

Advanced Testing of Systems-of-Systems 2

Advanced Testing of
Systems-of-Systems 2

Practical Aspects

Bernard Homès

First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2022
The rights of Bernard Homès to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2022944148

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-750-7

Contents

Dedication and Acknowledgments . xiii

Preface . xv

Chapter 1. Test Project Management . 1

1.1. General principles . 1
1.1.1. Quality of requirements . 2
1.1.2. Completeness of deliveries . 3
1.1.3. Availability of test environments . 3
1.1.4. Availability of test data . 4
1.1.5. Compliance of deliveries and schedules 5
1.1.6. Coordinating and setting up environments 6
1.1.7. Validation of prerequisites – Test Readiness Review (TRR) 6
1.1.8. Delivery of datasets (TDS) . 7
1.1.9. Go-NoGo decision – Test Review Board (TRB) 7
1.1.10. Continuous delivery and deployment . 8

1.2. Tracking test projects . 9
1.3. Risks and systems-of-systems . 10
1.4. Particularities related to SoS . 11
1.5. Particularities related to SoS methodologies 11

1.5.1. Components definition . 12
1.5.2. Testing and quality assurance activities . 12

1.6. Particularities related to teams . 12

Chapter 2. Testing Process . 15

2.1. Organization . 17
2.2. Planning . 18

2.2.1. Project WBS and planning . 19

vi Advanced Testing of Systems-of-Systems 2

2.3. Control of test activities . 21
2.4. Analyze . 22
2.5. Design . 23
2.6. Implementation . 24
2.7. Test execution . 25
2.8. Evaluation . 26
2.9. Reporting . 28
2.10. Closure . 29
2.11. Infrastructure management . 29
2.12. Reviews . 30
2.13. Adapting processes . 31
2.14. RACI matrix . 32
2.15. Automation of processes or tests . 33

2.15.1. Automate or industrialize? . 33
2.15.2. What to automate? . 33
2.15.3. Selecting what to automate . 34

Chapter 3. Continuous Process Improvement 37

3.1. Modeling improvements . 37
3.1.1. PDCA and IDEAL . 38
3.1.2. CTP . 39
3.1.3. SMART . 41

3.2. Why and how to improve? . 41
3.3. Improvement methods . 42

3.3.1. External/internal referential . 42
3.4. Process quality . 46

3.4.1. Fault seeding . 46
3.4.2. Statistics . 46
3.4.3. A posteriori . 47
3.4.4. Avoiding introduction of defects . 47

3.5. Effectiveness of improvement activities . 48
3.6. Recommendations . 50

Chapter 4. Test, QA or IV&V Teams . 51

4.1. Need for a test team . 52
4.2. Characteristics of a good test team . 53
4.3. Ideal test team profile . 54
4.4. Team evaluation . 55

4.4.1. Skills assessment table . 56
4.4.2. Composition . 58
4.4.3. Select, hire and retain . 59

4.5. Test manager . 59

Contents vii

4.5.1. Lead or direct? . 60
4.5.2. Evaluate and measure . 61
4.5.3. Recurring questions for test managers . 62

4.6. Test analyst . 63
4.7. Technical test analyst . 64
4.8. Test automator . 65
4.9. Test technician . 66
4.10. Choose our testers . 66
4.11. Training, certification or experience? . 67
4.12. Hire or subcontract? . 67

4.12.1. Effective subcontracting . 68
4.13. Organization of multi-level test teams . 68

4.13.1. Compliance, strategy and organization 69
4.13.2. Unit test teams (UT/CT) . 70
4.13.3. Integration testing team (IT) . 70
4.13.4. System test team (SYST) . 70
4.13.5. Acceptance testing team (UAT) . 71
4.13.6. Technical test teams (TT) . 71

4.14. Insourcing and outsourcing challenges . 72
4.14.1. Internalization and collocation . 72
4.14.2. Near outsourcing . 73
4.14.3. Geographically distant outsourcing . 74

Chapter 5. Test Workload Estimation . 75

5.1. Difficulty to estimate workload . 75
5.2. Evaluation techniques . 76

5.2.1. Experience-based estimation . 76
5.2.2. Based on function points or TPA . 77
5.2.3. Requirements scope creep . 79
5.2.4. Estimations based on historical data . 80
5.2.5. WBS or TBS . 80
5.2.6. Agility, estimation and velocity . 81
5.2.7. Retroplanning . 82
5.2.8. Ratio between developers – testers . 82
5.2.9. Elements influencing the estimate . 83

