


﻿﻿SystemC: From the Ground Up



David C. Black  ●  Jack Donovan
Bill Bunton  ●  Anna Keist

SystemC:  
From the Ground Up



David C. Black
XtremeEDA
Austin, TX 78749
USA
dcblack@eslx.com

Bill Bunton
LSI Corporation
Austin, TX 78749
USA

Jack Donovan
HighIP Design Company
Round Rock, TX 78764
USA
jack@donovanweb.org

Anna Keist
XtremeEDA
Austin, TX 78749
USA

ISBN 978-0-387-69957-8 e-ISBN 978-0-387-69958-5
DOI 10.1007/978-0-387-69958-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009933997

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection 
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



This book is dedicated to our spouses 
Pamela Black, Carol Donovan, Evelyn 
Bunton, and Rob Keist and to our children 
Christina, Loretta, & William Black,  
Chris, Karen, Jenny, & Becca Donovan, 
John Williams & Sylvia Headrick,  
Alex, Madeline, and Michael Keist



vii

2nd Edition Preface

Why the 2nd Edition?

The reader (or prospective buyer of this book) might ask about the need for a second 
edition. The first edition was highly successful and progressed to a second and third 
life after being translated to Japanese and Korean.

There are three over-arching reasons for the second edition:

A fast changing technical landscape –
Incorporation of additional topic suggestions from readers –
Fixing of errors and improvement of confusing text segments and chapters –

To address the shifting technical landscape, we have significantly updated the
chapters addressing Electronic System-Level design to reflect the refinements of 
ESL methodology thinking in the industry. Although this is not a complete dis-
cussion of ESL, it is an overview of the industry as currently viewed by the 
authors.

We have added a chapter on TLM, a standard that will enable interoperability of 
models and a model marketplace. Although this chapter discusses TLM 1.0, we 
think it imparts to the reader a basic understanding of TLM. Those of you who fol-
low the industry will note that this is not TLM 2.0. This new standard was still 
emerging during the writing of this edition. But not to worry! Purchasers of this 
edition can download an additional chapter on TLM 2.0 

Although SystemC is now IEEE 1666 it is not immune from the shifting techni-
cal landscape, so the authors have included material on some proposed extensions 
to the SystemC standard related to process control.

Readers have suggested several additional topics over the last several years and 
we have tried to address these with an additional chapter on the SystemC 
Verification (SCV) Library and an appendix on C++ fundamentals.

The chapter on the SCV library is a high level introduction and points the reader 
to additional resources. The authors have found that many organizations have 
started using the SCV library after becoming familiar with SystemC and ESL meth-
odologies. For those readers, we have added this chapter.



viii 2nd Edition Preface

The authors received several suggestions asking us to add examples and com-
parisons to HDL languages like Verilog and VHDL. The authors have respectfully 
declined, as we feel this actually impedes the reader from seeing the intended uses 
of SystemC. After exploring these suggestions, we have found that these readers 
were not entirely comfortable with C++, and because C++ is fundamental to an 
understanding of SystemC, this edition includes a special appendix that attempts to 
highlight those aspects of C++ that are important prerequisites, which is most of the 
language.

Writing a book of this type is very humbling, as most who have journeyed on 
similar endeavors will confirm. Despite our best efforts at eliminating errors from 
the first edition, the errata list had grown quite long. We have also received feed-
back that certain portions of the book were “confusing” or “not clear”. After 
reviewing many of these sections, we had to ask: What were we thinking? (a ques-
tion asked by many developers when they revisit their “code” after several years)

In some cases we were obviously “not thinking”, so several chapters and sec-
tions of chapters have been significantly updated or completely rewritten. The topic 
of concurrency proved a more challenging concept to explain than the authors first 
thought. This edition effectively rewrote the chapters and sections dealing with the 
concept of concurrency.

The authors have been quite gratified at the acceptance of the first edition and 
the rapid adoption of SystemC. We hope we have played at least a small part in the 
resulting changes to our community. We wish you good luck with SystemC and 
your contributions to our community.

