
Scientific Computation

Vinh Phu Nguyen
Alban de Vaucorbeil
Stephane Bordas

The Material
Point
Method
Theory, Implementations and
Applications

The Material Point Method

Scientific Computation

Series Editors

Jean-Jacques Chattot, University of California, Davis, CA, USA

Phillip Colella, University of California at Berkeley, Berkeley, CA, USA

M. Yousuff Hussaini, Florida State University, Tallahassee, FL, USA

Patrick Joly, Applied Mathematics department of l’ENSTA Paris (UMA),
Le Chesnay, France

Olivier Pironneau, Université Paris VI, Paris, France

Alfio Quarteroni, École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

Jacques Rappaz, École Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland

Robert Rosner, University of Chicago, Chicago, IL, USA

P. Sagaut, Université Pierre et Marie Curie, Paris, France

John H. Seinfeld, California Institute of Technology, Pasadena, CA, USA

Anders Szepessy, Royal Institute of Technology (KTH), Stockholm, Sweden

Mary F. Wheeler, University of Texas, Austin, TX, USA

Vinh Phu Nguyen · Alban de Vaucorbeil ·
Stephane Bordas

The Material Point Method
Theory, Implementations and Applications

Vinh Phu Nguyen
Department of Civil Engineering
Monash University
Clayton, VIC, Australia

Stephane Bordas
University of Luxembourg Campus
Kirchberg
Luxembourg, Luxembourg

Alban de Vaucorbeil
Institute for Frontier Materials
Deakin University
Geelong, VIC, Australia

ISSN 1434-8322 ISSN 2198-2589 (electronic)
Scientific Computation
ISBN 978-3-031-24069-0 ISBN 978-3-031-24070-6 (eBook)
https://doi.org/10.1007/978-3-031-24070-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-24070-6

Preface

Computer simulations have become an integral tool in engineering, ranging fromcivil
andmechanical engineering tomaterial sciences and beyond.While the finite element
method (FEM) has long been the standard framework for simulations, it reaches its
limits when dealing with problems involving large deformation and fractures. To
overcome these limitations, meshless methods (MMs) such as smoothed-particle
hydrodynamics (SPH) and the material point method (MPM) have emerged as a
promising alternative. MPM, in particular, combines the advantages of FEM and
MMs, representing the material by a set of particles overlaid on a background mesh.
This approach has been successful in simulating a wide variety of large-deformation
and complicated engineering problems.

The book not only re-examines previous contributions but also organizes them
in a coherent fashion and anticipates new advancements. Sample algorithms for
benchmark problems are available on the book’s website, allowing researchers and
graduate students to modify them and develop their own solution algorithms for
specific problems. The goal of this book is to provide students and researchers with a
theoretical and practical knowledge of the material point method for the simulation
of engineering problems, and to promote further in-depth studies in the field.

This book aims at being a comprehensive guide to the Material Point Method
that focuses on its use in solving problems in mechanics, physics and engineering.
The book contains nine main chapters that build on each other to provide a detailed
understanding of the MPM.

Chapter 1 provides an introduction to theMaterial PointMethod and its advantages
over other numerical methods. It also gives an overview of the topics covered in the
book.

Chapter 2 covers the mathematical foundations of the MPM. It discusses the
principles of continuum mechanics, the kinematic description of motion and the
integration algorithms used in the MPM.

Chapter 3 presents different MPM versions that basically adopt different shape
functions, e.g. hat functions, B-splines, Bernstein, GIMP and CPDI. Also treated is a
new formulation called generalized particle in cell (GPIC) which combines the FEM
and MPM that takes advantages of both methods.

v

vi Preface

Chapter 4 covers the constitutive models used in the MPM. This includes linear
elastic isotropic materials, hyperelastic solids and elasto-plastic materials. The
chapter also discusses the Johnson-Cook flow model and the algorithm used to
compute damage.

Chapter 5 provides some implementation details such as particle generation for
simple geometries and for images, initial and boundary conditions, MPM with
unstructured grids and visualization of MPM results.

Chapter 6 presents a tutorial MPM code written in MATLAB. This code serves
to illustrate the MPM algorithms discussed in the book and it can be used to solve
one, two and three dimensional problems.

Chapter 7 describes Karamelo—an open-source parallel C++ package for the
material point method. This code can be used to solve large-scale problems as it can
be run on multiple processors using MPI. With such an efficient code, we present
three dimensional simulations to demonstrate the capability of the MPM in solving
large deformation solid mechanics problems.

Chapter 8 presents some advanced topics such as contacts and fracture. Both
frictionless and frictional contact are discussed. One notable application of these
contact algorithms is the simulation of scratch test—a popular mechanical test to
measure a solid’s hardness. We then discuss fracture modeling in the framework of
the MPM. Application of the MPM to model large strain ductile fracture of metals
is then provided.

Chapter 9 discusses the mathematical analysis of the MPM regarding its stability
and accuracy. We discuss the conservation of energy and momenta in various MPM
variants. We study the convergence behavior of all MPM variants discussed in this
book for a problem involving only compression/tension deformation and another
problem involving simple shear with superimposed rotation.

Chapter 10 discusses fluid/gasesmodeling, membranemodeling and heat conduc-
tion. With the information provided in this chapter, one can carry out fluid-structure
interaction simulations, air-bag simulations and thermo-mechanical simulations.

In addition to the content of themain chapters, the book has several appendices that
provide supplementary information. Appendix A discusses the strong andweak form
of the momentum equation and their equivalence. Appendix B presents derivation of
variousCPDI basis functions. Some useful utilities such as how to use an open-source
computer algebra system (SageMath and SymPy) to derive CPDI functions, how to
use remote machines to run large-scale simulations and consistent units are given
in Appendix C. Appendix D gives a short but practical presentation of updated and
total Lagrangian, explicit dynamics FEM for nonlinear solid mechanics. Appendix
E treats implicit dynamics FEM so that it is easier to understand implicit MPM (even
though this is not discussed in this book). Finally, we describe another MPM code in
Appendix F, nowwritten in Julia—a new high-level dynamic programming language
which is easy to use as Python and as fast as C.