5.3. Test workload overview . 85
5.3.1. Workload assessment verification and validation 86
5.3.2. Some values . 86

5.4. Understanding the test workload . 87
5.4.1. Component coverage . 87
5.4.2. Feature coverage . 88
5.4.3. Technical coverage . 88

viii Advanced Testing of Systems-of-Systems 2

5.4.4. Test campaign preparation . 89
5.4.5. Running test campaigns . 89
5.4.6. Defects management . 90

5.5. Defending our test workload estimate . 91
5.6. Multi-tasking and crunch . 92
5.7. Adapting and tracking the test workload . 92

Chapter 6. Metrics, KPI and Measurements . 95

6.1. Selecting metrics . 96
6.2. Metrics precision . 97

6.2.1. Special case of the cost of defaults . 97
6.2.2. Special case of defects . 98
6.2.3. Accuracy or order of magnitude? . 98
6.2.4. Measurement frequency . 99
6.2.5. Using metrics . 99
6.2.6. Continuous improvement of metrics . 100

6.3. Product metrics . 101
6.3.1. FTR: first time right . 101
6.3.2. Coverage rate . 102
6.3.3. Code churn . 103

6.4. Process metrics . 104
6.4.1. Effectiveness metrics . 104
6.4.2. Efficiency metrics . 107

6.5. Definition of metrics. 108
6.5.1. Quality model metrics . 109

6.6. Validation of metrics and measures . 110
6.6.1. Baseline . 110
6.6.2. Historical data . 111
6.6.3. Periodic improvements . 112

6.7. Measurement reporting . 112
6.7.1. Internal test reporting . 113
6.7.2. Reporting to the development team . 114
6.7.3. Reporting to the management . 114
6.7.4. Reporting to the clients or product owners 115
6.7.5. Reporting to the direction and upper management 116

Chapter 7. Requirements Management . 119

7.1. Requirements documents . 119
7.2. Qualities of requirements . 120
7.3. Good practices in requirements management 122

7.3.1. Elicitation . 122
7.3.2. Analysis . 123

Contents ix

7.3.3. Specifications . 123
7.3.4. Approval and validation . 124
7.3.5. Requirements management . 124
7.3.6. Requirements and business knowledge management 125
7.3.7. Requirements and project management . 125

7.4. Levels of requirements . 126
7.5. Completeness of requirements . 126

7.5.1. Management of TBDs and TBCs . 126
7.5.2. Avoiding incompleteness . 127

7.6. Requirements and agility . 127
7.7. Requirements issues . 128

Chapter 8. Defects Management . 129

8.1. Defect management, MOA and MOE . 129
8.1.1. What is a defect? . 129
8.1.2. Defects and MOA . 130
8.1.3. Defects and MOE . 130

8.2. Defect management workflow . 131
8.2.1. Example . 131
8.2.2. Simplify . 132

8.3. Triage meetings . 133
8.3.1. Priority and severity of defects . 133
8.3.2. Defect detection . 134
8.3.3. Correction and urgency . 135
8.3.4. Compliance with processes . 136

8.4. Specificities of TDDs, ATDDs and BDDs . 136
8.4.1. TDD: test-driven development . 136
8.4.2. ATDD and BDD . 137

8.5. Defects reporting . 138
8.5.1. Defects backlog management . 139

8.6. Other useful reporting . 141
8.7. Don’t forget minor defects . 141

Chapter 9. Configuration Management . 143

9.1. Why manage configuration? . 143
9.2. Impact of configuration management . 144
9.3. Components . 145
9.4. Processes . 145
9.5. Organization and standards . 146
9.6. Baseline or stages, branches and merges . 147

9.6.1. Stages . 148
9.6.2. Branches . 148

x Advanced Testing of Systems-of-Systems 2

9.6.3. Merge . 148
9.7. Change control board (CCB) . 149
9.8. Delivery frequencies . 149
9.9. Modularity . 150
9.10. Version management . 150
9.11. Delivery management . 151

9.11.1. Preparing for delivery . 153
9.11.2. Delivery validation . 154

9.12. Configuration management and deployments 155

Chapter 10. Test Tools and Test Automation 157

10.1. Objectives of test automation . 157
10.1.1. Find more defects . 158
10.1.2. Automating dynamic tests . 159
10.1.3. Find all regressions . 160
10.1.4. Run test campaigns faster . 161

