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Preface

Back in 1970, an Intel 4004 processor had 2250 transistors. It could only support
a limited number of instructions, and it was working at a very low frequency.
However, digital circuits nowadays are much larger, sometimes even consisting of
billions of transistors. Moreover, they are usually designed based on sophisticated
algorithms, leading to fast but complex architectures. The big size and the high
complexity of modern digital circuits make them extremely error-prone during
different design phases. Consequently, formal verification is an important task to
ensure the correctness of a digital circuit.

Formal verification of arithmetic circuits is one of the most challenging problems
in the verification community. Despite the success of verification methods based
on Binary Decision Diagrams (BDDs) and Boolean Satisfiability (SAT) in proving
the correctness of adders, they totally fail when it comes to the verification
of multipliers. In the last six years, the word-level verification methods based
on Symbolic Computer Algebra (SCA) achieved many successes in proving the
correctness of structurally simple multipliers. The proposed techniques can verify
a very large multiplier in a few seconds. However, they either totally fail or
support a limited set of benchmarks when it comes to verifying structurally complex
multipliers.

This book addresses the challenging tasks of verifying and debugging structurally
complex multipliers. In the area of verification, it first investigates the challenges of
SCA-based verification when it comes to proving the correctness of multipliers.
Then, it proposes three techniques, i.e., vanishing monomials removal, reverse
engineering, and dynamic backward rewriting, to improve and extend SCA. As
a result, a wide variety of multipliers, including highly complex and optimized
industrial benchmarks, can be verified. In the area of debugging, it proposes a
complete debugging flow, including bug localization and fixing, to find the location
of bugs in structurally complex multipliers and make corrections.
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Chapter 1 )
Introduction Check for

With the invention of the transistor back in 1947, the cornerstone for the digital
revolution was laid. As a fundamental building block, the transistor triggered the
development of digital circuits. The mass production of digital circuits revolu-
tionized the field of electronics, finally leading to computers, embedded systems,
and the Internet. Hence, the impact of digital hardware on society, as well as the
economy, was and is tremendous. Over the last decades, the enormous growth in
the complexity of integrated circuits continues as expected. As modern electronic
devices are getting more and more ubiquitous, the fundamental issue of functional
correctness becomes more important than ever. This is evidenced by many publicly
known examples of electronic failures with disastrous consequences. This includes,
e.g., the Intel Pentium bug in 1994 [6, 28], the New York blackout in 2003 [64],
and a design flaw in Intel’s Sandy Bridge chipset in 2011 [18].

Such costly mistakes can only be prevented by applying rigorous verification
to the circuits before they get to production [20, 21]. A lot of effort has been put
into developing efficient verification techniques by both academic and industrial
research. Only recently, the industry has recognized the great importance of formal
verification (see, e.g., functional safety standards such as ISO 26262 [88]). Hence,
in the last few years, this research area has become increasingly active. Essentially,
formal verification aims to prove in a mathematical sense that an implementation
is correct with respect to its specification. Formal verification is an essential task in
each phase of the design flow to ensure the correctness of an implementation.

An overview of the typical top-down design flow is presented in Fig. 1.1. The
system specification defines the functionality and is usually the starting point for
the design. The register transfer model is constructed by a designer or a high-
level synthesis tool based on the system specification. At this level, the system
behavior is described in terms of registers and their data flow with its operations.
Logic synthesis tools transfer the model to a gate-level description, consisting
of logic gates and flip-flops. Finally, the logic gates are mapped into a circuit-
level description, consisting of transistors, interconnects, and other physical cells,
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which create the final chip implementation. There is always a risk of incorrect
transformations by designers or synthesis tools when moving between different
levels of abstraction. As a result, bugs might appear in each phase of the design,
leading to a faulty circuit description. The fabrication and production of faulty
designs cause a catastrophe, resulting in huge financial loss and endangering lives.
It is thus critical to ensure the correctness of a circuit description at each level of
abstraction.

