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Preface 

Crisis of fresh water resources has been intensified due to climate change, rapid 
population growth, and global increase in urbanization. Reclamation of wastewater 
has been considered crucial for reducing fresh water usage and achieving water 
sustainability. Reclaimed wastewater has been considered as an alternative water 
resource for non-potable or (indirect) potable use, especially in the counties or 
regions facing water scarcity. Various membrane-based techniques have been widely 
investigated for treatment of wastewater and production of treated water of superior 
quality. Over the last two decades, wastewater reclamation has received considerable 
attention as it offers an option to meet the requirements of the communities that 
are unable to access centralized wastewater facility; facilitate commercial buildings 
for achieving water sustainability; reduce water supply costs and decrease the 
load on centralized wastewater treatment systems; and spend less energy. It also 
releases lower CO2 in comparison to centralized wastewater reuse systems as it 
does not need a higher degree of treatment in terms of wastewater characteristics. 
Reclaimed wastewater may have more public acceptance in comparison to municipal 
wastewater reuse due to cultural resistance and barriers in some countries. 

In recent years, application of membrane-based techniques in wastewater 
treatment has been considered as a promising technique and has gained increasing 
scientific attention. Compared to other wastewater treatment technologies, 
membrane-based systems offer several advantages. Membranes provide a permanent 
barrier to suspended particles (including bacteria and virus) and macromolecules 
greater than the pore size of the membrane material, which result in an improved 
quality of treated wastewater. Decreased membrane price and development of 
new membrane materials facilitate membrane systems to achieve more efficient 
wastewater treatment with economic feasibility. Membrane systems exert less envi-
ronmental footprint due to their compact nature. Despite more technical progress and 
practical applications of membrane-based wastewater treatment, a major challenge 
is membrane fouling, which inevitably occurs during wastewater treatment and 
leads to a higher energy demand and increased maintenance cost. Membrane-based 
separations are commonly performed with polymeric membranes due to their higher 
flexibility, easy pore forming mechanism, good film forming property, mechanical
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strength, chemical stability, high perm selectivity, selective transfer of chemical 
species, inexpensive materials for its fabrications required pore sizes for various 
filtration processes, low cost and smaller space for installation as compared to other 
membranes. Owing to these properties these membranes are widely applied in 
pressure driven processes such as ultrafiltration, nanofiltration and reverse osmosis 
for wastewater treatment. 

This book aims to present comprehensive information on membrane-based 
techniques in wastewater treatment including direct pressure-driven and osmotic-
driven membrane processes, hybrid membrane processes (such as membrane biore-
actors and integrating membrane separation with other processes), and resource 
recovery-oriented membrane-based processes. 

Waknaghat, India 
Kolkata, India 
Mohali, India 
Trois-Rivières, Canada 
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Chapter 1 
Polymeric Membranes for Water 
Treatment 

Swati Sharma, Shreya Gupta, Sukhminderjit Kaur, Deepak Kumar, 
Priya Banerjee, and Ashok Kumar Nadda 

1 Introduction 

The most critical challenge faced by mankind nowadays is the shortage of fresh 
water caused by urbanization, industrial development, population growth, energy 
plant, and climate change [14, 62]. As the growing population and industrialization 
are increasing rapidly demand for safe, clean, and drinkable water is also increasing. 
In oceans, around 97% of water is stored as salty water that is not suitable for agri-
cultural use or human consumption, only (>3%) of water on earth is available for 
agriculture and drinking purpose, and a large amount of this present is locked in the 
form of underground water, glaciers, and ice caps [86]. Various organic and inorganic 
contaminants are introduced into the water systems by the effluents from industrial 
and agricultural activity making them unsuitable for consumption. The main problem 
that needs to be solved is water quality, water quantity, and the removal of contam-
inants needed to avoid the side effects on human health and the environment. To 
produce clean water, many economical and multifunctional processes are developed. 