Jack Donovan, David Black, Bill Bunton, Anne Keist
4authors@scftgu.com



ix

Preface

Jack Donovan, David Black, Bill Bunton, and Anne Keist

Why This Book

The first question any reader should ask is “Why this book?” We decided to write 
this book after learning SystemC using minimal documentation to help us through 
the quest to deeper understanding of SystemC. After teaching several SystemC 
classes, we were even more convinced that an introductory book focused on the 
SystemC language was needed. We decided to contribute such a book.

This book is about SystemC. It focuses on enabling the reader to master the 
language. The reader will be introduced to the syntax and structure of the language, 
and the reader will also learn a few techniques for use of SystemC as a tool to 
shorten the development cycle of large system designs.

We allude to system design techniques and methods by way of examples 
throughout the book. Several books that discuss system-level design methodology 
are available, and we believe that SystemC is ideally suited to implement many of 
these methods. After reading this resource, the reader should not only be adept at 
using SystemC constructs, but also should have an appreciation of how the con-
structs can be used to create high performance simulation models.

We believe there is enough necessary information about SystemC to learn the lan-
guage that a stand-alone book is justified. We hope you agree. We also believe that 
there is enough material for a second book that focuses on using SystemC to imple-
ment these system-level design methods. With reader encouragement, the authors have 
started on a second book that delves deeper into the application of the language.

Prerequisites for This Book

As with every technical book, the authors must write the content assuming a basic 
level of understanding; this assumption avoids repeating most of an engineering 
undergraduate curriculum. For this book, we assumed that the reader has a working 
knowledge of C++ and minimal knowledge of hardware design.

For C++ skills, we do not assume that the reader is a “wizard”. Instead, we 
assumed that you have a good knowledge of the syntax, the object-oriented 



x Preface

features, and the methods of using C++. The authors have found that this level of 
C++ knowledge is universal to current or recent graduates with a computer science 
or engineering degree from a four-year university.

Interestingly, the authors have also found that this level of knowledge is lacking 
for most ASIC designers with 10 or more years of experience. For those readers, 
assimilating this content will be quite a challenge but not an impossible one.

As an aid to understanding the C++ basics, this edition includes an appendix on 
C++. Those who have been exposed to C++ in the past are encouraged to quickly 
review this appendix. For a few novices, this appendix may also work as a quick 
introduction to the topics, but it is unlikely to be completely sufficient.

For readers who are C++ novices or for those who may be rusty, we recommend 
finding a good C++ class at a community college, taking advantage of many of the 
online tutorials, or finding a good consulting group offering an Intro to C++ class. 
For a list of sources, see Appendix A. We find (from our own experience) that those 
who have learned several procedural languages (like FORTRAN or PL/I) greatly 
underestimate the difficulty of learning a modern object-oriented language.

To understand the examples completely, the reader will need minimal under-
standing of digital electronics.

Book Conventions

Throughout this book, we include many syntax and code examples. We’ve chosen 
to use an example-based approach because most engineers have an easier time 
understanding examples rather than strict Backus-Naur form1 (BNF) syntax or 
precise library declarations. Syntax examples illustrate the code in the manner it 
may be seen in real use with placeholders for user-specified items. For more com-
plete library information, we refer the reader to the SystemC Language Reference 
IEEE 1666-2005, which you can obtain for free via www.systemc.org.

Code will appear in monotype Courier font. Keywords for both C/C++ and 
SystemC will be shown in Courier bold. User-selectable syntax items are in italics 
for emphasis. Repeated items may be indicated with an ellipsis (…) or subscripts. 
The following is an example:

1John Backus and Peter Naur first introduced BNF as a formal notation to describe the syntax of 
a given language. Naur, P. (1960, May). Revised report on the algorithmic language ALGOL 60. 
Communications of the ACM, 3(5), 299-314.

wait(name.posedge_event()|eventi…);
if (name.posedge()) { //previous delta-cycle

//ACTIONS…

Fig. 1  Example of sample code



xiPreface

When referring to a class within the text it will appear as class_name or sc_
class_name. When referring to a templated class within the text, it will appear as 
template_class_name<T>. When referring to a member function or method from 
the text it will appear as member_name(args) or sc_member_name(args). 
Occasionally, we will refer to a member function or method without the arguments. 
It will appear in the text as member_name() or sc_member_name().

