomic, and other circumstances affecting possible exposure, as well as the default assump-
tions used to create the guideline values, will need to be taken into account when creating 
national drinking-water standards based on these guideline values. In addition, the 
environmental-based variation depends on the region, as regional diets and ambient tem-
perature control the permissible limit (Apambire et al. 1997). Furthermore, in a country 
with a constant warm environment and piped water as the main drinking-water source, 
authorities may choose a lower health-based fluoride target than this guideline value as 
water consumption is predicted to be higher (Guidelines for drinking-water quality 2021). 
Drinking water from groundwater may be beneficial or harmful depending on the concen-
tration level of fluoride. In recent years, countries have been developing drinking standards 
to decrease waterborne diseases and improve safe water resources management (Ali 
et al. 2019). As the concentration of F− in drinking water is different for each country, and 
the amount of water consumed by a person also varies concerning the climate and availa-
bility, so each region has its own standard (Figure 1.1). Drinking high fluoride groundwater 
is the primary reason for endemic fluorosis in the countries such as China (Guo et al. 2007). 
Higher F− concentration in groundwater, i.e. exceeding the permissible limit of WHO, is 
observed in countries like Japan, Cameroon, China, Turkey, India, Sri Lanka, Iran, Pakistan, 
Brazil, and Canada. Fluorosis, on the other hand, is caused by a high quantity of fluoride 
in drinking water and is exacerbated by other factors such as dietary choices (Brindha and 
Elango 2011).

Fluoride concentrations above the permissible limit are harmful to human health, such 
as dental fluorosis, crippling skeletal fluorosis, and skin lesions (Rasool et al. 2017), and 
it also depends on the amount of intake, duration of exposure, and gastrointestinal traces. 
The absorbed fluoride from the food sources in the digestive system is about 30–40% 
(Kumar et al. 2019).
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1.3  Concentration of High Fluoride Around the Globe

Data for groundwater samples signifying maximum value fluoride concentration were 
collected from literature studies to represent the highest value of F− distribution in a 
world map (Figure 1.2). The map represents a total of 46 regions with F− concentration 
above the allowable limits, reaching up to 160 mg/L. One of the highest F− concentra-
tion values that was found with a total of 160mg/L, found to be reported in California, 
North America (McMahon et al. 2020). The high fluoride concentration as it is shown 
on the map mostly represents the igneous and metamorphic rock formations predomi-
nantly around the tropical region. However, elevated fluoride concentration may result 
from various sources affecting the groundwater to be discussed in the following section.

1.4  Sources of Fluoride in Groundwater

Fluoride in groundwater occurs in variable concentrations and <1.0 mg/L is generally 
reported in natural waters (Hem 1985). Anion exchanges, solubility of minerals, tempera-
ture, pH, nature of the aquifers, matrix, and availability of complexing ion, residence time, 
and chemical composition of the groundwater are the main governing factors affecting the 
concentration of F− (Apambire et al. 1997). The presence of F− in groundwater is mostly 
caused by natural or geogenic contamination (Manikandan et  al.  2014). Chemical 
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Figure 1.1  A radar chart representing the maximum fluoride concentration standard for each 
country as specified. Data Source: Guo et al. (2007), Jagtap et al. (2012), Abu-Zeid and El-Hatow 
(2007), and KEPA (2017).
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lithology legend highlights only the areas of high fluoride concentration in groundwater. Source: Reproduced with the permission of the 
OneGeology. All rights reserved.
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weathering, atmospheric dust from continental sources, industrial pollutants, and mag-
matic emissions are also potential sources of F− (Gizaw 1996). In other words, F− reaches 
groundwater due to input from natural or anthropogenic sources or both. Fluorides can be 
transported to groundwater via water–rock interaction by different fluoride-bearing miner-
als (Narsimha and Sudarshan 2017). This interaction is used to examine the geogenic input 
of fluoride in groundwater aquifers from various forms of fluoride minerals.