10.2. Test tool challenges . 161
10.2.1. Positioning test automation . 162
10.2.2. Test process analysis . 162
10.2.3. Test tool integration . 162
10.2.4. Qualification of tools . 163
10.2.5. Synchronizing test cases . 164
10.2.6. Managing test data . 164
10.2.7. Managing reporting (level of trust in test tools). 165

10.3. What to automate? . 165
10.4. Test tooling . 166

10.4.1. Selecting tools . 167
10.4.2. Computing the return on investment (ROI) 169
10.4.3. Avoiding abandonment of tools and automation 169

10.5. Automated testing strategies . 170
10.6. Test automation challenge for SoS . 171

10.6.1. Mastering test automation . 171
10.6.2. Preparing test automation . 173
10.6.3. Defect injection/fault seeding . 173

10.7. Typology of test tools and their specific challenges 174
10.7.1. Static test tools versus dynamic test tools 175
10.7.2. Data-driven testing (DDT) . 176
10.7.3. Keyword-driven testing (KDT) . 176
10.7.4. Model-based testing (MBT) . 177

10.8. Automated regression testing . 178
10.8.1. Regression tests in builds . 178
10.8.2. Regression tests when environments change 179

Contents xi

10.8.3. Prevalidation regression tests, sanity checks and smoke tests 179
10.8.4. What to automate? . 180
10.8.5. Test frameworks . 182
10.8.6. E2E test cases . 183
10.8.7. Automated test case maintenance or not? 184

10.9. Reporting . 185
10.9.1. Automated reporting for the test manager 186

Chapter 11. Standards and Regulations . 187

11.1. Definition of standards . 189
11.2. Usefulness and interest . 189
11.3. Implementation . 190
11.4. Demonstration of compliance – IADT . 190
11.5. Pseudo-standards and good practices . 191
11.6. Adapting standards to needs . 191
11.7. Standards and procedures . 192
11.8. Internal and external coherence of standards 192

Chapter 12. Case Study . 195

12.1. Case study: improvement of an existing complex system 195
12.1.1. Context and organization . 196
12.1.2. Risks, characteristics and business domains 198
12.1.3. Approach and environment . 200
12.1.4. Resources, tools and personnel . 210
12.1.5. Deliverables, reporting and documentation 212
12.1.6. Planning and progress . 213
12.1.7. Logistics and campaigns . 216
12.1.8. Test techniques . 217
12.1.9. Conclusions and return on experience . 218

Chapter 13. Future Testing Challenges . 223

13.1. Technical debt . 223
13.1.1. Origin of the technical debt . 224
13.1.2. Technical debt elements . 225
13.1.3. Measuring technical debt . 226
13.1.4. Reducing technical debt . 227

13.2. Systems-of-systems specific challenges . 228
13.3. Correct project management. 229
13.4. DevOps . 230

13.4.1. DevOps ideals . 231
13.4.2. DevOps-specific challenges . 231

13.5. IoT (Internet of Things) . 232

xii Advanced Testing of Systems-of-Systems 2

13.6. Big Data . 233
13.7. Services and microservices . 234
13.8. Containers, Docker, Kubernetes, etc. 235
13.9. Artificial intelligence and machine learning (AI/ML) 235
13.10. Multi-platforms, mobility and availability 237
13.11. Complexity . 238
13.12. Unknown dependencies . 238
13.13. Automation of tests . 239

13.13.1. Unrealistic expectations . 240
13.13.2. Difficult to reach ROI . 241
13.13.3. Implementation difficulties . 242
13.13.4. Think about maintenance . 243
13.13.5. Can you trust your tools and your results? 244

13.14. Security . 245
13.15. Blindness or cognitive dissonance . 245
13.16. Four truths . 246

13.16.1. Importance of Individuals . 247
13.16.2. Quality versus quantity . 247
13.16.3. Training, experience and expertise . 248
13.16.4. Usefulness of certifications . 248

13.17. Need to anticipate . 249
13.18. Always reinvent yourself . 250
13.19. Last but not least . 250

Terminology . 253

References . 261

Index . 267

Summary of Volume 1 . 269

Dedication and Acknowledgments

Inspired by a dedication from Boris Beizer1, I dedicate these two books
to many very bad projects on software and systems-of-systems development
where I had the opportunity to – for a short time – act as a consultant. These taught
me multiple lessons on difficulties that these books try and identify and led me to
realize the need for this book. Their failure could have been prevented; may they rest
in peace.

