Alireza Mahzoon
Daniel GrofSe
Rolf Drechsler

Formal
Verification

of Structurally

Complex
Multipliers




Formal Verification of Structurally Complex
Multipliers



Alireza Mahzoon ¢ Daniel Grof3e ® Rolf Drechsler

Formal Verification of
Structurally Complex
Multipliers

@ Springer



Alireza Mahzoon Daniel Grof3e

University of Bremen Institute for Complex Systems

Bremen, Germany Johannes Kepler University of Linz
Linz, Austria

Rolf Drechsler

University of Bremen/DFKI

Bremen, Germany

ISBN 978-3-031-24570-1 ISBN 978-3-031-24571-8  (eBook)
https://doi.org/10.1007/978-3-031-24571-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8
https://doi.org/10.1007/978-3-031-24571-8

To Tina,
Marie
and
Yuna



Preface

Back in 1970, an Intel 4004 processor had 2250 transistors. It could only support
a limited number of instructions, and it was working at a very low frequency.
However, digital circuits nowadays are much larger, sometimes even consisting of
billions of transistors. Moreover, they are usually designed based on sophisticated
algorithms, leading to fast but complex architectures. The big size and the high
complexity of modern digital circuits make them extremely error-prone during
different design phases. Consequently, formal verification is an important task to
ensure the correctness of a digital circuit.

Formal verification of arithmetic circuits is one of the most challenging problems
in the verification community. Despite the success of verification methods based
on Binary Decision Diagrams (BDDs) and Boolean Satisfiability (SAT) in proving
the correctness of adders, they totally fail when it comes to the verification
of multipliers. In the last six years, the word-level verification methods based
on Symbolic Computer Algebra (SCA) achieved many successes in proving the
correctness of structurally simple multipliers. The proposed techniques can verify
a very large multiplier in a few seconds. However, they either totally fail or
support a limited set of benchmarks when it comes to verifying structurally complex
multipliers.

This book addresses the challenging tasks of verifying and debugging structurally
complex multipliers. In the area of verification, it first investigates the challenges of
SCA-based verification when it comes to proving the correctness of multipliers.
Then, it proposes three techniques, i.e., vanishing monomials removal, reverse
engineering, and dynamic backward rewriting, to improve and extend SCA. As
a result, a wide variety of multipliers, including highly complex and optimized
industrial benchmarks, can be verified. In the area of debugging, it proposes a
complete debugging flow, including bug localization and fixing, to find the location
of bugs in structurally complex multipliers and make corrections.

Bremen, Germany Alireza Mahzoon
Linz, Austria Daniel Grof3e

Bremen, Germany Rolf Drechsler

vii



Acknowledgements

We would like to particularly appreciate all those who have contributed to the results
included in this book. Our special thanks go to Christoph Scholl and Alexander
Konrad for their investments of time and great ideas, which were important for
this book. Many thanks to Mehran Goli for his helpful feedback and inspiring
discussions. We would like to express our appreciation to all of the colleagues in
the Group of Computer Architecture at the University of Bremen, the Institute for
Complex Systems at the Johannes Kepler University Linz, and the Cyber-Physical
Systems group at the German Research Center for Artificial Intelligence for their
support.

Bremen, Germany Alireza Mahzoon
Linz, Austria Daniel Grofle
Bremen, Germany Rolf Drechsler

October 2022

ix



Contents

1 Introduction .......... ... e 1
Ll OVRIVIEW ettt ettt e e 5

0 11 1 T N 7

2 Background ... 9
2.1 Circuit Modeling .......ooviiiiiiiiiii e 9
2.1.1 Gate-Level Netlist .....oovviviiiiiiiiiiiieeeeenn, 10

2.1.2  AND-Inverter Graph...........coovviiiiiiiiiiiiininniennnnn... 11

2.2 Integer MUtplier .....oovviiiiiiiiiii e 12
22,1 SHUCHUI . . oottt ettt et e e 12

2.3  Formal Verification of MultiplierS...................oevvveiiiiee..... 13
2.3.1 Equivalence Checking Using BDDS ........................... 14