1.4.1  Natural Sources

The parent rock serves as the primary source of fluoride in groundwater. Thus, various 
geochemical studies have been performed on various aspects of fluoride in groundwater. 
Some rock types showed a higher fluoride concentration than others with groundwater, 
such as volcanic zones with geothermal sources, sedimentary basins, and crystalline base-
ment aquifers (Edmunds and Smedley 2005). An average F− concentration of 715 mg/kg is 
observed in igneous rocks globally (Gizaw 1996). These rocks are likely to be formed in 
volcanic areas with magmas enriched with fluoride concentration, and the sodium plagio-
clase is most likely to form soft groundwater that allows higher fluoride production when 
reaching equilibrium (Ozsvath 2006). Fluorine can be present in different igneous rock-
forming minerals such as mica, apatite, amphiboles, pegmatite, and certain types of clay 
(Ayoob and Gupta  2006). The predominant minerals are depicted in Table  1.2, but clay 
minerals like Villiaumite have also reported to be a source of F− in groundwater due to the 
process of ion exchange (Handa 1975; Pickering 1985; Wenzel and Blum 1992; Bardsen 
et al. 1996; Subba Rao and Devadas 2003). Fluoride concentrations, on the other hand, are 
frequently related to water–rock interaction to a certain degree because fluoride is mostly 
from lithology (Manikandan et al. 2014). The hydrogeochemical studies in groundwater 
had reported several mechanisms of F− release based upon the composition of the aquifer 
matrix, the physio chemical conditions, and the rock–water interaction. They have also 
inferred that the residence time in the aquifer and temperature also play a major role in 
release of F− from the rock matrix to groundwater. Some researchers have studied the 

Table 1.2  Classification of fluoride minerals in different rock types with their chemical 
composition.

S.No. Mineral Rocks Chemical composition

1 Fluorite CaF2 Pegmatite, 
Metamorphosed, Limestone

CaF2

2 Fluorspar Pegmatite Pneumatolitic, 
Deposits

CaF2.3Ca3(PO4)2

3 Tremolite
Actinolite

Clay Ca2(MgFe2+)5(Si8O22)(OHF)2

4 Rock Phosphate Limestone, Fossils NaCa2(MgFe2+)4(AlFe3+)
(SiAl)8O22(OHF)2

5 Lepidolite Gabbros, Dolerites K2(Li, Al)5(Si6Al2)O20(OHF)4

Source: Adapted from Yadav and Khan (2010).
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relationship between water–rock interaction and F− concentration in various aquifers hav-
ing different geologic settings (Saxena and Ahmed  2003; Gaciri and Ad Davis  1993; 
Edmunds and Smedley  1996; Nordstrom et  al.  1989; Nordstrom and Jenne  1977). 
Groundwater development and management have encountered a serious issue due to the 
prevalence of F− when harvesting or recharging structure areas located in granitic terrain. 
Fluorite is one of the minerals responsible for the presence of fluorine in nature, and it acts 
as an accessory mineral in granitic rocks (Ayoob and Gupta 2006). Deeper wells in granitic 
and gneissic aquifers often have higher fluoride contents. Fluorite (CaF2) present in the 
granitic formation is a dominant source of F− (Deshmukh et al. 1995). It is to be noted that 
the rate of dissolution and stability of the mineral in freshwater is relatively low (Nordstrom 
and Jenne 1977). Hence, few studies have indicated that biotite mica is present as an acces-
sory mineral in the granitic formation, to be the prime source of F− in hosted groundwater 
for their favorable F−, (OH)− exchange (Saxena and Ahmed 2001). A pattern that has been 
documented in several inferences on groundwater collected from granitic regions (Yun 
et al. 1998a; White et al. 1963). The studies on samples from deep groundwater have indi-
cated that the dissolution of F− minerals in the rock matrix was governed by the depth of 
well, residence time, and temperature (Saxena and Ahmed 2003; Nordstrom et al. 1989). 
Higher residence time is generally found in massive hard rock aquifers and lesser in porous 
sedimentary formations. This is also an important fact that higher F− in groundwater is 
more prevalent in hard rock aquifers. Fluoride can mix with clay by displacing the hydrox-
ide from its surface in acidic water. F− is adsorbed on the clay surface but desorbed from 
solid phases in alkaline water. The evaporation process can also cause fluoride enrichment 
in groundwater; however, the evaporation process is usually characterized by the prepon-
derance of Cl− ion in groundwater (Manikandan et al. 2014). Because of its granitic-type 
composition (alkaline), augen gneiss has the largest potential for higher groundwater fluo-
ride. The augen gneiss is metamorphosed granite that contains fluoride-bearing minerals 
like biotite, hornblende, and distinctive Na-feldspar mega crystals that serve as a secondary 
source of sodium for fluoride enrichment (Addison et  al.  2020). One of the important 
fluoride-bearing minerals is muscovite, with fluorine in its hydroxyl groups and crystal lat-
tices that can act as fluoride substitutes due to their similar ionic charges. Among the micas 
apart from muscovite, biotite is also reported to have exchangeable F− of octahedral sheet 
at the hydroxyl sites (Chidambaram et al. 2007). The lithological influences of F− in ground-
water were investigated by Singaraja et al. (2013), where the study stated that elevated F− 
concentrations in groundwater were due to charnockite, hornblende biotite gneiss marine 
alluvium, and by flood plain alluvium. Higher concentration of F− in hydrological systems 
also depends on the rate of recharge and the transport of the ion along with the groundwa-
ter flow. There is also a probability of reduction of F− along the flow direction either due to 
mineral precipitation or removal by adsorption or by ion exchange process. The studies on 
the thermodynamic properties and the relative F− enrichment in groundwater in the differ-
ent geochemical environments are still scanty.