For the treatment of wastewater, many technologies have been developed, 
including methods such as ion exchange [12], adsorption [35], reverse osmosis [110], 
and gravity [16], among these methods, adsorption is a widely used method for
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the removal of water contaminants because of its low cost, easy to use and avail-
ability of different adsorbents. The use of activated carbon, polymer composites, 
magnetic nanoparticles, and nanotubes are included in the different adsorbents, they 
can remove various types of contaminants including heavy metals [48, 54, 84, 85]. 
Despite being able to remove most of the water pollutants/contaminants, adsorption 
also shows some limitations like less use of these adsorbents commercially and a 
lack of appropriate adsorbents with high adsorption capacity [26]. Therefore, there 
was still a requirement for more efficient techniques/methods such as membrane 
technology. For wastewater treatments and desalination, membrane technologies are 
proving to be leading methods as membrane filtration presents some advantages such 
as maintenance and monitoring, a lower footprint, simple operation, lower mass 
storage tubes, compact modular design, and fewer flow rates of chemical sludges 
during the production of high-quality water from different sources [25, 46, 73]. This 
technology is known to be an effective water separation process because of its high 
contamination rejection of high-quality treated water yield [25]. The removal of 
soluble components and suspended particulate matter from the wastewater semi-
permeable membranes is the general idea behind the membrane-based wastewater 
separation. The application of membrane technology especially in water treatment 
has been increasing rapidly over the past few decades, increasing the amount of 
efforts by membrane scientists/researchers [68]. The membrane is the functional 
component of a membrane filtration process. The separation of different materials 
through the membrane depends on molecular size and pore [122], therefore various 
membrane processes including nanofiltration (NF), microfiltration (MF), ultrafiltra-
tion (UF), reverse osmosis (RO), and forward osmosis (FO) have been developed 
with different separation mechanisms (Fig. 1).

Both polymeric and inorganic materials can be used to prepare/form membranes, 
polymeric membranes are mainly organic in nature whereas inorganic membranes are 
mostly metals, oxides, and ceramics [70, 99, 114]. In comparison to membranes fabri-
cated from inorganic materials, membranes prepared from the polymeric membrane 
are low-priced [70]. During fabrication, it is easy to handle polymeric membranes 
and can also be used for the high-water production capacity [51, 70, 99]. The aim of 
this chapter is to review the different polymeric membranes used for the treatment of 
wastewater and the fabrication of different polymers for the membrane technologies. 
The operating cost of water treatment along with permeate quality is determined by 
the type of polymer used for the filtration. To avoid the issues such as unwarranted 
energy consumption and frequent membrane replacement it is crucial to select the 
proper or most suitable type of polymer for a filtration process. The future work, 
applications, pros, and cons of polymeric membranes are also discussed briefly.
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Fig. 1 Pressure-driven membrane processes for water treatment technologies, showing the particles 
effectively captured by each process along with the pore sizes of the membranes used for each 
process [53]

2 Polymers Used for Membrane Filtration (Water 
Treatment) 

Polymers namely polyamide (PA), polysulfone (PSF), polyvinyl chloride (PVC), 
polyacrylonitrile (PAN), polyvinyl alcohol (PVA), poly (arylene ether ketone) 
(PAEK), poly (ether imide) (PEI), cellulose acetate (CA), polyvinylidene fluoride 
(PVDF), polyethersulfone (PES), polyaniline nanoparticles (PANI), polyimide (PI), 
polyethylene glycol (PEG), poly (methacrylic acid) (PMAA), and poly(arylene ether 
sulfone) (PAES) have been used in the fabrication of different membrane processes 
(NF, UF, MF, RO) [33]. 