2.3.2 Equivalence Checking Using SAT ...................ooeeeat. 15

2.3.3 Binary Moment Diagram.....................oooeeeiiiieenn.. 16

24 Term ReWrIting....oovvviiiiiiiii e 19
2.5 Formal Verification Using SCA ..., 19
2.5.1 Definitions .....oovviiiiiiiiiii 19

2.5.2 Theory of Grobner Basis ...............oovvvviiiiiiiiiinan.... 21

2.5.3 SCA-Based Verification .................oovvviiiiiieiinennn.... 24

2.5.4 State-of-the-art of SCA-Based Verification Methods ......... 27

3 Challenges of SCA-Based Verification..................................... 29
3.1 IntroducCtion ........coooiinnuiii et 29
3.2 Verification of Structurally Simple Multipliers........................ 30
3.2.1 Definition of Structurally Simple Multipliers ................. 30

3.2.2 Experimental Results .....................ooL L 31

3.2.3  DISCUSSION .« .uuttttte ettt et e e 33

3.3 Verification of Structurally Complex Multipliers...................... 34
3.3.1 Definition of Structurally Complex Multipliers ............... 34

3.3.2 Experimental Results .....................ooL L 37

3.3.3  DISCUSSION .« uuuttttte ettt e et 38

xi



xii

Contents

3.4 Overcoming the Challenges ............cceeviiiiiiiiiiiiiiiieeennn. 41
3.5 ConClUSION ...ttt 41
Local Vanishing Monomials Removal ..................................... 43
o N 1 15 ot L1 1ol 1o ) s NS 43
4.2 Vanishing Monomials Example ..........ccoooiiiiiiiiiiiiiiiiiinnn. 44
4.3 Basic Theory of Vanishing Monomials ............ccoeiiiiiiiinnn.. 48
4.4 Vanishing Monomials and Multiplier Architecture.................... 51
4.5 Removing Vanishing Monomials...............cccooiiiiiiiiii. 52
4.5.1 Converging Node Cone Detection ...........ccovvvvvvviiennnnns 52
4.5.2 Local Removal of Vanishing Monomials...................... 54

4.6 CONCIUSION ..\ttt 55
Reverse Engineering ......................... 57
5.1 IntrodUCtion ........iiii i 57
5.2 Atomic BIOCKS ..uvuiiiiiiie e 58
5.3 Advantages of Reverse Engineeringin SCA .......................... 59
5.3.1 Detecting Converging Node Cones ...........cccevvvvvvvennnns 59
5.3.2 Limiting Search Space for Vanishing Removal ............... 60

5.3.3 Speeding up Global Backward Rewriting ..................... 61

5.4 Proposed Reverse Engineering Technique ............................. 61
5.4.1 Atomic Blocks Library ........cccooviiiiiiiiiiiiiiiiiinnns 62
5.4.2  Atomic Blocks Identification......................cciiinnn. .. 63

5.5 ConCIUSION ...ttt e 66
Dynamic Backward Rewriting ... 67
6.1  INtrodUCtiOn ........iiiiiiiiiie ettt iiiee e e 67
6.2 Multiplier Optimization............coovviiiiiiiiiiiiniiiiiiinieeennnn.. 68
6.2.1 Multiplier Structure After Optimization....................... 68

6.2.2 Backward Rewriting for Optimized Multipliers............... 69

6.3 Proposed Dynamic Backward Rewriting Technique .................. 70
6.3.1 Definitions ......oiiiiiiiiiie e 70

6.3.2 Algorithm .......coiiiiiii e 72

(O A 07071163 L1 13 T 74
SCA-Based Verifier REVSCA-2.0 ................................o.l. 75
7% B €115 e T L1 o1 0§ 75
7.2 Top-Level OVEIVIEW ....ooiiiiiiiiiiiii e 76
7.3 Implementation...........ooviiiiiiiiiiiiiiiii e 78
7.3.1 Polynomial Data Structures ..........ccoevvvieiiiiiiieieeeenenns 78
7.3.2 Reverse Engineering.........cccoevvviiiiiiiiiiiiiiiiiiiinnnnns 79