1.4.2  Anthropogenic Sources

Pollution that results from industries such as fabrication of aluminum, fertilizers, and steel 
has been reported to generate higher F− through anthropogenic means to the natural envi-
ronment (Datta et al. 2014). The use of phosphate fertilizer in agricultural operations also 
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results in the probable presence of fluoride in groundwater (Thivya et al. 2015) where phos-
phate fertilizers generally contain fluorine ranging from 1.3 to 3.0% (Mclaughlin et al. 1996). 
Apart from the above anthropogenic sources, pesticides, sewage and sludge, groundwater 
table depletion, and other agricultural practices have also been linked to a rise in F− concen-
trations in groundwater (Srinivasamoorthy et al. 2007). F− may infiltrate streams through 
adjacent uneven joints, cracks, and through damaged pipelines transporting household, 
agricultural, and industrial effluents (Datta et al. 2014). Farooqi et al. (2009) study illustrated 
that familiar source of F− in the environment including air pollution from coal combustion 
and phosphate fertilizers, whereas soluble F− in fertilizers ranged from 60 to 255 mg/kg, with 
a mean of 175 mg/kg. In contrast, total F− in coal samples ranged from 5.12 to 20.1 mg/kg, 
with an average value of 10.2 mg/kg (Farooqi et al. 2009). However, only a small portion of 
overall fluoride exposure is typically attributed to air (Fawell et al. 2006). Another study by 
Loganathan et al. (2006) reported that fluoride concentrations in New Zealand agricultural 
surface soils varied from 212 to 617 μg F−, which was significantly lower than the fluoride 
values reported in the literature for sites polluted with fluoride from industrial sources.

1.4.3  Health Effects

The association between human health and fluoride was first explored in the late nineteenth 
century when chemists discovered varying levels of fluorine in human bones, tissues, and 
teeth (Kanduti et al., 2016). Fluoride is vital to human health for developing strong bones 
and teeth, but only in trace amounts ranging between 0.5 and 1 mg/L worldwide (Addison 
et al. 2020; Ozsvath 2006). However, fluoride is also known to be a very toxic element to 
human health if it exceeds the average standard limits published by WHO (Narsimha and 
Sudarshan 2017). Fluoride operates as hydrofluoric acid and is absorbed by humans and 
animals through their skin, where it travels quickly through the circulatory system and is 
stored in teeth and bones, according to Hodge and Smith (1977). According to another study, 
fluorosis is widespread in more than 200 million people globally (Ayoob and Gupta 2006). 
High fluoride levels can result in severe health issues in both adults and children, including 
dental fluorosis, bone deformation, and skeletal fluorosis (Narsimha and Sudarshan 2017).

1.4.4  Dental Fluorosis

Dental fluorosis considers as an irreparable toxic condition that affects the human teeth 
cells as an early-stage sign of having a fluoride increase in the body (Ayoob and Gupta 2006). 
Any fluoride ingestion in water with a concentration above the standard limits may cause 
dental fluorosis (Apambire et al. 1997). A case study in India illustrated that out of 258 
children in the study area were examined, and 84 of them were diagnosed with dental fluo-
rosis with ages ranging between 3 and 17 years old. The dental signs of the patients were 
identified from their teeth, such as chalky white color stain, browning of the tooth surface, 
yellowish stain, deep brown or black discoloration, pitting, and teeth loss (Jha et al. 2009). 
Opaque white patches on teeth characterize the diagnosis of early-stage dental fluorosis, 
unlike the advanced stages where the teeth are displayed as pitting on the surface of the 
teeth and brown to black staining (Figure 1.3) (Apambire et al. 1997). In addition, it was 
also suggested that calcium fluoroapatite crystals replaced the calcium in the teeth during 
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a process known as mineralization. This process happens when the fluoride accumulates 
and combines with the calcium, and further on, the calcium will be reduced and lost from 
the teeth (Ayoob and Gupta 2006).