The book also includes several simulations related to these topics. The book
provides sample algorithms for benchmark problems, which are available on the

Preface vii

book’s website. These algorithms can be modified and used to develop custom solu-
tion algorithms for specific problems. The book includes MATLAB, Julia and C++
codes, derivations, and references to other studies in the field.

We would like to thank Prof. Deborah Sulsky at University of New Mexico for
reading through the first draft and giving comments. Also, the first author acknowl-
edges the fruitful discussions with Dr. Rebecca Brannon at University of Utah when
he started working on the MPM.

Clayton, Australia
Geelong, Australia
Luxembourg, Luxembourg

Vinh Phu Nguyen
Alban de Vaucorbeil

Stephane Bordas

Reference

Zhang, X., Chen, Z., Liu, Y.: The Material Point Method-A Continuum-Based Particle Method for
Extreme Loading Cases. Academic Press, Cambridge (2016a)

Contents

1 Introduction . 1
1.1 Computational Sciences and Engineering . 1
1.2 The Role of Experiments in CSE . 3
1.3 One Dimensional Wave Equation . 3
1.4 Mesh-Based and Meshfree Methods . 9

1.4.1 Mesh-Based Methods . 9
1.4.2 Meshless Methods . 12

1.5 A Brief Introduction to the MPM . 14
1.5.1 Lagrangian Particles and Eulerian Grid 14
1.5.2 The Basic MPM Algorithm . 16
1.5.3 Advantages and Disadvantages of the MPM 18
1.5.4 Existing MPM Formulations . 19
1.5.5 Multiphysics MPM . 24
1.5.6 Contacts . 24
1.5.7 Fracture . 27
1.5.8 Fluids and Gases . 30
1.5.9 The MPM Versus Other Methods 31
1.5.10 Coupling the MPM with Other Methods 33

1.6 Applications of the MPM . 34
1.6.1 Large Strain Geo-Technical Engineering 34
1.6.2 Fluid-Structure Interaction . 35
1.6.3 Image-Based Simulations . 37
1.6.4 Computer Graphics . 38
1.6.5 Other Applications . 38

1.7 Open Source and Commercial MPM Codes 39
1.8 Layout . 40
1.9 Notations . 42
References . 44

ix

x Contents

2 A General MPM for Solid Mechanics . 57
2.1 Basic Concepts of Continuum Mechanics . 58

2.1.1 Motion and Deformation . 58
2.1.2 Strain Measures . 60
2.1.3 Stress Measures . 61
2.1.4 Objective Stress Rates . 62
2.1.5 Conservation Equations . 62
2.1.6 Constitutive Models . 63

2.2 Strong Form . 63
2.3 Weak Form and Spatial Discretization . 65
2.4 MPM as FEM with Particles as Integration Points 69
2.5 Temporal Discretization and Resulting MPM Algorithms 70

2.5.1 Lumped Mass Matrix . 71
2.5.2 Calculation of Nodal Velocities (Momenta) 72
2.5.3 Standard Formulation (USL) . 73
2.5.4 Modified Update Stress Last (MUSL) 79
2.5.5 Update Stress First (USF) . 81

2.6 Total Lagrangian MPM (TLMPM) . 82
2.6.1 Motivation: Numerical Fracture . 82
2.6.2 Derivation of TLMPM . 83

2.7 Axi-Symmetric MPM . 86
2.7.1 Axi-Symmetric ULMPM . 87
2.7.2 Axi-Symmetric TLMPM . 88

2.8 Adaptive Time Step . 89
2.9 Particle/Element Inversion . 90
2.10 Adaptivity . 91

2.10.1 Grid Adaptive Refinement . 91
2.10.2 Particle Splitting and Merging . 92

References . 92

3 Various MPM Formulations . 95
3.1 Properties of Weighting Functions . 95
3.2 Standard Linear Basis Functions . 96
3.3 Generalized Interpolation Material Point (GIMP) 99

3.3.1 uGIMP . 101
3.3.2 cpGIMP . 102

3.4 B-Splines Basis Functions . 104
3.4.1 Recursive B-Splines . 104
3.4.2 Boundary Modified B-Splines . 105

3.5 Bernstein Functions . 107
3.6 Convected Particle Domain Interpolation . 109

3.6.1 One Dimensional Linear CPDI (CPDI-L2) 109
3.6.2 Convected Particle Domain Interpolation

(CPDI-R4) . 110

Contents xi

3.6.3 Quadrilateral Convected Particle Domain
Interpolation (CPDI-Q4) . 113

3.6.4 Triangular Convected Particle Domain
Interpolation (CPDI-T3) . 114

3.6.5 Three Dimensional Linear Tetrahedron CPDI
(CPDI-Tet4) . 115

3.6.6 Polygonal and Polyhedral CPDI . 115
3.6.7 Complications in GIMP/CPDIs . 117

3.7 The Generalized Particle in Cell Method . 120
3.7.1 General Algorithms . 121
3.7.2 Computation of Mass and Forces on FE Meshes 123
3.7.3 Finite Element Basis Functions . 125
3.7.4 Equivalence Between CPDI and GPIC 126
3.7.5 Axi-Symmetric GPIC . 127

References . 128

4 Constitutive Models . 131
4.1 Linear Elastic Isotropic Material . 131
4.2 Hyperelastic Solids . 132
4.3 Elasto-Plastic Materials . 132

4.3.1 Equation of State . 133
4.3.2 Johnson-Cook Flow Model . 134
4.3.3 Damage . 135
4.3.4 Algorithm . 136

References . 137

5 Implementation . 139
5.1 Initial Particle Distribution . 139

5.1.1 Regular Particle Distribution . 140
5.1.2 Irregular Particle Distribution . 141
5.1.3 Particle Distribution from CAD . 142
5.1.4 Particle Distribution from Images 143

5.2 Initial and Boundary Conditions . 146
5.2.1 Dirichlet Boundary Conditions . 146
5.2.2 Symmetric Boundary Conditions . 147
5.2.3 Neumann Boundary Conditions . 148
5.2.4 Neumann Boundary Conditions with CPDI 148
5.2.5 Boundary Conditions in GPIC . 149
5.2.6 Rigid Bodies . 151