7.4 Multiplier Generator ........ooviiiiiiiiiii e 80
7.4.1 Overview and Data Structures ..............ccooveveeeeeeennnn.. 80
7.4.2 Generation of Multipliers..........ccooiiiiiiiiiiiiiiiinns 81

7.5 Experimental Results ... 82

7.5.1 General Details........coooiuiiiiiiiii i 82



Contents xiii

7.5.2 Clean MUultipliers ..........ooouiiiiiiiiiiiiiii e, 83

7.5.3 Dirty Optimized Multipliers............oooeeeeiiiiiiiiieann. 91

7.6 ConCIUSION ..ttt e 98
8 Debugging........ .o 101
8.1 INrOAUCHION ..t 101
8.2 Fault MOdel. ... ... 102
8.3 Limitations of SCA-Based Debugging..............cccooviieii.n. 103
8.3.1 Vanishing Monomials in Remainder........................... 103

8.3.2  Blow-up During the Verification of Buggy Circuits .......... 104

8.4 Proposed Debugging Method............cccoviiiiiiiiiiiiiiiiiiiann. 105
Bl OVeIVIEW ottt 105

8.4.2 Verification .......oovviiiiiiii i 106

8.4.3 Localization .....ovvviiiiiiii it 108

844 FiXING. ..ttt 111

8.5 Experimental ReSUlts ... ... 112
8.0 CONCIUSION ..ttt 115

9 Conclusion and Outlook.............. ... i 117
0.1 CoNCIUSION ittt 117
9.2 OULIOOK ettt 118
A SCA-Verification Website .................c.oooiiiiiiiiiiii 121
References. ...........oooiuiiiii i 123



Chapter 1 )
Introduction Check for

With the invention of the transistor back in 1947, the cornerstone for the digital
revolution was laid. As a fundamental building block, the transistor triggered the
development of digital circuits. The mass production of digital circuits revolu-
tionized the field of electronics, finally leading to computers, embedded systems,
and the Internet. Hence, the impact of digital hardware on society, as well as the
economy, was and is tremendous. Over the last decades, the enormous growth in
the complexity of integrated circuits continues as expected. As modern electronic
devices are getting more and more ubiquitous, the fundamental issue of functional
correctness becomes more important than ever. This is evidenced by many publicly
known examples of electronic failures with disastrous consequences. This includes,
e.g., the Intel Pentium bug in 1994 [6, 28], the New York blackout in 2003 [64],
and a design flaw in Intel’s Sandy Bridge chipset in 2011 [18].

Such costly mistakes can only be prevented by applying rigorous verification
to the circuits before they get to production [20, 21]. A lot of effort has been put
into developing efficient verification techniques by both academic and industrial
research. Only recently, the industry has recognized the great importance of formal
verification (see, e.g., functional safety standards such as ISO 26262 [88]). Hence,
in the last few years, this research area has become increasingly active. Essentially,
formal verification aims to prove in a mathematical sense that an implementation
is correct with respect to its specification. Formal verification is an essential task in
each phase of the design flow to ensure the correctness of an implementation.

An overview of the typical top-down design flow is presented in Fig. 1.1. The
system specification defines the functionality and is usually the starting point for
the design. The register transfer model is constructed by a designer or a high-
level synthesis tool based on the system specification. At this level, the system
behavior is described in terms of registers and their data flow with its operations.
Logic synthesis tools transfer the model to a gate-level description, consisting
of logic gates and flip-flops. Finally, the logic gates are mapped into a circuit-
level description, consisting of transistors, interconnects, and other physical cells,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
A. Mahzoon et al., Formal Verification of Structurally Complex Multipliers,
https://doi.org/10.1007/978-3-031-24571-8_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24571-8protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1
https://doi.org/10.1007/978-3-031-24571-8_1

2 1 Introduction

Fig. 1.1 Top-down design
flow System

High level synthesis
l or
Desi

Register
Transfer

1 Logic synthesis

Gate

1 Physical synthesis

Transistor

which create the final chip implementation. There is always a risk of incorrect
transformations by designers or synthesis tools when moving between different
levels of abstraction. As a result, bugs might appear in each phase of the design,
leading to a faulty circuit description. The fabrication and production of faulty
designs cause a catastrophe, resulting in huge financial loss and endangering lives.
It is thus critical to ensure the correctness of a circuit description at each level of
abstraction.