Several formal verification methods have been proposed to prove the correctness
of a circuit description. These methods can be categorized into three groups:

* Equivalence checking: The goal of formal equivalence checking is to prove
that a circuit description is functionally equivalent to a specification (golden
model). The specification is usually a correct description in the same level or a
higher level of abstraction. For example, assuming that gate-level description A
is correct, gate-level description B will be correct if A and B are functionally
equivalent. As another example, the gate-level description and the high-level
system specification have to be equivalent; otherwise, the gate-level description
is faulty. Equivalence checking is widely employed in the automated formal
verification of both combinational and sequential digital circuits.

* Model checking: The aim of model checking is to ensure that a property holds
for a circuit description in a specific level of abstraction. This includes safety
properties (nothing incorrect ever occurs) and liveness properties (something
correct eventually occurs). In model checking, the circuit description is captured
as a transition system, specifying its behavior in different states. Furthermore,
the property is expressed in the form of a temporal logic formula, and a model
checker is used to check whether the property is violated or not. Model checking
is widely employed in the automated formal verification of sequential digital
circuits.

e Theorem proving: The goal of theorem proving in verification is to prove
that a circuit description satisfies its specification by mathematical reasoning.
The description and the specification are expressed as formulas in a formal
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logic. Then, the required relationship between them (logical equivalence or
logical implication) is described as a theorem to be proven within the context
of a proof calculus. A proof system, consisting of axioms and interface rules
(e.g., simplification, rewriting, and induction), is used to achieve this goal.

Formal verification of arithmetic circuits is one of the most popular and challeng-
ing topics in the verification community. Arithmetic circuits are extensively used in
many systems, e.g., for signal processing and cryptography, as well as for upcoming
Al solutions employing machine learning and deep learning. They also constitute a
big part of an Arithmetic Logic Unit (ALU), which is the computational heart of a
Central Processing Unit (CPU). The top-level design flow in Fig. 1.1 is also used for
the implementation of arithmetic circuits. The high-level specification is usually a
mathematical expression, determining the function of an arithmetic circuit based on
its primary inputs and outputs. For example, assuming A and B are two n-bit inputs
and S is an (n + 1)-bit output, the expression S = A + B describes an integer adder
in the highest level of abstraction. The high-level specification is transformed into
the register transfer level by a designer or an arithmetic generator tool. Finally, the
circuit is synthesized into gate-level and then transistor-level descriptions. Formal
verification of arithmetic circuits at the register transfer level (where the hierarchical
information is available) and the gate level (where no hierarchical information is at
hand) is the focus of many research works.

Integer multipliers are among the most frequently used arithmetic circuits in
a large variety of applications. Most of these applications require very large
multipliers supporting a wide range of integer numbers. Furthermore, the multiplier
architectures also vary based on the design goals of different applications. Several
multiplication algorithms have been developed to satisfy the community demands
for fast, area-efficient, and low-power designs or make a trade-off between several
design parameters. Employing these algorithms usually results in the generation
of very complex architectures. Formal verification of huge and structurally complex
multipliers is on the one hand necessary to ensure the correctness of the final design.
On the other hand, it is a big challenge, where most of the existing formal methods
completely fail.

In the last 30 years, several formal verification methods, based on equivalence
checking and theorem proving techniques, have been proposed to ensure the cor-
rectness of arithmetic circuits. Although these methods accomplished big successes
in many domains, they suffer from serious limitations when it comes to verifying
integer multipliers:

* Equivalence checking methods using Binary Decision Diagrams (BDDs) [10, 27]
or Boolean Satisfiability (SAT) [19, 35] ensure the correctness by proving that an
integer multiplier is equivalent to a correct multiplier description. However, they
are not scalable and only work for very small benchmarks.

* Equivalence checking methods using Binary Moment Diagrams (*BMDs and
K*BMDs) [23, 39] ensure the correctness by proving that an integer multiplier
and its high-level specification are equivalent. These methods are scalable for