5.3 Implementation of CPDI . 153
5.4 MPM Using an Unstructured Grid . 154

5.4.1 Shape Functions . 154
5.4.2 Particle Registration . 155
5.4.3 Mixed Integration . 155
5.4.4 uMPM with C1 Shape Functions . 156

5.5 Visualization . 156
References . 157

xii Contents

6 MPMat: A MPM Matlab Code . 161
6.1 Code Structure . 162
6.2 Background Grid . 162
6.3 Particle Data . 165
6.4 Particle Generation . 166

6.4.1 Particle Generation Using a Mesh 166
6.4.2 Particle Generation for Simple Geometries 166

6.5 Solution Algorithm . 168
6.6 Three Dimensions . 170
6.7 Implementation of (u/cp)GIMP . 171
6.8 B-splines MPM . 172

6.8.1 Recursive B-splines MPM . 172
6.8.2 Bézier Extraction B-splines MPM 174

6.9 Implementation of CPDI-R4 . 175
6.9.1 Data Structure for Particles . 175
6.9.2 Evaluation of φI p and ∇φI p . 175
6.9.3 Time Advance . 176

6.10 Implementation of CPDI2s (CPDI-Q4, CPDI-T3) 177
6.11 Implementation of CPDI-Poly . 180
6.12 Visualization Toolkit (VTK) . 181
6.13 Some Efficiency Improvements . 183
6.14 More Improvements Using MEX Files . 184
6.15 Examples . 185

6.15.1 One Dimensional Examples . 186
6.15.2 Impact of Two Elastic Disks . 189
6.15.3 High Velocity Impact . 195
6.15.4 Large Deformation Vibration of a Compliant

Cantilever Beam . 195
6.15.5 Lateral Compression of Thin-Walled Tubes 199

References . 203

7 Karamelo: A Multi-CPU/GPU C++ Parallel MPM Code 205
7.1 Karamelo in a Nutshell . 206
7.2 Hierarchical Class System . 206
7.3 Pre and Post-processing . 207
7.4 Input Files . 208
7.5 Parallelization Using MPI . 210
7.6 Compilation . 211
7.7 Extending Karamelo . 211
7.8 GPU Support . 213
7.9 Some Simulations . 213

7.9.1 Taylor Anvil Test . 214
7.9.2 Upsetting of a Cylindrical Billet . 218
7.9.3 Cold Spraying . 220
7.9.4 Scalability Tests . 222

Contents xiii

7.10 Conclusions . 223
References . 224

8 Contact and Fracture . 227
8.1 Contacts in the ULMPM . 227

8.1.1 Contact Without Friction . 229
8.1.2 Contact with Coulomb Friction . 230
8.1.3 Derivation . 231
8.1.4 Calculation of Normal Vector . 233
8.1.5 Algorithm . 235
8.1.6 Contact Between a Deformable Solid and a Rigid

Wall . 237
8.1.7 Matlab Implementation . 237
8.1.8 Differences of MPM Contacts with Other Contacts 242
8.1.9 Final Remarks . 242

8.2 Contacts in the TLMPM . 242
8.2.1 Enforcing Non-penetration . 244
8.2.2 Complete Algorithm . 245

8.3 Contact in GPIC . 247
8.4 Contact Simulations . 248

8.4.1 Test 1: Collision of Two Compressible
Neo-Hookean Rings . 249

8.4.2 Test 2: High Velocity Impact of a Steel Disk Onto
an Aluminum Target . 254

8.4.3 Test 3: Contact of a Rigid Sphere with a Half Plane 255
8.4.4 Test 4: Cylinder Rolling on an Inclined Plane 259
8.4.5 Test 5: Stress Wave in a Granular Material 262
8.4.6 Test 6: Penetration of a Steel Sphere Into

an Aluminium Cylinder . 265
8.4.7 Test 7: Scratch Test . 267

8.5 Fracture Modeling . 274
8.5.1 Fracture Modeling Within the MPM Framework 276
8.5.2 Variational Fracture Theories . 277
8.5.3 Implementation of Variational Fracture

Phase-Field Model . 281
8.5.4 Nonlocal Johnson-Cook Damage Models 283

8.6 Some Fracture Simulations . 287
8.6.1 Tensile Test Specimen Experiencing Necking

and Damage . 287
8.6.2 Double Circular Notched Specimen 290
8.6.3 Compact Tension Specimen . 291
8.6.4 Machining Simulations . 293
8.6.5 High Velocity Impact of a Bullet Into a Steel Plate 295

References . 299

xiv Contents

9 Stability, Accuracy and Recent Improvements 305
9.1 Energy and Momenta Conservation . 306

9.1.1 Linear Momentum Conservation . 306
9.1.2 Angular Momentum Conservation 307
9.1.3 Total Energy Conservation . 309

9.2 The Method of Manufactured Solutions (MMS) 318
9.2.1 An One Dimensional Manufactured Solution 318
9.2.2 A Two Dimensional MMS . 320
9.2.3 Generalized Vortex Problem . 322
9.2.4 Norms . 324
9.2.5 Convergence Rate . 325
9.2.6 Convergence Rate of the MPM . 326

9.3 Moving Least Square MPM . 327
9.3.1 Least Square Approximations . 328
9.3.2 Velocity Projection . 334
9.3.3 One Point Quadrature . 334
9.3.4 Implementation . 335
9.3.5 Improved Implementation . 338

9.4 The Affine Particle in Cell (APIC) . 338
9.4.1 The Gradient Enhancement Technique 338
9.4.2 Derivation . 340
9.4.3 Implementation . 341
9.4.4 Momenta Conservation . 342
9.4.5 Energy Conservation . 347

9.5 Convergence Tests . 347
9.5.1 One Dimensional Convergence Test 348
9.5.2 Generalized Vortex Problem . 350

9.6 Volumetric Locking . 352
9.6.1 Overview of the F-bar Method . 353
9.6.2 F-bar Method in MPM: Cell Averaging 354
9.6.3 F-bar Method in MPM: Nodal Averaging 355

References . 358

10 Other Topics: Modeling of Fluids, Membranes
and Temperature Effects . 361
10.1 Fluids and Gases . 361

10.1.1 Fluids . 361
10.1.2 Gases . 362
10.1.3 Some Examples . 363

10.2 Modeling Membranes . 366
10.2.1 York’s MPM Algorithm for Membranes 367
10.2.2 A Coupled FEM-MPM for Modeling Membranes 370