In addition, we have adopted standard graphical notations as shown in Fig 2. The 
terminology will be presented as the book progresses. Readers of the first edition 
will note that we changed the depiction of an sc_export from a dotted circle to a 
diamond. This change was the result of comments that the dotted circle was too 
hard to make out in some cases. We also removed arrows since in most cases, the 
meaning is not always clear2.

SystemC uses a naming convention where most SystemC-specific identifiers are 
prefixed with sc_ or SC_. This convention is reserved for the SystemC library, and 
you should not use it in end-user code (your code).

About the Examples

To introduce the syntax of SystemC and demonstrate its usage, we have filled this 
book with examples. Most examples are not real-world examples. Real examples 
become too cluttered too fast. The goal of these examples is to communicate 

2Does an arrow convey calling direction (i.e., C++ function call) or direction of data flow? Since 
many interfaces contain a mixture of calls, some input and some output, showing data flow direc-
tion is not very useful.

Fig. 2  Standard graphical notations



xii Preface

concepts clearly; we hope that the reader can extend them into the real world. For 
the most part, we used a common theme of an automobile for the examples.

By convention, we show syntax examples stylistically as if SystemC is a special 
language, which it is not. We hope that this presentation style will help you apply 
SystemC on your first coding efforts. If you are looking for the C++ declarations, 
please browse the Language Reference Manual (LRM) or look directly into the 
SystemC Open SystemC Initiative reference source code (www.systemc.org).

It should also be noted that due to space limitations and to reduce clutter, we 
have omitted showing standard includes (i.e., #include) and standard namespace 
prefixes in most of the examples. You may assume something such as the following 
is implied in most of the examples:

#include <iostream>
#include <systemc>
#include <scv.h>
using namespace std;
using namespace sc_core;
using namespace sc_dt;

Fig. 3  Assumed code in examples

Please note that it is considered bad C++ form to include the standard namespace 
in header files (i.e., do not include “using namespace std;” in a header). We believe 
making the examples clear and brief warrants ignoring this common wisdom.

How to Use This Book

The authors designed this book primarily for the student or engineer new to 
SystemC. This book’s structure is best appreciated by reading sequentially from 
beginning to end. A reader already familiar with SystemC will find this content to 
be a great reference.

Chapters 1 through 3 provide introductions and overviews of the language and 
its usage. Methodology is briefly discussed.

For the student or engineer new to SystemC, the authors present the language 
from the bottom up and explain the topics from a context of C++ with ties to hard-
ware concepts. We provide exercises at the end of Chapters 4 through 16 to rein-
force the concepts presented in the text. Chapters 16 through 18 strengthen the 
basic language concepts. In these chapters, readers will find discussions of areas to 
watch and understand when designing, writing, or using SystemC in a production 
environment.

For the student or engineer already familiar with SystemC, Chapters 4 through 13 
will provide some interesting background and insights into the language. You can 
either skip or read these early chapters lightly to pick up more nuances of the lan-
guage. The content here is not meant to be a complete description of the language. 



xiiiPreface

For a thorough description, the reader is referred to the SystemC LRM. Chapters 14 
through 18 provide intermediate to advanced material.

For the instructor, this book may provide part of an advanced undergraduate 
class on simulation or augment a class on systems design.

In most of the examples presented in the book, the authors show code fragments 
only so as to emphasize the points being made. Examples are designed to illustrate 
specific concepts, and as such are toy examples to simplify learning. Complete 
source code for all examples and exercises is available for download from www.
scftgu.com as a compressed archive. You will need this book to make best use of 
these files.

SystemC Background

SystemC is a system design language based on C++. As with most design languages, 
SystemC has evolved. Many times a brief overview of the history of language will 
help answer the question “Why do it that way?” We include a brief history of 
SystemC and the Open SystemC Initiative to help answer these questions.