I would also like to thank the many managers and colleagues I had the privilege
of meeting during my career. Some, too few, understood that quality is really
everyone’s business. We will lay a modest shroud over the others.

Finally, paraphrasing Isaac Newton, If I was able to reach this level of
knowledge, it is thanks to all the giants that were before me and on the shoulders of
which I could position myself. Among these giants, I would like to mention (in
alphabetical order) James Bach, Boris Beizer, Rex Black, Frederic Brooks, Hans
Buwalda, Ross Collard, Elfriede Dustin, Avner Engel, Tom Gilb, Eliahu Goldratt,
Dorothy Graham, Capers Jones, Paul Jorgensen, Cem Kaner, Brian Marick, Edward
Miller, John Musa, Glenford Myers, Bret Pettichord, Johanna Rothman, Gerald
Weinberg, James Whittaker and Karl Wiegers.

After 15 years in software development, I had the opportunity to focus on
software testing for over 25 years. Specialized in testing process improvements, I
founded and participated in the creation of multiple associations focused on software
testing: AST (Association of Software Tester), ISTQB (International Software

1 Beizer, B. (1990). Software Testing Techniques, 2nd edition. ITP Media.

xiv Advanced Testing of Systems-of-Systems 2

Testing Qualification Board), CFTL (Comité Français des Tests Logiciels, the
French Software Testing committee) and GASQ (Global Association for Software
Quality). I also dedicate these books to you, the reader, so that you can improve your
testing competencies.

Preface

Implementation

In the first part of these two books on systems-of-systems testing, we identified
the impacts of software development cycles, testing strategies and methodologies,
and we saw the benefit of using a quality referential and the importance of test
documentation and reporting. We have identified the impact of test levels and test
techniques, whether we are talking about static techniques or dynamic techniques.
We ended with an approach to test project management that allowed us to identify
that human actor and how their interactions are essential elements that must be
considered.

In this second part of the book on systems-of-systems testing, we will focus on
more practical aspects such as managing test projects, testing processes and how to
improve them continuously. We will see the additional but necessary processes such
as the management of requirements, defects and configurations, and we will also see
a case study allowing us to ask ourselves several useful questions. We will end with
a perilous prediction exercise by listing the challenges that tests will have to face in
the years to come.

August 2022

1

Test Project Management

We do not claim to replace the many contributions of illustrious authors on good
practices in project management. Standards such as PMBOK (PMI 2017) or CMMI
and methodologies such as ITIL and PRINCE2 comprehensively describe the tasks,
best practices and other activities recommended to properly manage projects. We
focus on certain points associated with the testing of software, components, products
and systems within systems-of-systems projects.

At the risk of writing a tautology, the purpose of project management is to
manage projects, that is, to define the tasks and actions necessary to achieve the
objectives of these projects. The purpose, the ultimate objective of the project, takes
precedence over any other aspect, even if the budgetary and time constraints are
significant. To limit the risks associated with systems-of-systems, the quality of the
deliverables is very important and therefore tests (verifications and validations that
the object of the project has been achieved) are necessary.

Project management must ensure that development methodologies are correctly
implemented (see Chapter 2) to avoid inconsistencies. Similarly, project
management must provide all stakeholders with an image of the risks and the
progress of the system-of-systems, its dependencies and the actions to be taken in
the short and medium term, in order to anticipate the potential hazards.

1.1. General principles

Management of test projects, whether on components, products, systems or
systems-of-systems, has a particularity that other projects do not have: they depend
– for their deadlines, scope and level of quality – on other parts of the projects: the
development phases. Requirements are often unstable, information arrives late,
deadlines are shorter because they depend on evolving developments and longer

2 Advanced Testing of Systems-of-Systems 2

deadlines, the scope initially considered increases, the level of quality of input data –
requirements, components to be tested, interfaces – is often of lower quality than
expected and the number of faults or anomalies is greater than anticipated. All of
these are under tighter budgetary and calendar constraints because, even if the
developments take longer than expected, the production launch date is rarely
postponed.

The methodologies offered by ITIL, PRINCE2, CMMI, etc. bring together a set
of good practices that can be adapted – or not – to our system-of-systems project.
CMMI, for example, does not have test-specific elements (only IVV), and it may be
necessary to supplement CMMI with test-specific tasks and actions as offered by
TMM and TMMI.

Let us see the elements specific to software testing projects.