10.3 Thermo-Mechanical Problems . 375
10.3.1 Thermal Problem . 376
10.3.2 Coupled Thermo-Mechanical MPM 378

Contents xv

10.3.3 Verification Tests . 380
10.4 Fluid-Structure Interaction . 388
References . 389

Appendix A: Strong Form, Weak Form and Completeness 391

Appendix B: Derivation of CPDI Basis Functions . 395

Appendix C: Utilities . 403

Appendix D: Explicit Lagrangian Finite Elements . 415

Appendix E: Implicit Lagrangian Finite Elements . 427

Appendix F: Implementing the Material Point Method Using Julia 435

Index . 465

Chapter 1
Introduction

The aim of this introductory chapter is to provide an overview of what is the material
point method—the topic of the book—and its application domains. We start with a
brief introduction to thefield of computational sciences and engineering to explain the
role of computer simulations using a computational model (Sect. 1.1). The MPM is
one of such computationalmodels. The role of experiments cannot be underestimated
even for a computational scientist and engineer (Sect. 1.2). Then, we briefly discuss
initial-boundary value problems and numerical methods in Sect. 1.3. Next, we talk
about mesh-based and mesh-free methods in Sect. 1.4 as the MPM adopts tools from
these two classes. This is followed by Sect. 1.5 where we will present a picture of the
MPM. Applications of the MPM in various engineering and sciences fields are given
in Sect. 1.6. Open source and commercial MPM codes are presented in Sect. 1.7.
The layout of the book is given in Sect. 1.8. Finally, our notations are explained in
Sect. 1.9.

1.1 Computational Sciences and Engineering

The topic of this book falls within the scope of computational sciences and engineer-
ing (CSE). CSE is a relatively new discipline that deals with the development and
application of computational models, often coupled with high-performance comput-
ing, to solve complex problems arising in engineering analysis and design (computa-
tional engineering) aswell as in natural phenomena (computational science). CSEhas
been described as the “third mode of discovery” next to theory and experimentation.

Within the realm of CSE these are steps to solve a problem. First, a mathematical
model that best describes the problem is selected or developed. This step of model
development is donemanually bypeoplewith sufficientmathematical skills.Amajor-
ity of mathematical model is developed using calculus (see Remark 1 for a history
account) and thus they are continuous models not suitable for digital computers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. P. Nguyen et al., The Material Point Method, Scientific Computation,
https://doi.org/10.1007/978-3-031-24070-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24070-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-24070-6_1

2 1 Introduction

Fig. 1.1 Computer
experiments: experiments
done with computational
models on a digital computer

Second, a computational model of this mathematical model is derived. A computa-
tional model is an approximation to the mathematical model and is in a discrete form
which can be solved using computers. Third, this discrete model is implemented
in a programming language (Fortran in the past and C++ and Python nowadays) to
have a computational code or platform. For solid mechanics, popular computational
platforms are Abaqus and LS-Dyna. Finally, these computational platforms are used
to perform computer simulations or computer experiments (Fig. 1.1).

Computer simulations are not only useful to solve problems too complex to be
resolved analytically, but are also increasingly replacing costly and time consum-
ing experiments. Furthermore, they can provide tremendous information at scales
of space and time where experimental visualization is difficult or impossible. And
finally, simulations also have a value in their ability to predict the behavior of mate-
rials and structures that are yet to be created; experiments are limited to materials
and structures that have already been created.

This book presents MPMmodels i.e., discrete models based on the material point
method for the problem of understanding and prediction of the deformation of solids
and fluids that undergo very large deformation. The mathematical model for this
problem is based on the theory of continuummechanics, see e.g. Malvern (1969).We
also discuss computer implementation of these MPM models and provide tutorial
MPM codes written in Matlab and Julia and an efficient MPM platform named
Karamelo which can replace contemporary FE packages such as LS-Dyna and
Abaqus for certain problems.

Remark 1 Wewould like to discuss briefly why calculus is so dominant in sciences
and engineering. It all started with the works of Galilei and Newton who discov-
ered that the laws of nature can be unreasonably well described by mathematics,
particularly calculus. If the motion of heavenly bodies can be modeled using mathe-
matics, then it is logical to apply it to humanity problems. This was exactly what the
geniuses like Bernoulli brothers, Euler, Lagrange, Cauchy had done some 300years
ago. These men developed partial differential equations that can model a wide range
of phenomena such as the deformation of fluids, gases and solids. It is the models
described by these PDEs that put men on the moon, give us cell phones, computers,
radio. Or television. Or ultrasound for expectant mothers, or GPS for lost travelers.

1.3 One Dimensional Wave Equation 3

Remark 2 Calculus has two parts: differential calculus and integral calculus. The
latter is interesting as we go from finiteness to infinitum. And to solve it numerically,
we do the reverse: from infinitum back to finiteness. We replace a solid with infinite
number of degrees of freedom by a mesh consisting of just a finite number of degrees
of freedom.

1.2 The Role of Experiments in CSE

It is certain that a computational model requires experiments to obtain parameters
used in the model. To emphasize the vital role of experiments in sciences and engi-
neering, we consider the interesting article of Boyce et al. (2016) that presents the
Sandia fracture challenge to the computational fracture community. The challenge
involves the simulation of the fracture of a steel sample of complex geometry. Only a
minimum experimental data (tensile test of a steel coupon) was provided to the anal-
ysist. Different research groups, who participated in the challenge, used all existing
fracture models and none provided a match with the experiment.

Therefore simulations are simply insufficient and thus a combined experiment-
simulation programme should be pursued for any problem. It is interesting to know
that R. W. Clough, the exact man who coined the term ‘finite element method’ some
70years ago, stopped working on the method and switched to experiments (Clough
1980).

1.3 One Dimensional Wave Equation

In science and engineering, one commonly seeks the response to some excitations of
a certain kind of system. This system can be mechanical, chemical, biological …To
this end, it is common practice to adopt a mathematical model for the system and
try to solve it. Usually the model equations are partial differential equations (PDE);
for example, the Navier-Stokes equations in fluid mechanics, or the momentum
conservation equations in solidmechanics. These differential equations togetherwith
both the initial and boundary conditions constitute an initial-boundary value problem
(IBVP). In general, solving a boundary value problemby classical analyticalmethods
is almost impossible. Therefore, an approximate solution to the IBVP is sought.