3 Membrane Processes and Polymers Used 

3.1 Nanofiltration 

In recent decades, NF membranes have attracted attention as a potential for 
water treatment/filtration because of their advantageous properties like low energy
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consumption in comparison to RO and high retention of neutral molecules (low 
molecular weight) and divalent salts [28, 60, 124]. For some highly polluted waters, 
NF is pre-treated to make it more effective, also because of their moderate stability 
these membranes can only endure an aqueous solution having a pH range of 2–11. 
In a study, textile wastewater is treated with NF membrane and it was reported that 
the prepared membrane exhibited decent removal of common salts and dyes and 
heavy metal ions, displaying high removal efficiency toward cationic dyes and metal 
ions. Nowadays, most available NF membranes are consisting of different polymers 
such as PA, PAN, PI, and PVA in TFCs [4, 94, 98, 102–105, 115, 121]. Though, 
when in contact with a few amines PIs are not stable, and also in polar solvents 
they display very poor stability and performance, therefore, in aqueous solutions 
having strong acids/bases, strong amines, and chlorinated solvents these PIs are not 
favored, but through the crosslinking process they can be modified and better resis-
tance against such chemicals can be obtained. In a study, PEEK is used as a material 
for NF membrane, and it was reported that PEEK membranes are highly resistant 
against different acids, bases, and solvents and have a low degree of sulfonation, 
but these membranes show low water permeability. These membranes demonstrated 
water permeance of 0.7–0.21 and 0.2–0.8 L/h m2 bar when tested for their separation 
performance in dimethylformamide (DMF) and tetrahydrofuran (THF), respectively 
[18]. Yang and co-workers, reported the use of PMIA/GO composite NF membranes 
for the treatment of water. In comparison to the pure PMIA, the fabricated composite 
membranes exhibited a better/larger hydrophilic surface that as a result gave rise to 
pure water flux, and also high dye rejection, and increased fouling resistance to BSA 
(bovine serum albumin) were achieved [111, 112]. 

3.2 Microfiltration (MF) and Ultrafiltration (UF) 

(A) Microfiltration 

In microfiltration, separation mainly occurs through sieving because of its large pore 
size (approx. 0.1–1.0 m), and removes little or no organic matter, MF mainly removes 
the suspended solids or particles, bacteria [20]. However, when pre-treatment is 
applied then maybe there is an increase in organic matter removal. MF can be used 
as a pre-treatment to reduce fouling potential in RO and NF [96]. MFs main drawback 
is that they cannot remove contaminants such as dissolved solids (<1 mm in size), and 
it does not act as a barrier to viruses. Microfiltration membranes have been mainly 
utilized in wastewater treatment, membrane bioreactor, and membrane distillation 
[1, 9, 30–32, 102–105]. 

A membrane bioreactor (MBR) is an active sludge process in which MF and UF 
membranes are combined together for wastewater treatment in different industries. 
In the configuration of MBR, the membrane is submerged into the bioreactor, and 
treated water is permeated using a vacuum whereas solids are reserved in the biore-
actor. In comparison to a traditional side stream configuration, the current MBR



1 Polymeric Membranes for Water Treatment 5

configuration lowers energy consumption and also reduces the membrane fouling 
amount [52]. Polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyethy-
lene (PE), and polyethersulfonate (PES) are mostly used as polymeric membrane 
materials for applications of MBR. Among these PVDF accounts for about 45% of 
MBR polymeric membranes and because of PAN’s lower affinity to extracellular 
polymeric material it is most likely the most fouling-resistant one [59]. 

Normally, MBR membranes have a pore size between 0.03 and 0.4 m, PES and PE 
membranes are mostly available with a pore size of 0.03 and 0.2–0.4 m respectively, 
while PVDF membranes are available in the whole range of pore sizes due to their 
versatile manufacturing [41]. Compared to UF membranes the integrity of MBR 
membranes is less [1]. 

The two-stage process of CAS (conventional activated sludge) including biotreat-
ment and clarification is replaced by MBR a single integrated process. Some advan-
tages such as reduced footprint, nearly complete separation of suspended solids 
from the effluents, product consistency, and reduced sludge production make MBR 
superior to conventional treatment [91]. Because MBR systems operate at a higher 
concentration of mixed liquor suspended solids (MLSS) they remove a large range of 
biodegradable and hydrophobic trace organics more efficiently than CAS processes, 
MBR systems also offer a definitive boundary layer proving a complete suspended 
solid retention [40]. Consequently, MBR effluent has the potential to be used as 
process water, irrigation water, also as feed to potable reuse applications [50]. 

(B) Ultrafiltration 

In ultrafiltration, compounds can be separated between 0.005–10 µm, these 
membranes are highly water filters with less consumption of energy in the removal of 
suspended matters, macromolecules, and pathogenic microorganisms [47, 80]. UF 
has some drawbacks such as maintaining high-pressure water flow regular cleaning 
required and any dissolved inorganic substances in water can’t be removed [120]. 