The Evolution of SystemC

SystemC is the result of the evolution of many concepts in the research and com-
mercial EDA communities. Many research groups and EDA companies have con-
tributed to the language. A timeline of SystemC is included in Table 1.

SystemC started out as a very restrictive cycle-based simulator and “yet another” 
RTL language. The language has evolved (and is evolving) to a true system design 
language that includes both software and hardware concepts. Although SystemC 

Table 1  Timeline of development of SystemC

Date Version Notes

Sept 1999 0.9 First version; cycle-based
Feb 2000 0.91 Bug fixes
Mar2000 1.0 Widely accessed major release
Oct 2000 1.0.1 Bug fixes
Feb 2001 1.2 Various improvements
Aug 2002 2.0 Add channels & events; cleaner syntax
Apr 2002 2.0.1 Bug fixes; widely used
June 2003 2.0.1 LRM in review
Spring 2004 2.1 LRM submitted for IEEE standard
Dec 2005 2.1v1 IEEE 1666-2005 ratified
July 2006 2.2 Bug fixes to more closely implement IEEE 1666-2005



xiv Preface

does not specifically support analog hardware or mechanical components, there is 
no reason why these aspects of a system cannot be modeled with SystemC con-
structs or with co-simulation techniques.

Open SystemC Initiative

Several of the organizations that contributed heavily to the language development 
efforts realized very early that any new design language must be open to the com-
munity and not be proprietary. As a result, the Open SystemC Initiative (OSCI) was 
formed in 1999. OSCI was formed to:

Evolve and standardize the language•	
Facilitate communication among the language users and tool vendors•	
Enable adoption•	
Provide the mechanics for open source development and maintenance•	

The SystemC Verification Library

As you will learn while reading this book, SystemC consists of the language and 
potential methodology-specific libraries. The authors view the SystemC Verification 
(SCV) library as the most significant of these libraries. This library adds support 
for modern high-level verification language concepts such as constrained random-
ization, introspection, and transaction recording. The first release of the SCV 
library occurred in December of 2003 after over a year of Beta testing. This edition 
includes a chapter devoted to the SCV from a syntactic point of view.

Current Activities with OSCI

At present, the OSCI has completed the SystemC LRM that has been ratified as a 
standard (IEEE 1666-2005) by the Institute of Electrical and Electronics Engineers 
(IEEE). Additionally, sub-committees are studying such topics as synthesis subsets 
and formalizing terminology concerning levels of abstraction for transaction-level 
modeling (TLM). This edition includes a chapter devoted to TLM and current 
activities.



xv

Acknowledgments

Our inspiration was provided by:•	
Mike Baird, President of Willamette HDL, who provided 
the basic knowledge to get us started on our SystemC journey.
Technical information was provided by:•	
IEEE-1666-2005 Standard
OSCI Proof-of-Concept Library associated information on systemc.org
Andy Goodrich of Forte Design Systems, who provided technical insights.
Our reviewers provided feedback that helped keep us on track:•	
Chris Donovan, Cisco Systems Incorporated
Ronald Goodstein, First Shot Logic Simulation and Design
Mark Johnson, Rockwell-Collins Corporation
Rob Keist, Freescale Corporation
Miriam Leeser, Northeastern University
Chris Macionski, Synopsys Inc.
Nasib Naser, Synopsys Inc.
Suhas Pai, Qualcomm Incorporated
Charles Wilson, XtremeEDA Corporation
Claude Cloutier, XtremeEDA Corporation
David Jones, XtremeEDA Corporation
The team who translated the first edition of the book into Japanese and asked us •	
many thought provoking questions that have hopefully been answered in this 
edition:
Masamichi Kawarabayashi (Kaba), NEC Electronics Corporation
Sanae Nakanishi, NEC Electronics Corporation
Takashi Hasegawa, Fujitsu Corporation
Masaru Kakimoto, Sony Corporation
The translator of the Korean version of the first edition who caught many •	
detailed errors. We hope that we have corrected them all in this edition:
Goodkook, Anslab Corporation
Our Graphic Artist•	
Felix Castillo
Our Technical Editors helped us say what we meant to say:•	
Kyle Smith, Smith Editing
Richard Whitfield



xvi Acknowledgments

Our Readers from the First Edition:•	
David Jones, Junyee Lee, Soheil Samii, Kazunari Sekigawa, Ando Ki,
Jeff Clark, Russell Fredrickson, Mike Campin, Marek Tomczyk,
Luke Lee, Adamoin Harald Devos, Massimo Iaculo, and many others
who reported errata in the first edition.