Approximate solutions to an IBVP are obtained by transforming the PDE into a set
of algebraic equations. This is achieved by discretizing the space and time domain.
Common spatial discretization methods include mesh-based methods such as the
finite element method (FEM), the finite volume method (FVM), the finite difference
method (FDM) and meshless or meshfree methods (MMs). Time discretization is
mostly based on finite differences e.g. the forward Euler method and the leaf-frog
method.

4 1 Introduction

In this section, we provide an overview of how to use a numerical method to
obtain approximate solutions to IBVPs. This discussion is not meant to be rigorous,
but rather to present the basic concepts of numerical methods and a general procedure
to go from PDEs, which are difficult to solve, to algebraic equations, which can be
handled quite well by nowadays computers. We have decided to present methods
using a weak form as the MPM follows this so-called Galerkin method.

For a simple demonstration of the basic concepts in numerical methods, let’s
consider the one dimensional momentum equation, that governs the deformation of
a solid object due to applied external forces:

ρ
∂2u

∂t2
= E

∂2u

∂x2
+ ρb (1.1)

where u(x, t) is the displacement field, E the Young modulus of the material, ρ the
density and b the body force. The spatial domain is 0 ≤ x ≤ L and the time domain
is 0 ≤ t ≤ T .

For the case of zero body force (i.e. b = 0) the above equation becomes the well
known one dimensional wave equation written as:

∂2u

∂t2
= c2

∂2u

∂x2
, c =

√
E

ρ
(1.2)

Remark 3 Solving Eq. (1.2) for u(x, t) with a given c is called a forward problem.
Inversely, determining c so that Eq. (1.2) has a solutionmatching a predefined ū(x, t)
is coined an inverse problem.

In order for a PDE to have unique solutions, initial and boundary conditions have
to be provided. For example, the so-called Dirichlet boundary conditions read

u(0, t) = a, u(L , t) = b, t > 0 (1.3)

where a, b are some constants. Note that there exists other types of boundary condi-
tions such as Neumann condition and Robin condition. As Eq. (1.2) involves second
derivative with respect to t , two initial conditions are required which are given by

u(x, 0) = f (x), u̇(x, 0) = g(x) (1.4)

where u̇ := du/dt and f, g are some functions.
Putting all the above together we come up with the following initial-boundary

value problem

∂2u

∂t2
= c2

∂2u

∂x2
(wave equation)

u(0, t) = a, u(L , t) = b, t > 0 (boundary conditions)

u(x, 0) = f (x), u̇(x, 0) = g(x) (initial conditions)

(1.5)

1.3 One Dimensional Wave Equation 5

of which approximate solutions are sought for using a numerical method. Equation
(1.5) is called a strong form of the wave equation. Some numerical methods such
as FDM or collocation methods work directly with this strong form even though
they are often less accurate compared with Galerkin methods—those that employ a
weak formulation—and unstable. However, these methods are quite efficient as no
numerical integration is needed.

The finite element methods (or generally Galerkin based methods) adopt a weak
formulation where the partial differential equations are restated in an integral form
called the weak form. A weak form of the differential equations is equivalent to the
strong form. Inmany disciplines, theweak form has a physicalmeaning; for example,
the weak form of the momentum equation is called the principle of virtual work in
solid/structural mechanics.

To obtain the weak form, one multiplies the PDE i.e., the wave equation in this
particular context, with an arbitrary function w(x), called the weight function, and
integrate the resulting equation over the entire domain. That is

∫ L

0

[
∂2u

∂t2
− c2

∂2u

∂x2

]
w(x)dx = 0, ∀w(x) with w(0) = w(L) = 0 (1.6)

The arbitrariness of the weight function is crucial, as otherwise a weak form is not
equivalent to the strong form. In this way, the weight function can be thought of as
an enforcer: whatever it multiplies is enforced to be zero by its arbitrariness.

Using the integration by parts for the second term, the above equation becomes∫ L

0

∂2u

∂t2
w(x)dx + c2

∫ L

0

∂u

∂x

∂w

∂x
dx = 0 (1.7)

where the spatial derivative of the unknown field, u(x, t), was lowered from two
to one. It is a great achievement by a simple derivation as constructing high order
approximations of u, so that second derivatives are computable, is much more dif-
ficult than constructing linear approximations. Furthermore, the second term is now
symmetric, this is significant as the resulting matrix will be symmetric. Symmetric
matrices possess nice properties e.g. less storage and real eigenvalues.

The weak form of the wave equation is thus given by: find the smooth function
u(x, t) such that

∫ L

0

∂2u

∂t2
w(x)dx + c2

∫ L

0

∂u

∂x

∂w

∂x
dx = 0

u(0, t) = a, u(L , t) = b

u(x, 0) = f (x), u(x, 0) = g(x)

(1.8)

for all w(x) with w(0) = w(L) = 0.

6 1 Introduction

Fig. 1.2 Spatial
discretization in one
dimension

The basic idea of numerical methods in solving PDEs is to discretize the spatial
and temporal domain i.e., instead ofworkingwith infinite number of points (or nodes)
within the domain of interest [0, L] × [0, T], one first discretize the spatial domain
into afinite number of points xI , I = 1, 2, . . . , n.Next, the unknown functionu(x, t)
is approximated using the values of u evaluated at those discrete points xI (Fig. 1.2),
and this approximation is then substituted into the weak form i.e., Eq. (1.8) to obtain
a set of ordinary differential equations (ODEs). Finally using any time integration
methods of ODEs to advance in time. At this stage, the PDE has been completely
transformed into a discrete form—a system of algebraic equations—which can be
easily solved by digital computers. This is known as the method of lines. There exists
methods which involve full discretization in both space and time, but they are less
popular and not further discussed in this book.