In UF membranes as polymeric materials mainly PS and PES are used due to their 
strong chemical stability, wide pH operation range, and good mechanical properties 
[22, 61, 76, 87, 90, 100, 108]. But the applications of these membranes in the treat-
ment of water are limited because of their hydrophobicity that leads to decreased 
permeability of the membrane, also mostly polymeric materials of UF membrane 
show hydrophobic properties. Recently for the UF membranes fabrication, some 
other natural hydrophobic polymeric materials such as PMAA, PVC, and PVDF are 
also used [11, 38, 58, 102–105, 111, 112, 123]. 

During the operation there can be a decline in water flux because of membrane 
hydrophobicity as organic compounds get accumulated favoring the attachment and 
growth of microorganisms onto the surface of the membrane, leading to fouling 
and failure of the membrane [102–105]. It is important to modify these polymeric 
materials to improve their properties and increase their applications in the treat-
ment of water. The main motive to modify these membranes is to increase the 
hydrophilicity of the membrane, enhancement in the membrane hydrophilicity also 
increases the antifouling properties of the membrane for liquid water-based filtration.
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Some polymeric materials such as PSF, PVC, PMMA, and PES are incorporated with 
different types of particles or nanoparticles (TiO2, MSP-1, ZnO, silica) to improve 
their properties mainly hydrophilicity [24, 33, 70, 81, 118]. 

3.3 Reverse Osmosis (RO) 

RO technology (Fig. 2) is used for the removal of smaller particles and dissolved 
solids, this method is only permeable to molecules of water [72]. To make water 
overcome the osmotic pressure enough/high pressure should be applied to RO. In 
comparison to UF, the pore size of RO membranes is tighter, these membranes 
are able to convert hard water to soft water and require low maintenance [107]. 
They have extremely small pores and have the potential to remove all particles 
smaller than 0.1 nm including bacteria and organics [109]. The main disadvantages 
of RO membranes are the high-pressure use, prone to fouling, and being expensive in 
comparison to other membranes. Desalinating of water through RO is considered the 
most efficient and popular method as it is appropriate for potable and near-to-potable 
water production [45, 55]. 

Fig. 2 Reverse osmosis process showing the separation of salt from water
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Commercially available RO membranes consist of polymeric materials like PA 
and CA [15, 31, 32]. CA is a natural polymer mainly obtained through the esterifi-
cation of wood, recycled paper, bagasse, and cotton, CA is eco-friendly, renewable, 
and biodegradable and also known for its high potential flux and hydrophilicity, 
biocompatibility [21, 29, 66, 79]. PA membranes have the ability to withstand higher 
temperatures and operate under a wider pH range making it more preferable over 
CA [113]. 

However, as PA membranes have continuous exposure to chlorine and some 
oxidizing substances, so their practical application is limited [119]. The amide group 
present in the membranes of PA is sensitive to attacks of chlorine during chemical 
cleaning [31, 32, 101]. So, to prevent the PA membranes degradation, the concen-
tration of chlorine is reduced by an additional step of de-chlorination. Also, Poly 
(arylene ether) copolymers, especially poly (arylene ether sulfone) have been used 
to overcome this problem, as these polymers are highly resistant to chlorine attacks 
due to the absence of susceptible amide linkages [74, 75]. 

Nebipasagil and coworkers, prepared photo cross-linkable disulfonated PAES 
copolymers for the applications of RO, initially they synthesized PAES oligomers 
with controlled molecular weights and degrees of sulfonation by nucleophilic 
aromatic substitution. The molecular weight of the PAES was controlled by using 
Meta-aminophenol and thamtelechelic amine end groups were installed. The novel 
cross-linkable PAES oligomers with acrylamide groups presence on both ends were 
obtained by reacting meta-aminophenol end-capped oligomers with acryloyl chlo-
ride. In order to obtain, PAES copolymer thin films, UV radiation is used in the 
presence of a UV photoinitiator and a multifunctional acrylate to cross-link the 
acrylamide-terminated oligomers. It was observed that the smooth surfaces of cross-
linked disulfonated PAES films had improved high water passage and also there was 
a reduction in water uptake [69]. 