Most important of all, we acknowledge our spouses, Pamela Black, Carol 
Donovan, Rob Keist, and Evelyn Bunton. These wonderful life partners (despite 
misgivings about four wild-eyed engineers) supported us cheerfully as we spent 
many hours researching, typing, discussing, and talking to ourselves while pacing 
around the house as we struggled to write this book over the past year.

We also acknowledge our parents who gave us the foundation for both our fam-
ily and professional life.



xvii

Contents

1	 Why SYSTEMC: ESL and TLM..............................................................	 1

1.1	 Introduction.........................................................................................	 1
1.2	 ESL Overview.....................................................................................	 2

1.2.1	 Design Complexity.................................................................	 2
1.2.2	 Shortened Design Cycle = Need For Concurrent Design.......	 3

1.3	 Transaction-Level Modeling...............................................................	 7
1.3.1	 Abstraction Models.................................................................	 7
1.3.2	 An Informal Look at TLM......................................................	 8
1.3.3	 TLM Methodology.................................................................	 10

1.4	 A Language for ESL and TLM: SystemC..........................................	 14
1.4.1	 Language Comparisons and Levels of Abstraction................	 15
1.4.2	 SystemC: IEEE 1666..............................................................	 16
1.4.3	 Common Skill Set...................................................................	 16
1.4.4	 Proper Simulation Performance and Features........................	 16
1.4.5	 Productivity Tool Support.......................................................	 17
1.4.6	 TLM Concept Support............................................................	 17

1.5	 Conclusion..........................................................................................	 18

2	 Overview of SystemC.................................................................................	 19

2.1	 C++ Mechanics for SystemC..............................................................	 20
2.2	 SystemC Class Concepts for Hardware..............................................	 22

2.2.1	 Time Model.............................................................................	 22
2.2.2	 Hardware Data Types..............................................................	 23
2.2.3	 Hierarchy and Structure..........................................................	 23
2.2.4	 Communications Management...............................................	 23
2.2.5	 Concurrency............................................................................	 24
2.2.6	 Summary of SystemC Features for Hardware  

Modeling.................................................................................	 24
2.3	 Overview of SystemC Components....................................................	 25

2.3.1	 Modules and Hierarchy...........................................................	 25
2.3.2	 SystemC Threads and Methods..............................................	 25
2.3.3	 Events, Sensitivity, and Notification.......................................	 26



xviii Contents

2.3.4	 SystemC Data Types.............................................................	 27
2.3.5	 Ports, Interfaces, and Channels.............................................	 27
2.3.6	 Summary of SystemC Components......................................	 28

  2.4	 SystemC Simulation Kernel..............................................................	 29

3	 Data Types..................................................................................................	 31

  3.1	 Native C++ Data Types.....................................................................	 31
  3.2	 SystemC Data Types Overview.........................................................	 32
  3.3	 SystemC Logic Vector Data Types...................................................	 33

3.3.1	 sc_bv<W>.............................................................................	 33
3.3.2	 sc_logic and sc_lv<W>.........................................................	 34

  3.4	 SystemC Integer Types.....................................................................	 35
3.4.1	 sc_int<W> and sc_uint<W>.................................................	 35
3.4.2	 sc_bigint<W> and sc_biguint<W>.......................................	 35

  3.5	 SystemC Fixed-Point Types..............................................................	 36
  3.6	 SystemC Literal and String...............................................................	 39

3.6.1	 SystemC String Literals Representations..............................	 39
3.6.2	 String Input and Output.........................................................	 40

  3.7	 Operators for SystemC Data Types...................................................	 41
  3.8	 Higher Levels of Abstraction and the STL.......................................	 43
  3.9	 Choosing the Right Data Type..........................................................	 44
3.10  Exercises...........................................................................................	 44