The approximation of the unknown field u(x, t) is written as

u(x, t) ≈ uh(x, t) =
n∑
I

NI (x)uI (t) (1.9)

where NI (x) are the approximation functions or shape functions in the FEM context
and uI (t) denotes the value of u at point I at time instant t and constitutes the
unknowns to be solved. The support of node I is defined as the set of points where
NI (x) �= 0. Usually, only a few points are within the support of a given node and
thus the shape function is said to have a compact support. And this compact support
is crucial to the computational efficiency of the method: the resulting matrices are
sparse not full. If the support of NI (x) is the whole domain, the method is called a
spectral method. After having obtained uI , Eq. (1.9) is used to compute the function
at any other points.

Even though there are many choices for the weight functions w, in the Bubnov-
Galerkinmethod,which is themost commonly usedmethod at least for solidmechan-
ics applications, the weight function is approximated using the same shape functions
as u. That is

w(x, t) =
n∑
I

NI (x)wI (1.10)

where wI are the nodal values of the weight function; they are not functions of time.

1.3 One Dimensional Wave Equation 7

Now, the numerical solution of the weak form of the wave equation i.e., Eq. (1.8)
is thus given by: find uJ such that

∫ L

0
(NI (x)ü I) (NJ (x)wJ) dx + c2

∫ L

0

(
∂NI

∂x
uI

) (
∂NJ

∂x
wJ

)
dx = 0 (1.11)

for all wJ . Note that we have used the Einstein summation rule: indices which are
repeated twice in a term are summed, see Sect. 1.9 for detail.

The arbitrariness of wJ results in the following system of ordinary differential
equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ L

0
N1N1dx

∫ L

0
N1N2dx . . .

∫ L

0
N1Nndx

∫ L

0
N2N1dx

∫ L

0
N2N2dx . . .

∫ L

0
N2Nndx

...
...

...
...∫ L

0
NnN1dx

∫ L

0
NnN2dx . . .

∫ L

0
NnNndx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ü1

ü2

...

ün

⎤
⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ L

0
dN1dN1dx

∫ L

0
dN1dN2dx . . .

∫ L

0
dN1dNndx

∫ L

0
dN2dN1dx

∫ L

0
dN2dN2dx . . .

∫ L

0
dN2dNndx

...
...

...
...∫ L

0
dNndN1dx

∫ L

0
dNndN2dx . . .

∫ L

0
dNndNndx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.12)

where dNI = dNI /dx is the first spatial derivative of the shape function NI . The
integrals in the above equation are called weak form integrals. For this simple 1D
problem, they can be exactly computed, but generally, numerical integration is used
to evaluate these integrals. We refer to Sect. 2.4 for a discussion on numerical inte-
gration.

And Eq. (1.12) can be cast in the following compact equation using a matrix
notation

Mü + Ku = 0 (1.13)

8 1 Introduction

whereu and ü are the vector of displacements and accelerations of thewhole problem,
respectively. They are one dimensional array of length n;M andK are the mass and
stiffness matrix—matrices of dimension n × n.

Equation (1.13) is referred to as the semi-discrete equation as the time has not been
yet discretized. Any time integration methods for ODEs can be used to discretize
Eq. (1.13) in time. A time integration scheme is called implicit if one has to solve a
system of algebraic equations to obtain u at a time instant t . This system of algebraic
equations is very large for practical problems: it is not uncommon to encounter a
systemofmillions of unknowns.On the other hand, it is called explicit if one can getu
without solving any system of algebraic equations. Implicit time integration schemes
allow large time increments i.e., there are fewer time steps to resolve whereas explicit
schemes require small time increments. Generally, explicit schemes are preferred for
fast transient problems such as impact simulations.

For time discretization, the time interval [0, T] is partitioned into a number of
time steps Δt i.e., the semi-discrete equation is evaluated at discrete time instants
tm = (m − 1)Δt . Assuming that we are at time t and need to advance to time t + Δt .
By using the central difference scheme, which is the most commonly used explicit
time integration method, we have

ut+Δt = Δt2üt + 2ut − ut−Δt (1.14)

which allows us to obtain the displacements at t + Δt upon substitution of Eq. (1.13)
for üt

ut+Δt = −Δt2M−1Kut + 2ut − ut−Δt (1.15)

To avoid inversion of the mass matrix, a technique known as mass lumping is often
adopted to make M diagonal.

The final step is to impose Dirichlet boundary conditions e.g. u(0, t) = a. If the
shape functions NI have been constructed such that they satisfy the Kronecker delta
property then it is pretty straightforward to impose Dirichlet conditions: one simply
override the displacements computed in Eq. (1.15) by the prescribed values. In this
specific case, simply setting u1 = a and un = b does the job. Shape functions are
said to satisfy the Kronecker delta property when they fulfill the following equation

NI (xJ) = δI J , δI J =
{
1 if I = J

0 otherwise
(1.16)

Therefore, condition u(0) = a becomes u(0) = ∑
I NI (0)uI = u1 = a.

What value should be assigned for n or in other words, how many nodes/points
should we use? That is the eternal question of computational engineer. There is
no theorem which says n should be such and such. A rule of thump is n should
be big to have accuracy and not so big to reduce the cost. Practically, one pick an
n, do the simulation and evaluate a certain quantity of interest (e.g. the maximum
displacement ormaximumstress) against analytical solutions (if any) or experimental

1.4 Mesh-Based and Meshfree Methods 9

data. If a large difference exists, then double n and repeat until a convergence has
been obtained. If no solution is available, then one needs to compare the numerical
solutions of at least two resolutions (two different n) and they should be close to each
other.

Up to this point, how the shape functions NI are constructed is not yet discussed.
In the next section, we discuss this construction of shape functions.

1.4 Mesh-Based and Meshfree Methods

Spatial discretization methods can generally be divided into groups: mesh-based
methods (Sect. 1.4.1) and meshless or meshfree methods (Sect. 1.4.2). The three
most common mesh-based methods are finite element method (FEM), finite volume
method (FVM) and finite difference method (FDM). Herein we focus on FEM since
it is the most widely used and commercially available method to date for solid
mechanics. Furthermore, the material point method can be considered a variant of
FEM.