PVC can also be used as polymeric material for RO membranes, due to its dura-
bility and flexibility, and also with better biological and chemical resistance. PVC/CA 
polymers are used as membrane binders to achieve enhanced separation proper-
ties and special selective characteristics in membranes. Hydrophilic characteristics 
of the membrane can be improved by increasing the concentration of CA in the 
PVC/CA polymers solution and rejection capabilities of the fabricated membrane 
can be improved by increasing the CA concentration by around 10% [3, 29, 77]. 

4 Types of Polymeric Membrane 

The polymeric membranes are classified broadly into two categories; porous and 
non-porous. The two are each categorized into two subcategories.
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4.1 Porous Membrane 

The porous membranes are used for microfiltration and ultrafiltration purposes. 
Microfiltration entails membranes whose pore sizes are expressed in terms of 
micrometers. The pore sizes range from about 0.1 µm and above. These membranes 
are often used as the first step of filtration before the water progresses to the other 
stages. Among the materials removed by this type of membrane are suspended 
solids, micelles protein, bacteria, and fats. Ultrafiltration membrane also falls under 
the porous category. The average pore size is between 0.001 and 0.1 µm [8]. The 
membranes operate based on the principle of molecular exclusion. They remove 
macromolecules, protein, and enzymes, as well as starch from the solution. The 
membranes are in most cases made of polyethersulfone or polysulfone molecules 
[92]. 

4.2 Nonporous Membrane 

Non-porous polymer membranes are another main category. The membrane is rela-
tively dense compared to the porous membranes and water diffuses through the 
membrane only by the application of pressure, concentration, or electrical poten-
tial gradient [49]. Non-porous membrane falls under nanofiltration or the reverse 
osmosis technique [49]. The type of polymeric material used in both categories makes 
the difference in the permeability and selectivity of the membrane. In most cases, 
organic nanofiltration membranes are made by applying a thin film of a polymer to a 
polyethersulfone or polysulfone ultrafiltration substrate. Those in the nanofiltration 
category mainly remove amino acids, multivalent salts, and polysaccharides. The 
reverse osmosis membrane filters out salts and other minerals leaving only clean 
water for consumption. Separation occurs through the diffusion of dissolved species 
through the membrane and overcoming the osmotic pressure of the process fluid 
[99]. 

5 Polymer Membrane Filtration Process 

As noted, [33], the use of polymer membranes to treat water is also referred to as 
reverse osmosis. In its simplest form, the process entails pressuring water through a 
semipermeable membrane to remove impurities and contaminants. The membrane 
is made of polymer materials that distill or remove the dissolved organic solids, 
including salts, from the water to make it clean for consumption. The process is as 
demonstrated below in Fig. 3.

The process has three main stages. The first stage is the Pre-filtering stage. Here, 
the water from the supply line enters the reverse osmosis pre-filter first. Herein,
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Fig. 3 Reverse osmosis: a water purification process

sediments and carbon filters remove the sand, silt, dirt, and other sediments that may 
potentially clog the system. Chlorine and phenol, which can cause major damage to 
the polymer membranes used in the reverse osmosis process, are also removed using 
carbon filters [97]. The second stage is the reverse osmosis membrane, which in this 
case is a semipermeable polymer membrane. The membrane removes dissolved salts, 
aesthetic contaminants, and health-related contaminants. Once the water is filtered 
through the membrane, it enters the pressurized storage tank for storage. There is 
a final post-filter stage that removes any remaining odors or tastes using the same 
polymer membrane. The water is then ready for distribution [57]. 

6 Membrane Fouling 

The polymeric membrane is also used for the treatment of produced water. In indus-
trial waste treatment, membrane-based separation plays an important role which 
comprises Produced water treatment. For industrial separation using membrane have 
many advantages including simple operation, no phase change, ease to scale up, cost-
efficient, and less area occupied [43]. In layer filtration, the membrane has a particular 
barrier in the middle of two phases of perfuse matters. The particular transport is 
attained based on differences in physical or chemical properties of perfusing matter to
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the other side of the membrane. In porous membranes (microfiltration, ultrafiltration) 
separation rate of particles is based on sieving, size exclusion, and on the other hand 
in the case of the nonporous membrane (nanofiltration, reverse osmosis) separation 
is based on the solution–diffusion mechanism of solutes and solvent. The polymeric 
membrane show utility to form better filtration membranes is low cost, flexible, and 
has a border spectrum to be utilized in desirable separation techniques [63]. The high 
salinity of PW restricts its beneficial uses. Membrane mainly reverses osmosis and 
selective nanofiltration lessens the high salinity of produced water (PW). Some RO 
and NF membranes are used in PW treatment are NF1, polyethersulfone, NF90, and 
polyamide [6, 64]. 