4	 Modules.......................................................................................................	 47

  4.1	 A Starting Point: sc_main.................................................................	 47
  4.2	 The Basic Unit of Design: SC_MODULE........................................	 49
  4.3	 The SC_MODULE Class Constructor: SC_CTOR..........................	 50
  4.4	 The Basic Unit of Execution: Simulation Process............................	 51
  4.5	 Registering the Basic Process: SC_THREAD..................................	 52
  4.6	 Completing the Simple Design: main.cpp........................................	 53
  4.7	 Alternative Constructors: SC_HAS_PROCESS...............................	 53
  4.8	 Two Styles Using SystemC Macros..................................................	 55

4.8.1	 The Traditional Coding Style................................................	 55
4.8.2	 Recommended Alternate Style..............................................	 56

  4.9	 Exercises...........................................................................................	 57

5	 A Notion of Time........................................................................................	 59

  5.1	 sc_time..............................................................................................	 59
5.1.1	 SystemC Time Resolution.....................................................	 60
5.1.2	 Working with sc_time...........................................................	 61

  5.2	 sc_time_stamp()................................................................................	 61
  5.3	 sc_start()............................................................................................	 62
  5.4	 wait(sc_time).....................................................................................	 63
  5.5	 Exercises...........................................................................................	 64



xixContents

  6	 Concurrency.............................................................................................	 65

  6.1	 Understanding Concurrency...........................................................	 65
  6.2	 Simplified Simulation Engine.........................................................	 68
  6.3	 Another Look at Concurrency and Time.........................................	 70
  6.4	 The SystemC Thread Process.........................................................	 71
  6.5	 SystemC Events..............................................................................	 72

6.5.1	 Causing Events ...................................................................	 73
  6.6	 Catching Events for Thread Processes............................................	 74
  6.7	 Zero-Time and Immediate Notifications.........................................	 75
  6.8	 Understanding Events by Way of Example....................................	 78
  6.9	 The SystemC Method Process........................................................	 81
6.10	 Catching Events for Method Processes...........................................	 83
6.11	 Static Sensitivity for Processes.......................................................	 83
6.12	 Altering Initialization......................................................................	 86
6.13	 The SystemC Event Queue.............................................................	 87
6.14	 Exercises.........................................................................................	 88

  7	 Dynamic Processes...................................................................................	 89

  7.1	 Introduction.....................................................................................	 89
  7.2	 sc_spawn.........................................................................................	 89
  7.3	 Spawn Options................................................................................	 91
  7.4	 A Spawned Process Example..........................................................	 92
  7.5	 SC_FORK/SC_JOIN......................................................................	 93
  7.6	 Process Control Methods................................................................	 96
  7.7	 Exercises.........................................................................................	 97

  8	 Basic Channels.........................................................................................	 99

  8.1	 Primitive Channels..........................................................................	 100
  8.2	 sc_mutex.........................................................................................	 100
  8.3	 sc_semaphore..................................................................................	 102
  8.4	 sc_fifo..............................................................................................	 104
  8.5	 Exercises.........................................................................................	 106

  9	 Evaluate-Update Channels......................................................................	 107

  9.1	 Completed Simulation Engine........................................................	 108
  9.2	 SystemC Signal Channels...............................................................	 110
  9.3	 Resolved Signal Channels...............................................................	 113
  9.4	 Template Specializations of sc_signal Channels............................	 115
  9.5	 Exercises.........................................................................................	 116

10	 Structure...................................................................................................	 117

10.1	 Module Hierarchy...........................................................................	 117
10.2	 Direct Top-Level Implementation...................................................	 119



xx Contents

10.3	 Indirect Top-Level Implementation................................................	 119
10.4	 Direct Submodule Header-Only Implementation...........................	 120
10.5	 Direct Submodule Implementation.................................................	 120
10.6	 Indirect Submodule Header-Only Implementation.........................	 121
10.7	 Indirect Submodule Implementation...............................................	 122
10.8	 Contrasting Implementation Approaches........................................	 123
10.9	 Exercises.........................................................................................	 123