Several formal verification methods have been proposed to prove the correctness
of a circuit description. These methods can be categorized into three groups:

* Equivalence checking: The goal of formal equivalence checking is to prove
that a circuit description is functionally equivalent to a specification (golden
model). The specification is usually a correct description in the same level or a
higher level of abstraction. For example, assuming that gate-level description A
is correct, gate-level description B will be correct if A and B are functionally
equivalent. As another example, the gate-level description and the high-level
system specification have to be equivalent; otherwise, the gate-level description
is faulty. Equivalence checking is widely employed in the automated formal
verification of both combinational and sequential digital circuits.

* Model checking: The aim of model checking is to ensure that a property holds
for a circuit description in a specific level of abstraction. This includes safety
properties (nothing incorrect ever occurs) and liveness properties (something
correct eventually occurs). In model checking, the circuit description is captured
as a transition system, specifying its behavior in different states. Furthermore,
the property is expressed in the form of a temporal logic formula, and a model
checker is used to check whether the property is violated or not. Model checking
is widely employed in the automated formal verification of sequential digital
circuits.

e Theorem proving: The goal of theorem proving in verification is to prove
that a circuit description satisfies its specification by mathematical reasoning.
The description and the specification are expressed as formulas in a formal



1 Introduction 3

logic. Then, the required relationship between them (logical equivalence or
logical implication) is described as a theorem to be proven within the context
of a proof calculus. A proof system, consisting of axioms and interface rules
(e.g., simplification, rewriting, and induction), is used to achieve this goal.

Formal verification of arithmetic circuits is one of the most popular and challeng-
ing topics in the verification community. Arithmetic circuits are extensively used in
many systems, e.g., for signal processing and cryptography, as well as for upcoming
Al solutions employing machine learning and deep learning. They also constitute a
big part of an Arithmetic Logic Unit (ALU), which is the computational heart of a
Central Processing Unit (CPU). The top-level design flow in Fig. 1.1 is also used for
the implementation of arithmetic circuits. The high-level specification is usually a
mathematical expression, determining the function of an arithmetic circuit based on
its primary inputs and outputs. For example, assuming A and B are two n-bit inputs
and S is an (n + 1)-bit output, the expression S = A + B describes an integer adder
in the highest level of abstraction. The high-level specification is transformed into
the register transfer level by a designer or an arithmetic generator tool. Finally, the
circuit is synthesized into gate-level and then transistor-level descriptions. Formal
verification of arithmetic circuits at the register transfer level (where the hierarchical
information is available) and the gate level (where no hierarchical information is at
hand) is the focus of many research works.

Integer multipliers are among the most frequently used arithmetic circuits in
a large variety of applications. Most of these applications require very large
multipliers supporting a wide range of integer numbers. Furthermore, the multiplier
architectures also vary based on the design goals of different applications. Several
multiplication algorithms have been developed to satisfy the community demands
for fast, area-efficient, and low-power designs or make a trade-off between several
design parameters. Employing these algorithms usually results in the generation
of very complex architectures. Formal verification of huge and structurally complex
multipliers is on the one hand necessary to ensure the correctness of the final design.
On the other hand, it is a big challenge, where most of the existing formal methods
completely fail.

In the last 30 years, several formal verification methods, based on equivalence
checking and theorem proving techniques, have been proposed to ensure the cor-
rectness of arithmetic circuits. Although these methods accomplished big successes
in many domains, they suffer from serious limitations when it comes to verifying
integer multipliers:

* Equivalence checking methods using Binary Decision Diagrams (BDDs) [10, 27]
or Boolean Satisfiability (SAT) [19, 35] ensure the correctness by proving that an
integer multiplier is equivalent to a correct multiplier description. However, they
are not scalable and only work for very small benchmarks.

* Equivalence checking methods using Binary Moment Diagrams (*BMDs and
K*BMDs) [23, 39] ensure the correctness by proving that an integer multiplier
and its high-level specification are equivalent. These methods are scalable for