Mainly the membranes which are used in PW treatment are NF and RO that are 
thin-film composite (TFC) membranes. TFC consists of three layers, the upper dense 
layer is made up of polyamide compound, and the middle layer is composed of poly-
sulfone which is supported by the third layer of polyester microporous compound 
[65]. The membrane separation processes of NF and RO are determined by water-
possessed pressure and depend on diffusive-based mass transfer. Membrane fouling 
increases the flux or increases the transmembrane pressure (TMP). Factors that cause 
fouling are depositions of inorganic components, because of this the pores of the 
membrane block [125] and result in reversible and irreversible membrane fouling 
[23]. When there is an attachment of particles on the surface of the membrane 
called reversible fouling and when the attachment of particles on the surface of 
the membrane which is cannot be removed by physical cleaning called irreversible 
fouling. 

6.1 Fouling Control 

It is controlled by ultrasonic cleaning, membrane cleaning using chemical agents, 
and membrane modification. 

(A) Ultrasonic treatment 

The process involves the removal of thick foulant originating from the surface of the 
membrane. The fouling of polymeric membranes by various pollutants between the 
active layer surface of the membrane and foulant molecules needs harsh thermal or 
chemical treatment to remove but this gives damage to the original membrane which is 
impossible to recover. To control the membrane fouling uses cleaning strategies such 
as a designed process, membrane cleaning by ultrasonic techniques, and hydraulic 
cleaning [17, 36]. 

(B) Fouling control by chemical cleaning 

The ideal chemical cleaning agents have the following properties: 

a. Solubilized foulant. 
b. Hydrolyzed foulant.
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c. The agent should not damage the membrane or system. 
d. Avoid new fouling while in solution [82]. 

Chemicals that we used are to clean the foulant from the surface of the fouled 
membrane and the selection of chemicals is based on the components which cause 
fouling are:

. Sodium dodecyl sulfate (SDS): It is a surfactant that contains hydrophilic as well 
as hydrophobic components and forms micelles with fats and oils which helps in 
ameliorate fouled cleaning [106].

. Disodium ethylenediaminetetraacetate (EDTA): Known as a chelating agent 
used to remove metal ions and foulant from the fouling layer [7].

. Sodium hydroxide (NaOH): In comparison with SDS and EDTA, sodium 
hydroxide is a more effective cleaning agent. In a study, SDS was found more 
efficient when applied for 5 min and it restores permeability completely. Both 
disodium ethylenediaminetetraacetate and sodium hydroxide have a similar range 
of cleaning efficiency and both are inferior to SDS [5]. 

(C) Fouling control by surface modifications 

By transforming, the surface properties of membrane fouling can be managed. The 
degree of fouling is influenced by the roughness of the surface [71] charge of the 
surface hydrophilicity, and hydrophobicity. The membranes which are more suscep-
tible to fouling are rough membranes although the smooth and neutral surface of the 
membrane is less prone [67]. Membrane surface hydrophilicity is the main criterion 
for the antifouling property of polymeric membranes [63]. To fouling, surface modifi-
cation is very important for polymeric membranes. The surface modification includes 
grafting blending, and incorporation of nanomaterial such as carbon nanotubes [95], 
TiO2-based polymeric membrane [13], ZnO-based polymeric membrane [89]. 

(D) Removal of membrane fouling using nanoparticles 

In polymeric material, researchers concentrated on integrating inorganic nanoparti-
cles resulting in the development of a Nanocomposite membrane, and because of this 
physiochemical and mechanical properties were enhanced. Nanomaterials are used 
as fillers for example carbon nanotubes (CNTs), nanosized TiO2, and nanosilver. 