11	 Communication........................................................................................	 125

11.1	 Communication: The Need for Ports..............................................	 125
11.2	 Interfaces: C++ and SystemC.........................................................	 126
11.3	 Simple SystemC Port Declarations.................................................	 129
11.4	 Many Ways to Connect...................................................................	 130
11.5	 Port Connection Mechanics............................................................	 132
11.6	 Accessing Ports From Within a Process.........................................	 134
11.7	 Exercises.........................................................................................	 135

12	 More on Ports & Interfaces.....................................................................	 137

12.1	 Standard Interfaces..........................................................................	 137
12.1.1  SystemC FIFO Interfaces..................................................	 137
12.1.2  SystemC Signal Interfaces................................................	 139
12.1.3  sc_mutex and sc_semaphore Interfaces............................	 140

12.2	 Sensitivity Revisited: Event Finders and Default Events................	 140
12.3	 Specialized Ports.............................................................................	 142
12.4	 The SystemC Port Array and Port Policy.......................................	 145
12.5	 SystemC Exports.............................................................................	 148
12.6	 Connectivity Revisited....................................................................	 153
12.7	 Exercises.........................................................................................	 155

13	 Custom Channels and Data....................................................................	 157

13.1	 A Review of SystemC Channels and Interfaces..............................	 157
13.2	 The Interrupt, a Custom Primitive Channel....................................	 158
13.3	 The Packet, a Custom Data Type for SystemC...............................	 159
13.4	 The Heartbeat, a Custom Hierarchical Channel..............................	 162
13.5	 The Adaptor, a Custom Primitive Channel.....................................	 164
13.6	 The Transactor, a Custom Hierarchical Channel............................	 166
13.7	 Exercises.........................................................................................	 170

14	 Additional Topics.....................................................................................	 171

14.1	 Error and Message Reporting.........................................................	 171
14.2	 Elaboration and Simulation Callbacks............................................	 174
14.3	 Configuration..................................................................................	 175
14.4	 Programmable Structure.................................................................	 177
14.5	 sc_clock, Predefined Processes.......................................................	 181



xxiContents

14.6	 Clocked Threads, the SC_CTHREAD............................................	 182
14.7	 Debugging and Signal Tracing........................................................	 185
14.8	 Other Libraries: SCV, ArchC, and Boost........................................	 187
14.9	 Exercises.........................................................................................	 187

15	 SCV............................................................................................................	 189

  15.1	 Introduction...................................................................................	 189
  15.2	 Data Introspection.........................................................................	 189

15.2.1	 Components for scv_extension Interface........................	 190
15.2.2	 Built-In scv_extensions...................................................	 192
15.2.3	 User-Defined Extensions................................................	 193

  15.3	 scv_smart_ptr Template................................................................	 193
  15.4	 Randomization..............................................................................	 194

15.4.1	 Global Configuration......................................................	 194
15.4.2	 Basic Randomization......................................................	 196
15.4.3	 Constrained Randomization............................................	 197
15.4.4	 Weighted Randomization................................................	 198

  15.5	 Callbacks.......................................................................................	 200
  15.6	 Sparse Arrays................................................................................	 201
  15.7	 Transaction Sequences..................................................................	 202
  15.8	 Transaction Recording..................................................................	 203
  15.9	 SCV Tips.......................................................................................	 204
15.10	 Exercises.......................................................................................	 204

16	 OSCI TLM................................................................................................	 207

  16.1	 Introduction...................................................................................	 207
  16.2	 Architecture...................................................................................	 208
  16.3	 TLM Interfaces.............................................................................	 210

16.3.1	 Unidirectional Blocking Interfaces.................................	 211
16.3.2	 Unidirectional Non-Blocking Interfaces.........................	 211
16.3.3	 Bidirectional Blocking Interface.....................................	 213

  16.4	 TLM Channels..............................................................................	 213
  16.5	 Auxiliary Components..................................................................	 214

16.5.1	 TLM Master....................................................................	 215
16.5.2	 TLM Slave......................................................................	 215
16.5.3	 Router and Arbiter..........................................................	 216