1.1.1. Quality of requirements

Any development translates requirements (needs or business objectives) into a
component, product or system that will implement them. In an Agile environment,
requirements are defined in the form of User Stories, Features or Epics. The
requirements can be described in so-called specification documents (e.g. General
Specifications Document or Detailed Specifications Document). Requirements are
primarily functional – they describe expected functionality – but can be technical or
non-functional. We can classify the requirements according to the quality
characteristics they cover as proposed in Chapter 5 of Volume 1 (Homès 2022a).

Requirements are provided to development teams as well as test teams.
Production teams – design, development, etc. – use these requirements to develop
components, products or systems and may propose or request adaptations of these
requirements. Test teams use requirements to define, analyze and implement, or
even automate, test cases and test scenarios to validate these requirements. These
test teams must absolutely be informed – as soon as possible – of any change in the
requirements to proceed with the modifications of the tests.

The requirements must be SMART, that is:

– Specific: the requirements must be clear, there must be no ambiguity and the
requirements must be simple, consistent and with an appropriate level of detail.

– Measurable: it must be possible, when the component, product or system is
designed, to verify that the requirement has been met. This is directly necessary for
the design of tests and metrics to verify the extent to which requirements are met.

Test Project Management 3

– Achievable: the requirements must be able to be physically demonstrated
under given conditions. If the requirements are not achievable (e.g. the system will
have 100% reliability and 100% availability), the result will be that the component,
product or system will never be accepted or will be cost-prohibitive. Achievable
includes that the requirement can be developed in a specific time frame.

– Realistic: in the context of software development – and testing – is it possible
to achieve the requirement for the component, product or system, taking into
account the constraints in which the project is developed? We add to this aspect the
notion of time: are the requirements achievable in a realistic time?

– Traceable: requirements traceability is the ability to follow a requirement from
its design to its specification, its realization and its implementation to its test, as well
as in the other direction (from the test to the specification). This helps to understand
why a requirement was specified and to ensure that each requirement has been
correctly implemented.

1.1.2. Completeness of deliveries

The completeness of the software, components, products, equipment and systems
delivered for the tests is obviously essential. If the elements delivered are
incomplete, it will be necessary to come back to them to modify and complete them,
which will increase the risk of introducing anomalies.

This aspect of completeness is ambiguous in incremental and iterative
methodologies. On the one hand, it is recommended to deliver small increments, and
on the other hand, losses should be eliminated. Small increments imply partial
releases of functionality, thus generation of “losses” both regarding releases and
testing (e.g. regression testing) – in fact, all the expectations related to these multiple
releases and multiple test runs – to be performed on these components. Any
evolution within the framework of an iteration will lead to a modification in the
functionalities and therefore an evolution compared to the results executed during
the previous iterations.

1.1.3. Availability of test environments

The execution of the tests is carried out in different test environments according
to the test levels envisaged. It will therefore be necessary to ensure the availability
of environments for each level.

4 Advanced Testing of Systems-of-Systems 2

The test environment is not limited to a machine on which the software
component is executed. It also includes the settings necessary for the proper
execution of the component, the test data and other applications – in the appropriate
versions – with which the component interacts.

Test environments, as well as their data and the applications they interface with
must be properly synchronized with each other. This implies an up-to-date definition
of the versions of each system making up the system-of-systems and of the
interfaces and messages exchanged between them.

Automating backups and restores of test environments allows testers to self-
manage their environments so that they are not a burden on production systems
management teams.

In DevOps environments, it is recommended to enable automatic creation of
environments to test builds as they are created by developers. As proposed by Kim
et al. (2016), it is necessary to allow to recreate – automatically – the test
environments rather than trying to repair them. This automatic creation solution
ensures an identical test environment to the previous version, which will facilitate
regression testing.

1.1.4. Availability of test data

It is obvious that the input test data of a test case and the expected data at the
output of a test case are necessary, and it is also important to have a set of other data
that will be used for testing:

– data related to the users who will run the tests (e.g. authorization level,
hierarchical level, organization to which they are attached, etc.);

– information related to the test data used (e.g. technical characteristics,
composition, functionalities present, etc.) and which are grouped in legacy systems
interfaced with the system-of-systems under test;

– historical information allowing us to make proposals based on this historical
information (e.g. purchase suggestions based on previous purchases);

– information based on geographical positioning (e.g. GPS position), supply
times and consumption volumes to anticipate stock replenishment needs (e.g. need
to fill the fuel tank according to the way to drive and consume fuel, making it
possible to offer – depending on the route and GPS information – one or more
service stations nearby);

– etc.