Carbon nanotubes (CNT): It is a single-wall carbon tube made up of carbon with 
a diameter in the range of nanometers. Carbon nanotubes have various properties 
like carbon nanotubes have high hydrophilicity and good chemical stability. Carbon 
nanotubes with properties of antibacterial, high centralized strength, and improved 
porosity it has been ideally utilized in membrane augmentation [19]. There are many 
methods utilized to manufacture inorganic polymer membranes based on Carbon 
nanotubes which involve blending, direct coating, in-situ polymerization CVD, and 
CVD template [56]. In a process of polymer membrane formation, CNT is used as a 
substrate to intercalate with polymerization [83]. 

Silver nanoparticles: Silver nanoparticles (SNP) have properties of bactericidal, 
increased oxidative stress, and high-affinity silver ions because of this it is drawn into
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the field of mixed matrix membrane [10, 93]. Silver is a non-allergic, non-toxic, and 
eco-friendly metal, so it has fewer hazards toward human cells [2]. Also, it is efficient 
when the bacterial solution is incorporated into the matrix of the membrane [117] 
because of this antibacterial ability and low toxicity apropos humans, silver ions take 
on in membrane fabrication. It was found that the Ag-containing membranes have 
unique antifouling properties [37]. 

7 Future Research 

Recent decades of research and developments in this field have concentrated on 
appropriate techniques to procure clean water by filtering and reutilizing water to 
support human health and water scarcity. The process of removing impurities and 
pollutants from water to procure suitable water is called water purification. Due to 
its high efficiency and low cost, water purification technologies are dominated by 
membrane technology. In comparison with other types of membranes, membrane 
separation industries are led by polymeric membranes as they are economical and 
practically favorable. But the membrane use has less chemically and thermally diver-
gent which reduces their utility. A major area that required more research to enhance 
flux, selectively, and reduce membrane fouling is a crucial barrier in the utilization of 
membranes for water purifications. Currently, research is focused on the addition of 
Nano-filters and polymers in the second phase of membrane preparations to enhance 
the selectivity and pursuance of the membrane. 

8 Pros and Cons of Polymeric Membranes 

The first major advantage of polymeric membranes over other membranes, such as 
the use of ceramics is the fact that the membranes are cheaper to use. The materials 
are not only affordable to use but have low associated costs, especially in terms of 
energy use. While noting that in some cases polymeric membranes cannot withstand 
high temperatures and some chemicals, cost-effective polymeric membranes are 
cost-effective and offered businesses a major cost advantage in large-scale water 
purification [34]. 

The other advantage of polymeric membranes pertains to effectiveness. Compared 
to other traditional mechanisms, polymeric membranes have proven to be reliable 
over long periods. This is coupled with the fact that the membranes can continuously 
be improved so that the quality of the filtration becomes even higher. Such improve-
ments have seen the production of membranes that are even more chemically stable 
and thus removing high chemical reactions at the surface of the membrane. The 
chances of growth in this area mean that the effectiveness of the membranes even in 
the future is going to surpass other mechanisms that could be in use today. The other
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advantage that the membranes have is energy efficiency. One of the biggest chal-
lenges that have existed about water filtration has revolved around energy efficiency. 
This is especially the case of desalination of salty water covers the largest portion 
of the earth’s population. The energy that has been required in the past to make 
the water suitable for drinking has resulted in major conflicts, especially balancing 
between non-renewable energy sources that cause pollution and the need for clean 
water. However, polymeric membranes have provided cheaper energy alternatives, 
especially for commercial use. The idea that there is room for improvement promises 
that the energy efficiency may improve even in the future making it possible to provide 
the world with enough water for drinking especially from salty water. 

One of the biggest challenges facing the use of polymeric membranes is the 
problem of fouling [78] defines fouling as the process through which colloidal or 
particulate matter deposits itself in the pores of the membrane or on the surface, 
which adversely affects the effectiveness of the membrane in water filtration. The 
continuous movement of water that contains microbes, macromolecules, colloids, 
and particulates over the membrane leads to the accumulation of the materials on 
the surface of the membrane meaning that the water flux is reduced. In addition 
to that, the cake layer formed on the top of the membrane also affects the overall 
rejection performance of the membrane [39]. To deal with the fouling problem, the 
membrane needs to be constantly cleaned, which increases the cost In addition to 
that, the membrane must also be continually replaced, which raises the cost. More 
energy is also required to move the water across the membrane, thus increasing the 
cost as well. 