1.4.1 Mesh-Based Methods

Since its inception about 70years ago (Courant 1943; Clough 1960),1 the finite ele-
ment method has been used with great success in many fields with both academic and
industrial applications. They have been the primary computational methodologies in
engineering computations for more than half a century. The basic idea is to divide
the domain of interest (generally with a complex shape) into a (finite) number of
sub-domains called elements (Fig. 1.3). These elements have simple geometry e.g.
triangles or quadrilaterals in two dimensions and tetrahedra in three dimensions. The
elements are connected at nodes. A field quantity, such as the displacement field, is
interpolated by a polynomial defined over the elements. Integrals in the weak form
e.g. the stiffness matrix or force vectors are evaluated over individual elements using
a quadrature rule (e.g. Gauss quadrature). For deformable solids of which behavior is
history dependent (inelastic solids) it is the quadrature points where stresses, strains,
history variables (such as equivalent plastic strain, damage variables) are stored.

As a simplest description of the FE shape functions we plot in Fig. 1.4 one dimen-
sional linear and quadratic shape functions. The spatial domain is [0, 4] which is
divided into four equidistant elements. In the first case of linear elements, each ele-
ment has two nodes. There are thus five nodes. For the case of quadratic elements,
each element has three nodes–two nodes at the extremities and one mid-side node.

1 For an interesting discount on the history of FEM, we refer to Clough (1980), Gander andWanner
(2012).

10 1 Introduction

(a) FE mesh (b) element and nodes

nodes

element

(c) bad element

quadrature points

Fig. 1.3 The finite element method: domain is discretized into a number of elements

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

Fig. 1.4 Finite element shape functions in one dimension: linear elements (top) and quadratic
elements (bottom). FE shape functions are polynomials defined in the so-called parent domain
which is [−1, 1] in one dimension. These shape functions satisfy the Kronecker delta property

Note that even though quadratic functions are smooth they are only C0 across the
element boundaries.

Remark 4 C0 means that only the functions are continuous across element bound-
aries but their derivatives are not. This property poses a great challenge in solving
PDEswith high order spatial derivativeswhich occur frequently in structuralmechan-
ics (i.e., PDEs that govern the behaviour of beams/plates/shells often involve fourth
order derivatives of the primary unknown field).

1.4 Mesh-Based and Meshfree Methods 11

Fig. 1.5 Element distortion
in the FEM: simulation of
material scratch

The availability of the elements provides a natural way to evaluate the weak form
integrals. For example, consider a function f in two dimensions, one can write∫

Ω

f (x, y)dΩ =
∑
e

∫
Ωe

f (x, y)dΩ =
∑
e

∑
g

f (xg, yg)wg (1.17)

where subscript e denotes the elements and subscript g denotes the integration points.
The fact that FE shape functions are polynomials and the element domains Ωe align
with the support of the shape functions leads to a very accurate computation of the
weak form integrals. This is in sharp contrast to meshfree methods (and also to the
material point method) to be discussed shortly.

For problems exhibiting large deformation (precisely large strain) e.g. simulation
of manufacturing processes such as extrusion and molding operations, the elements
inevitably become distorted which leads to higher errors and even premature termi-
nation of the program (Fig. 1.5). This issue of element distortion is often solved using
a technique called remeshing in which a new mesh with quality elements replaces
the old mesh with distorted elements. There are twomajor problems with remeshing.
First, it is a time and human labour consuming task, which is not guaranteed to be
feasible in finite time for complex three-dimensional geometries. Second, remesh-
ing requires mapping or projection of information from the old to the new mesh,
a step that inevitably introduces error, particularly for inelastic materials involving
history variables. The more history variables a material model has the more error
this remeshing step will induce.

Another difficulty of FEM is the conversion of a continuum (Fig. 1.6a) into a
finite element mesh of good quality (Fig. 1.6b), in a reasonable amount of time and
involves least user intervention. This is because solid geometries are created in a
CAD (Computer Aided Design) software, and FE simulations are carried out in a FE
software that accepts only FE meshes. Meshfree methods were born to remove the
remeshing burden of FEM. But it can alleviate the mesh burden as well; even though
isogeometric analysis pioneered by Hughes et al. (2005) is probably better for this
issue.

12 1 Introduction

Fig. 1.6 Conversion from a
CAD (a) to a FE mesh (b)

(a) A solid in a CAD system (b) Corresponding FE mesh

1.4.2 Meshless Methods

Meshless methods are so named as the space is discretized into a number of points,
or particles, in which each point interacts with its neighboring points in a flexible
manner: not via a rigid mesh as in the FEM. It should be noted that up to now,
there is no unified framework for meshfree methods. This is reflected by the plethora
of existing methods2 in the literature. The oldest developed method is Smoothed
Particle Hydrodynamics (SPH) introduced by Gingold and Monaghan (1977), Lucy
(1977) which was used for modeling astrophysical phenomena without boundaries
such as exploding stars and dust clouds. Nowadays, the SPH is a popular simulation
technique in various engineering and science fields. Next, the Generalized Finite
DifferenceMethodofLiszka andOrkisz (1980)was proposed followedby theDiffuse
Element Method (DEM) by Nayroles et al. (1992), the Element Free Galerkin (EFG)
by Belytschko et al. (1994); the Material Point Method (Sulsky et al. 1994), the
Reproducing Kernel Particle Method (RKPM) by Liu et al. (1995); the h − p cloud
method (Duarte andOden 1996); the Natural ElementMethod (Sukumar et al. 1998);
theMeshlessLocal PetrovGalerkin (MLPG)byAtluri andZhu (1998); theMaximum
entropy (Arroyo and Ortiz 2006); the Particle Finite Element Method (PFEM) of
Idelsohn et al. (2006), Sabel et al. (2014), the optimal transport meshfree method
(OTM) of Li et al. (2010), just to name but the most popular meshfree methods.