Test Project Management 5

The creation and provision of quality test data is necessary before any test
campaign. Designing and updating this data, ensuring that it is consistent, is
extremely important because it must – as far as possible – simulate the reality of the
exchanges and information of each of the systems of the system-of-systems to be
tested. We will therefore need to generate data from monitoring systems (from
sensors, via IoT systems) and ensure that their production respects the expected
constraints (e.g. every n seconds, in order to identify connection losses or deviations
from nominal operating ranges).

Test data should be realistic and consistent over time. That is, they must either
simulate a reference period and each of the campaigns must ensure that the systems
have modified their reference date (e.g. use a fixed range of hours and reset systems
at the beginning of this range) or be consistent with the time of execution of the test
campaign. This last solution requires generating the test data during the execution of
the test campaign, in order to verify the consistency of the data with respect to the
expected (e.g. identification of duplicate messages, sequencing of messages, etc.)
and therefore the proper functioning of the system-of-systems as a whole.

1.1.5. Compliance of deliveries and schedules

Development and construction projects are associated with often strict delivery
dates and schedules. The impact of a late delivery of a component generates
cascading effects impacting the delivery of the system and the system-of-systems.
Timely delivery, with the expected features and the desired level of quality, is
therefore very important. In some systems-of-systems, the completeness of the
functionalities and their level of quality are often more important than the respect of
the delivery date. In others, respecting the schedule is crucial in order to meet
imperatives (e.g. launch window for a rocket aiming for another planet).

Test projects depend on the delivery of requirements and components to be
tested within a specific schedule. Indeed, testers can only design tests based on the
requirements, user stories and features delivered to them and can only run tests on
the components, products and systems delivered to them in the appropriate test
environments (i.e. including the necessary data and systems). The timely delivery of
deliverables (contracts, requirements documents, specifications, features, user
stories, etc.) and components, products and systems in a usable state – that is, with
information or expected and working functionality – is crucial, or testers will not be
able to perform their tasks properly.

This involves close collaboration between test manager and project managers in
charge of the design and production of components, products or systems to be

6 Advanced Testing of Systems-of-Systems 2

tested, as well as managers in charge of test environments and the supply of test
data.

In the context of Agile and Lean methods, any delay in deliveries and any
non-compliance with schedules is a “loss of value” and should be eliminated. It is
however important to note that the principles of agility propose that it is the
development teams that define the scope of the functionalities to be delivered at each
iteration.

1.1.6. Coordinating and setting up environments

Depending on the test levels, environments will include more and more
components, products and systems that will need to coordinate to represent test
environments representative of real life. Each environment includes one or more
systems, components, products, as well as interfaces, ETLs and communication
equipment (wired, wireless, satellite, optical networks, etc.) of increasing
complexity. The design of these various environments quickly becomes a full-time
job, especially since it is necessary to ensure that all the versions of all the software
are correctly synchronized and that all the data, files, contents of databases and
interfaces are synchronized and validated in order to allow the correct execution of
the tests on this environment.

The activity of coordinating and setting up environments interacts strongly with
all the other projects participating in the realization of the system-of-systems. Some
test environments will only be able to simulate part of the target environment (e.g.
simulation of space vacuum and sunlight with no ability to simulate zero gravity),
and therefore there may be, for the same test level, several test execution campaigns,
each on different technical or functional domains.

1.1.7. Validation of prerequisites – Test Readiness Review (TRR)

Testing activities can start effectively and efficiently as soon as all their
prerequisites are present. Otherwise, the activities will have to stop and then start
again when the missing prerequisite is provided, etc. This generates significant
waste of time, not to mention everyone’s frustration. Before starting any test task,
we must make sure that all the prerequisites are present, or at the very least that they
will arrive on time with the desired level of quality. Among the prerequisites, we
have among others the requirements, the environment, the datasets, the component
to be tested, the test cases with the expected data, as well as the testers, the tools and
procedures for managing tests and anomalies, the KPIs and metrics allowing the
reporting of the progress of the tests, etc.

Test Project Management 7

One solution to ensure the presence of the prerequisites is to set up a TRR (Test
Readiness Review) milestone, a review of the start of the tests. The purpose of this
milestone is to verify – depending on the test level and the types of test – whether or
not the prerequisites are present. If prerequisites are missing, it is up to the project
managers to decide whether or not to launch the test activity, taking into account the
identified risks.

In Agile methods, such a review can be informal and only apply to one user story
at a time, with the acronym DOR for definition of ready.