The weakening of the membranes presents a major risk, especially in the case of 
water filtration. According to Praneeth et al. [78] sometimes the duration of use for 
the polymeric membranes may be shorter than expected. In that regard, their use may 
be extended to a time in which they have already become weak. During such a time, 
the selectivity of the membranes becomes unacceptably low. This means that some of 
the materials that need to be filtered out pass through the membranes. Among them 
could be health contaminants that pose a major risk to the health of the individuals 
who rely on the water from the system. Water is used for industrial processes; the 
presence of some materials can result in major losses as a result of poor product 
quality. This is especially the case when the water that passes still has some odor or 
dissolved salts. And polymeric membranes cannot resist high temperature because 
at that temperature membrane plasticizes which results in a loss of flux [44]. 

9 Applications 

Polymeric membranes are engaged in applications such as desalination, removal of 
water hardening, municipal wastewater treatment, production of potable water, and 
industrial and household water treatment. It offers a simple technique to be used 
widely, cost-effective, environmentally friendly, stable, and divergent applicable in
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a range of temperature, pressure, and pH. Membrane fouling and membrane sensi-
tivity to toxicity are the main extremities and problems of membrane technology. For 
this reason, Researchers have established several ways to overcome membrane tech-
nology. These ways consist of the amalgamation of nanomaterial such as graphene 
oxide and nanometer-sized metal oxides (zinc oxide), among others [88]. Overall, 
it can be concluded that membrane technology is a very advantageous technique 
for wastewater treatment. Many research approaches are focused on having efficient 
solutions and approaches to prolong its lifetime [42, 56, 116]. 

10 Discussion 

The chapter identifies why water purification through polymeric membranes is crit-
ical in today’s world. The process of water filtration using the polymeric membrane 
is also explained. The various types of polymeric membranes are identified and so 
are the advantages and disadvantages. And why do we need this treatment? 

As identified, the world’s freshwater sources are currently under pressure to meet 
the demand for freshwater by the growing global population. According to [27], less 
than 1% of the world’s water sources are freshwater. 97% of the sources are salty and 
2% of them are already contaminated by human activities. The competition for the 
available water is shared between three major areas. 70% of the freshwater is used for 
irrigation to feed the growing population in the age of major pollution effects. 20% 
of the water is used for industrial processes that are also critical for human existence 
[27]. Only 10% of the water is allocated to human consumption. Globally, more 
than 1.2 billion people do not have access to fresh water while another 2.6 billion 
have contaminated freshwater [27]. Poor access to clean fresh water, especially for 
developing countries is devastating. To bridge the gap between supply and demand 
for freshwater, it is evident that mechanisms need to be put in place that makes both 
the salty and contaminated water safe for consumption. Since the pressure on water 
demand will most likely increase in the future, there needs to be low-cost, highly 
efficient methods of water purification that can be relied on to meet the growing need. 
Polymeric membranes thus present a major opportunity for water filtration to meet 
the demand in a low-cost and energy-efficient way. 

11 Conclusion 

One of the most critical threats facing the world in this century is the supply of clean 
water with satisfactory quality from water resources. Polymeric membranes are a 
critical part of water purification today. The membranes offer a chance to bridge the 
gap between the supply and demand for fresh water at home and in industries. The 
biggest advantage of the membrane is the fact that they are energy-efficient and also 
low-cost compared to other mechanisms. That area continues to grow for even more
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efficiency in the future. Therefore, it concluded that prolonged studies are required for 
optimizing the characteristics properties, and performance of membranes. It includes 
such as antifouling, increased durability, impaired energy consumption, improved 
selective permeability, and enhanced thermal, mechanical, and chemical stability. 
The membrane which is used in water treatment has higher flux, is less selective 
and less prone to various types of fouling, and is more resistant to the chemical 
environment. 
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