In general, all meshless methods share the same characteristic: the domain of
interest is completely discretized by nodes (or points or particles) as illustrated by
Fig. 1.7. The concept of connectivity in mesh-based methods is replaced by domain
of influencewhich indicates nodes fall within the support of a given node. Ameshfree
method is characterized by the following items

Collocation or Galerkin formulation DEM, EFG, RKPM, MLPG, NEM are
Galerkin meshfree methods i.e., weak form based methods. Galerkin MMs are
stable, accurate but computationally expensive. Collocation MMs are ones that
approximate the strong form of a PDE (i.e., the PDE itself). One notable collo-
cation MM is the SPH.3 SPH is classified as a meshfree particle method or more

2 The wikipedia page on meshfree methods lists about 30 methods and new methods are being
created, https://en.wikipedia.org/wiki/Meshfree_methods.
3 Note that since there are different SPH approximation rules, there thus exists different forms of
discrete SPH equations. All of them are used in practice.

https://en.wikipedia.org/wiki/Meshfree_methods

1.4 Mesh-Based and Meshfree Methods 13

Fig. 1.7 Meshless
discretization by a cloud of
points

Fig. 1.8 Typical smooth
meshfree basis functions:
one dimensional MLS
functions defined for a set of
5 nodes equally spaced. The
highlighted function is the
one of the middle node

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

precisely meshfree Lagrangian particle method because the particles are endowed
with physical quantities such as density and volumes. In otherwords, interpolation
points and particles coincide;

Interpolation method Different MMs adopt different high order interpolation
techniques: EFG/DEM/MLPGutilizes theMLS (MovingLeast Square), inRKPM
and SPH kernel estimates are the interpolations. Generally meshfree function-
s/derivatives are smooth, cf. Fig. 1.8, but computationally expensive than FE func-
tions;

Numerical integration For Galerkin meshfree methods a numerical integration
scheme is needed of which one can mention background element/cell technique,
nodal integration etc.;

Imposition of essential boundary conditions Most meshfree basis functions do
not satisfy the Kronecker delta property thus making enforcement of essential
boundary conditions a daunting task.

For a comprehensive consideration of MMs, we refer to various review articles,
for instance Belytschko et al. (1996), Babuška et al. (2002), and Nguyen et al. (2008)

14 1 Introduction

which provide computer implementation details including enrichment for weak and
strong discontinuities, Hsieh and Pan (2014) for an essential software framework
for MMs, Doblaré et al. (2005) (focused on the applications of meshfree methods
in biomechanics) and the textbook of Liu and Liu (2003), Liu (2002), Li and Liu
(2007), Fasshauer (2007). The last textbook gave a historical account of meshfree
approximation theories such as moving least square, radial basis functions etc.

Some MMs have been incorporated into commercial FEA packages such as
Abaqus (SPH), LS-Dyna (SPH and EFG), ANSYS (SPH). There exists also purely
meshless packages such as NoGrid that implements the finite pointset method for
applications in fluid dynamics.

1.5 A Brief Introduction to the MPM

TheMaterial Point Method is one of the latest developments in particle-in-cell (PIC)
methods. The first PIC techniquewas developed in the early 1950s byHarlow (1964),
Harlow (2004) at Los Alamos National Laboratory and was used primarily in fluid
mechanics. The first PICs suffered from excessive energy dissipation which was
overcome in 1986, by Brackbill and Ruppel with the introduction of FLIP-the Fluid
Implicit Particle method (Brackbill and Ruppel 1986; Brackbill et al. 1988). In com-
puter graphics, PIC/FLIP has become the de facto standard method for fluid sim-
ulations (Zhu and Bridson 2005). The FLIP was later modified and tailored for
applications in solid mechanics by Sulsky and her co-workers (Sulsky et al. 1994,
1995b) at University of New Mexico and has since been referred to as the Material
Point Method (Sulsky and Schreyer 1996).

In FLIP, the strain and stresses are stored at the cell centers. Yet, in the MPM,
they are carried by the particles themselves. Thus, the MPM particles carry the
full physical state of the material including position, mass, velocity, volume, stress,
temperature etc.. Note that in PIC, the particles carry only position and mass.

The MPM is built on the two main concepts already used in PIC that are the
use of Lagrangian material points that carry physical information, and a background
Eulerian grid used for the discretization of continuous fields (i.e., displacement field).
For a short description of the Lagrangian and Eulerian descriptions, see Fig. 1.9.

1.5.1 Lagrangian Particles and Eulerian Grid

In theMPM, a continuum body is discretized by a finite set of np Lagrangianmaterial
points (or particles) that are tracked throughout the deformation process. The terms
particle andmaterial point will be used interchangeably throughout this book. In the
original MPM, the subregions represented by the particles are not explicitly defined.
Only their mass and volume are tracked. In advanced MPM formulations such as
GIMP or CPDI, the shape of these subregions is tracked though. Each material point

1.5 A Brief Introduction to the MPM 15

Fig. 1.9 Lagrangian description (top) versus Eulerian description (bottom). In a Lagrangian
description, the grid is attached to the solid and thus it deforms during the deformation process
of the solid. Each point in the grid is always associated to just one single material point, thus mak-
ing modeling history-dependent materials easy. The solid boundary is also well defined. However,
the grid can become distorted. On the other hand, the Eulerian grid is fixed in space and material
flows through the mesh. Mesh distortion never happens

has an associated position xtp (p = 1, 2, . . . , np), mass mp, density ρp, velocity
vp, deformation gradient Fp, Cauchy stress tensor σ p, temperature Tp, and any
other internal state variables necessary for the constitutive model. Collectively, these
material points provide a Lagrangian description of the continuum body. As each
material point contains a fixed amount of mass at all time, mass conservation is
automatically satisfied.

The original MPM developed by Sulsky is effectively an updated Lagrangian
scheme. For this MPM, the space that the simulated body occupies and will occupy
during deformation is discretized by a grid, called background grid where the equa-
tion of balance of momentum is solved. On the other hand, in the Total Lagrangian
MPM (de Vaucorbeil et al. 2020), the background grid covers only the space occu-
pied by the body in its reference configuration. We refer to Fig. 1.10 for a graphical
illustration of material points overlaying on a Cartesian grid for both ULMPM and
TLMPM. The grid is fixed and the particles are moving over it (Fig. 1.11).

The use of a grid has the following benefits. First, it allows the method to be quite
scalable by eliminating the need for directly computing particle-particle interactions.
Second, collision is treated easily through this background Eulerian grid (in fact, a
non-slip, non-penetration contact is inherent in the method). Third, the momentum
equation is solved on the grid, and as there are many fewer grid points than particles,
this is a very efficient substitution. Most often, a fixed regular Cartesian grid is used
throughout the simulation for efficiency reasons.