1.1.8. Delivery of datasets (TDS)

The delivery of test datasets (TDS) is not limited to the provision of files or
databases with information usable by the component, product or system. This also
includes – for the applications, components, products or systems with which the
component, product or system under test interacts – a check of the consistency and
synchronization of the data with each other. It will be necessary to ensure that the
interfaces are correctly described, defined and implemented.

Backup of datasets or automation of dataset generation processes may be
necessary to allow testers to generate the data they need themselves.

The design of coherent and complete datasets is a difficult task requiring a good
knowledge of the entire information system and the interfaces between the
component, product or system under test on the one hand and all the other systems
of the test environment on the other hand. Some components, products or systems
may be missing and replaced by “stubs” that will simulate the missing elements. In
this case, it is necessary to manage these “stubs” with the same rigor as if they were
real components (e.g. evolution of versions, data, etc.).

1.1.9. Go-NoGo decision – Test Review Board (TRB)

A Go-NoGo meeting is used to analyze the risks associated with moving to the
next step in a process of designing and deploying a component, product, system or
system-of-systems, and to decide whether to proceed to the next step.

This meeting is sometimes split into two reviews in time:

– A TRB (Test Review Board) meeting analyzes the results of the tests carried
out in the level and determines the actions according to these results. This technical
meeting ensures that the planned objectives have been achieved for the level.

8 Advanced Testing of Systems-of-Systems 2

– A management review to obtain – from the hierarchy, the other stakeholders,
the MOA and the customers – a decision (the “Go” or the “NoGo” decision)
accepted by all, with consideration of business risks, marketing, etc.

The Go-NoGo meeting includes representatives from all business stakeholders,
such as operations managers, deployment teams, production teams and marketing
teams.

In an Agile environment, the concept of Go-NoGo and TRB is detailed under the
concept of DOD (definition of done) for each of the design actions.

1.1.10. Continuous delivery and deployment

The concept of continuous integration and continuous delivery (CI/CD) is
interesting and deserves to be considered in systems-of-systems with preponderant
software. However, such concepts have particular constraints that we must study,
beyond the use of an Agile design methodology.

1.1.10.1. Continuous delivery

The continuous delivery practices mentioned in Kim et al. (2016) focus primarily
on the aspects of continuous delivery and deployment of software that depend on
automated testing performed to ensure developers have quick (immediate) feedback
on the defects, performance, security and usability concerns of the components put
in configuration. In addition, the principle is to have a limited number of
configuration branches.

In the context of systems-of-systems, where hardware components and
subsystems including software must be physically installed – and tested on physical
test benches – the ability to deliver daily and ensure the absence of regressions
becomes more complex, if not impossible, to implement. This is all the more true
since the systems-of-systems are not produced in large quantities and the
interactions are complex.

1.1.10.2. Continuous testing

On-demand execution of tests as part of continuous delivery is possible for unit
testing and static testing of code. Software integration testing could be considered,
but anything involving end-to-end (E2E) testing becomes more problematic because
installing the software on the hardware component should generate a change in the
configuration reference of the hardware component.

Test Project Management 9

Among the elements to consider, we have an ambiguity of terminology: the term
ATDD (Acceptance Test-Driven Development) relates to the acceptance of the
software component alone, not its integration, nor the acceptance of the system-of-
system nor of the subsystem or equipment.

Another aspect to consider is the need for test automation and (1) the continued
increase in the number of tests to be executed, which will mean increasing test
execution time as well as (2) the need to ensure that the test classes in the software
(case of TDD and BDD) are correctly removed from the versions used in integration
tests and in system tests.

One of the temptations associated with testing in a CI/CD or DevOps
environment is to pool the tests of the various software components into a single test
batch for the release, instead of processing the tests separately for each component.
This solution makes it possible to pool the regression tests of software components,
but is a difficult practical problem for the qualification of systems-of-systems as
mentioned in Sacquet and Rochefolle (2016).

1.1.10.3. Continuous deployment

Continuous deployment depends on continuous delivery and therefore automated
validation of tests, and the presence of complete documentation – for component
usage and administration – as well as the ability to run end-to-end on an
environment representative of production.

According to Kim et al. (2016), in companies like Amazon and Google, the
majority of teams practice continuous delivery and some practice continuous
deployment. There is wide variation in how to perform continuous deployment.