1.4.5  Skeletal Fluorosis

The consumption of water with F− concentration greater than the permissible limit that 
ranges between 4.0 and 8.0 mg/L and higher (Apambire et al. 1997), will lead to severe and 
long-term damage to the human skeleton, a disease known as skeletal fluorosis (Ayoob and 
Gupta  2006). The lowest limit that has been noticed, which causes skeletal fluorosis, is 
3.0 mg/L (Manikandan et al. 2014). Moreover, higher the duration and amount of fluoride 
entering the human body, the higher the severity of the disease (Ayoob and Gupta 2006). The 
symptoms shown on people with a possibility of having skeletal fluorosis vary in severity, 
with excess fluoride concentration consumption by Sutter from muscle and joint pain or mild 
rheumatic pain. In addition, to severe pain in the cervical spine region, stiffness and rigidity 
in joints, and crippling; skeletal fluorosis can occur once the fluoride concentration in drink-
ing water exceeds 10 mg/L (Apambire et al. 1997; WHO 1970). Likewise, skeletal fluorosis 
can also be witnessed in the X-ray by increasing the bone density in adults (Mohammadi 
et al. 2017). Fluoride can disrupt the equilibrium of bone mineral metabolism by affecting the 
accretion and desorption of bone tissue (Ayoob and Gupta 2006). A study by Mohammadi 
(2017) analyzed two categories one with high fluoride concentration above the standard limit 
was diagnosed in a total of 445 people, and the other one containing low fluoride concentra-
tion below the standard limit was observed in a total of 470 people. The first area with high 
F− showed that 21.1% of the people have skeletal fluorosis, only 3% from the second area suf-
fered from skeletal fluorosis. The rates of the fluoride concentration in this study ranged from 
0.22 to 10.33 mg/L (Mohammadi et al. 2017).

1.5  Hazard Index

The Hazard Index or Hazard Quotient (HQ) is the ratio of a single drug exposure level 
(dose or concentration) during a defined time period to the RfD computed for the same 
substance over the same time period. HQ, ratio greater than one indicates that the chemical 

Figure 1.3  Effect of dental fluorosis due to high concentration of F−.
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Table 1.3  Calculated and standard values of the parameters needed for the HQ calculation.  
The mean value of F− from Kuwait’s groundwater samples.

Variable Description Value (Women) Value (Men)

C (mg/L) Mean F concentration in groundwater 1.98 1.98

IR (L/day) Daily water intake rate 2 2

EF (days/year) Exposure frequency 365 365

ED (Year) Exposure duration 76.4 74.6

Lt Lifetime expectancy 75.4 75.4

BW (kg) Average body weight 78.3 88.1

AT (Lt × 365) Averaging time of exposure 27 521 27 521

EDI Estimated daily intake of F− from groundwater 0.05 0.04

RfD (mg/kg) Oral toxicity reference 0.06 0.06

HQ Hazard index 0.85 0.74

Source: Data from Worldbank – Kuwait Data (2021).

concentration is enough to induce persistent noncarcinogenic effects. In this review, sam-
ples of Kuwait (Table 1.3) are considered to check the effect of high concentration of fluo-
ride using the following equation:	

	HQ EDI
RfD

	 (1.1)

This value is according to the USEPA’s Integrated Risk Information System (USEPA 2014).
The estimated daily intake (EDI) of F from groundwater is used to calculate the F expo-

sure dosage. The EDI values were calculated using Eq.  1.9 from the US Environmental 
Protection Agency. EDI can be determined using the following equation:	

	EDI C IR EF EDBW AT 	 (1.2)

The optimum level of oral intake was assessed to depend on the baby weight and annual 
mean maximum temperature (Galagan et al. 1957)	

	F mg L E/ . /0 34 	 (1.3)

E is the estimated average daily water intake for children <10 years old.	

	Optimal fluoride intake mg L
AMMT

/ .

. . *

0 022

0 0104 0 000724 CC
	 (1.4)

AMMT is for a period of five years but due to malnutrition the amount of water intake is 
more and then the equation is modified (Ramadan and Hilmi 2014) as	

	
0 022 0 56

0 0104 0 000724

. * .

. . *AMMT C
	 (1.5)


