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1
Introduction to the Smart Grid
The power grid has been evolving from a physical system to
a “cyber‐physical” system to sense, communicate, compute,
and control with enhanced digitalization. The cyber‐
physical smart grid includes components from the physical
power system, digital devices, and the associated
communication infrastructure. To realize the vision of the
smart grid, massive amounts of data need to be transferred
from the field devices to the control devices or to the
control centers. As more optimal algorithms are deployed
for best possible control at a faster time scale, the
communication infrastructure becomes critical to provide
the required inputs. At the same time, increased number of
“smart” devices in the grid also increase the attack surface
for potential cyber attacks. It is necessary to study the
power system's exposure to risks and vulnerabilities in the
associated cyber system.

1.1 Overview of the Electric Power
Grid
The electric power grid can be defined as the entire
apparatus of wires and machines that connects the sources
of electricity with the customers. A power grid is generally
divided into four major components as shown in Figure 1.1:

1. Generation
2. Transmission
3. Distribution
4. Loads



Electricity was first generated, sold, and distributed locally
in 1870s via direct current (DC) circuits over very small
distances. As the demand for electricity became more
widespread, the cost of construction and distribution of
local generation and DC circuits to carry the power over
long distances became prohibitively expensive. Hence,
alternating current (AC) generation, transmission, and
distribution became the standard that is used to this day.
However, the infrastructure of the power grid is getting
older  –  the average age of a transformer is greater than 50
years old and has already exceeded its expected lifetime.
The electric grid faces several problems, including a
problem with the oncoming retirement of at least 5% of the
workforce and one of the lowest R&D expenditure as
compared to other critical infrastructures.

Figure 1.1 Major components of the power grid.
Source: Energy Information Administration (EIA), public domain.

The situation is getting better, however, with increasing
interest in national security and acknowledgment of the
critical role that the power grid plays in the overall quality
of life. In a full circle, localized generation using distributed
energy resources (DERs) is making a comeback, with a



combination of both AC and DC systems. Today's
generation systems are a combination of different types of
sources  –  including fossil fuels, natural gas, renewable
resources, and nuclear energy. These generation systems
are often located in remote areas for ease of doing business
and for environmental reasons.
The power that is generated at the generating stations is
brought to the consumers by a complex network of
transmission lines. The North American power grid
comprises of four major interconnections as shown in
Figure 1.2:

1. Western interconnection
2. Eastern interconnection
3. Quebec interconnection
4. Electricity Reliability Council of Texas (ERCOT)

interconnection



Figure 1.2 Interconnections in the North American Power
Grid.

Source: North American Energy Reliability Corporation (NERC), public
domain.

These interconnections are zones in which the electric
utilities are electrically tied together, indicating that the
areas are synchronized to the same frequency and power
can flow freely in that area. The interconnections operate
nearly independently of each other except for some high‐
voltage direct current (HVDC) interconnections between
them. DC converter substations enable the synchronized
transfer of power across interconnections regardless of the
operating frequency as DC power is non‐phase dependent.
The flow of electricity is instantaneous, indicating that the
power that is being consumed is also being simultaneously



generated. Commercially viable mechanisms for storing
electricity for longer duration do not exist currently; hence,
the power plants and the grid are constantly operating. The
structure of the flow of electricity is illustrated in
Figure 1.3, which shows the critical nature of the
transmission system in bringing electricity from the
generating plants to the customer's use.

Figure 1.3 Structure of electricity flow from generating
stations to the consumer.

Power demand constantly fluctuates throughout the day
depending on consumer behavior. There are various factors
that create this changing behavior, including population
density, work schedules, weather, and other activities. In
addition, special activities that involve a large number of
people also have to be considered, such as big sporting
events or an impending weather event over a large area.
Figure 1.4 shows a typical daily “load” curve as it is
referred to, which shows how the electric load varies
across a day depending on the activities throughout the
day. The peak demand occurs in the early evening when
people return from work and are engaged in family
activities or dinner preparation. The power demand rises
and falls throughout the day depending on other activities,
such as a peak when people are getting ready for work or
troughs when they are sleeping. These load curves are
constantly monitored and predicted by the utilities and
operators to plan for the operation of the grid, and they are



updated at regular intervals to account for changes in
behavior, such as the COVID‐19 pandemic.

Figure 1.4 Load curves for a typical day.
Source: US Department of Energy, Office of Electricity Delivery and Energy
Reliability.

The power distribution system is the last leg of the power
delivery from the substations to the consumer. The three
components of the power grid are usually defined by the
voltage levels at which they operate at. Generation
happens at generating stations at low voltages, following
which the power is immediately transformed to much
higher voltages on site. Generation plants send the power
where they are stepped up till 20,000  V, following which
they are fed to the transmission grid where they can be
stepped up as high as 765,000  V, commonly written and
referred to as 765  kV. The power is stepped up to these
very high values to reduce losses in transmission, which
are directly proportional to the current and inversely
proportional to the voltage. The distribution system



substation is considered to be at the 13.2  kV level (or could
be higher), following which the voltage is stepped down to
be sent to the consumers. This structure is illustrated in
Figure 1.5.

Figure 1.5 Voltage levels in the power grid.
Energy control centers have traditionally been the decision
centers for the electric generation and transmission
centers. There are enabled by the wide area measurements



fed to the control centers by the SCADA (Supervisory
Control And Data Acquisition) and other measurement
systems. The control center operator(s) is a key part of the
overall operation of the grid with various responsibilities
including but not limited to the following:

1. Monitor and react to key system performance indices
such as voltage, frequency, power quality, and other
metrics (such as reliability metrics).

2. Respond to emergencies and alerts  –  the control system
operator has to handle the alerts from various
algorithms and applications running at the control
center. In addition, they also deal with emergencies
such as trees hitting transmission lines or fires because
of malfunctioning equipment.

3. Ensure system reliability by scheduling maintenance on
equipment in anticipation of failures.

4. Respond to larger customer requests such as industries
or other infrastructures. This could be a larger
consumer who is testing their on‐site back‐up
generation or infrastructural loads such as the transit
system.

5. Coordinate with other stakeholders such as generation
companies, transmission operators, utilities, and
maintenance crews among others to ensure seamless
operation.

6. Ensure that system operation is compliant with system
regulations put in place by authorities such as FERC
and NERC at all times.

In short, the control system is responsible for ensuring that
electricity is being generated, transmitted, and distributed
to the consumers in a safe and reliable manner. It
coordinates all system operations with the other