1.2. Tracking test projects

Monitoring test projects requires monitoring the progress of each of the test
activities for each of the systems of the system-of-systems, as well as on each of the
test environments of each of the test levels of each of these systems. It is therefore
important that the progress information of each test level is aggregated and
summarized for each system and that the test progress information of each system is
aggregated at the system-of-systems level. This involves defining the elements that
must be measured (the progress), against which benchmark they must be measured
(the reference) and identifying the impacts (dependencies) that this can generate.
Reporting of similar indicators from each of the systems will facilitate
understanding. Automated information feedback will facilitate information retrieval.

10 Advanced Testing of Systems-of-Systems 2

1.3. Risks and systems-of-systems

Systems-of-systems projects are subject to more risk than other systems in that
they may inherit upstream-level risks and a process’s tolerance for risk may vary by
organization and the delivered product. In Figure 1.1, we can identify that the more
we advance in the design and production of components by the various
organizations, the risks will be added and the impact for organizations with a low
risk tolerance will be more strongly impacted than others.

Figure 1.1. Different risk tolerance

In Figure 1.2, we can identify that an organization will be impacted by all the
risks it can inherit from upstream organizations and that it will impose risks on all
downstream organizations.

Figure 1.2. Inherited and imposed risks

We realize that risk management in systems-of-systems is significantly more
complex than in the case of complex systems and may need to be managed at
multiple levels (e.g. interactions between teams, between managers of the project or
between the managers – or leaders – of the organizations).

Test Project Management 11

1.4. Particularities related to SoS

According to Firesmith (2014), several pitfalls should be avoided in the context
of systems-of-systems, including:

– inadequate system-of-systems test planning;

– unclear responsibilities, including liability limits;

– inadequate resources dedicated to system-of-systems testing;

– lack of clear systems-of-systems planning;

– insufficient or inadequate systems-of-systems requirements;

– inadequate support of individual systems and projects;

– inadequate cross-project defect management.

To this we can add:

– different quality requirements according to the participants/co-contractors,
including regarding the interpretation of regulatory obligations;

– the needs to take into account long-term evolutions;

– the multiplicity of level versions (groupings of software working and delivered
together), multiple versions and environments;

– the fact that systems-of-systems are often unique developments.

1.5. Particularities related to SoS methodologies

Development methodologies generate different constraints and opportunities.
Sequential developments have demonstrated their effectiveness, but involve
constraints of rigidity and lack of responsiveness, if the contexts change. Agility
offers better responsiveness at the expense of a more restricted analysis phase and an
organization that does not guarantee that all the requirements will be developed. The
choice of a development methodology will imply adaptations during the
management of the project and during the testing of the components of the system-
of-systems.

Iterative methodologies involve rapid delivery of components or parts of
components, followed by refinement phases if necessary. That implies that:

– The planned functionalities are not fully provided before the last delivery of
the component. Validation by the business may be delayed until the final delivery of
the component. This reduces the time for detecting and correcting anomalies and

12 Advanced Testing of Systems-of-Systems 2

can impact the final delivery of the component, product or system, or even the
system-of-systems.

– Side effects may appear on other components, so it will be necessary to retest
all components each time a component update is delivered. This solution can be
limited to the components interacting directly with the modified component(s) or
extend to the entire system-of-systems, and it is recommended to automate it.

– The interfaces between components may not be developed simultaneously and
therefore that the tests of these interfaces may be delayed.

Sequential methodologies (e.g. V-cycle, Spiral, etc.) focus on a single delivery,
so any evolution – or need for clarification – of the requirement will have an impact
on lead time and workload, both in terms of development (redevelopment or
adaptation of components, products or systems) and in terms of testing (design and
execution of tests).

1.5.1. Components definition

Within the framework of sequential methodologies, the principle is to define the
components and deliver them finished and validated at the end of their design phase.
This involves a complete definition of each product or system component and the
interactions it has with other components, products or systems. These exhaustive
definitions will be used both for the design of the component, product or system and
for the design of the tests that will validate them.

1.5.2. Testing and quality assurance activities

It is not possible to envisage retesting all the combinations of data and actions of
the components of a level of a system-of-systems; this would generate a workload
disproportionate to the expected benefits. One solution is to verify that the design
and test processes have been correctly carried out, that the proofs of execution are
available and that the test activities – static and dynamic – have correctly covered
the objectives. These verification activities are the responsibility of the quality
assurance teams and are mainly based on available evidence (paper documentation,
execution logs, anomaly dashboards, etc.).

1.6. Particularities related to teams

In a test project, whether it is software testing or systems-of-systems testing, one
element to take into account is the management of team members, and their