  16.6	 A TLM Example...........................................................................	 217
  16.7	 Summary.......................................................................................	 220
  16.8	 Exercises.......................................................................................	 220

17	 Odds & Ends............................................................................................	 223

  17.1	 Determinants in Simulation Performance.....................................	 223
17.1.1	 Saving Time and Clocks.................................................	 224
17.1.2	 Moving Large Amounts of Data.....................................	 225



xxii Contents

17.1.3	 Too Many Channels........................................................	 226
17.1.4	 Effects of Over Specification..........................................	 227
17.1.5	 Keep it Native.................................................................	 227
17.1.6	  C++ Compiler Optimizations.........................................	 227
17.1.7	 C++ Compilers................................................................	 227
17.1.8	 Better Libraries...............................................................	 227
17.1.9	 Better and More Simulation Computers.........................	 228

  17.2	 Features of the SystemC Landscape.............................................	 228
17.2.1	 Things You Wish Would Just Go Away..........................	 228
17.2.2	 Development Environment.............................................	 230
17.2.3	 Conventions and Coding Style........................................	 230

  17.3	 Next Steps.....................................................................................	 231
17.3.1	 Guidelines for Adopting SystemC..................................	 231
17.3.2	 Resources for Learning More.........................................	 231

Appendix A.......................................................................................................	 235
  A.1	 Background of C++......................................................................	 236
  A.2	 Structure of a C Program..............................................................	 236
  A.3	 Comments.....................................................................................	 237
  A.4	 Streams (I/O).................................................................................	 237

A.4.1	 Streaming vs. printf.........................................................	 238
  A.5	 Basic C Statements.......................................................................	 238

A.5.1	 Expressions and Operators..............................................	 238
A.5.2	 Conditional......................................................................	 240
A.5.3	 Looping...........................................................................	 241
A.5.4	 Altering Flow..................................................................	 242

  A.6	 Data Types....................................................................................	 242
A.6.1	 Built-In Data Types.........................................................	 243
A.6.2	 User-Defined Data Types................................................	 243
A.6.3	 Constants.........................................................................	 246
A.6.4	 Declaration vs. Definition...............................................	 246

  A.7	 Functions.......................................................................................	 247
A.7.1	 Pass By Value and Return...............................................	 248
A.7.2	 Pass by Reference...........................................................	 248
A.7.3	 Overloading.....................................................................	 249
A.7.4	 Constant Arguments........................................................	 249
A.7.5	 Defaults for Arguments...................................................	 250
A.7.6	 Operators as Functions....................................................	 250

  A.8	 Classes...........................................................................................	 251
A.8.1	 Member Data and Member Functions............................	 251
A.8.2	 Constructors and Destructors..........................................	 252
A.8.3	 Destructors......................................................................	 255
A.8.4	 Inheritance.......................................................................	 256
A.8.5	 Public, Private and Protected Access..............................	 258
A.8.6	 Polymorphism.................................................................	 258



xxiiiContents

A.8.7	 Constant Members..........................................................	 260
A.8.8	 Static Members...............................................................	 260

  A.9	 Templates......................................................................................	 261
A.9.1	 Defining Template Functions..........................................	 261
A.9.2	 Using Template Functions..............................................	 261
A.9.3	 Defining Template Classes..............................................	 262
A.9.4	 Using Template Classes..................................................	 262
A.9.5	 Template Considerations.................................................	 262

A.10	 Names and Namespaces................................................................	 263
A.10.1	 Meaningful Names..........................................................	 263
A.10.2	 Ordinary Scope...............................................................	 263
A.10.3	 Defining Namespaces.....................................................	 264
A.10.4	 Using Names and Namespaces.......................................	 264
A.10.5	 Anonymous Namespaces................................................	 264

A.11	 Exceptions.....................................................................................	 265
A.11.1	 Watching for and Catching Exceptions...........................	 265
A.11.2	 Throwing Exceptions......................................................	 266
A.11.3	 Functions that Throw......................................................	 267

A.12	 Standard Library Tidbits...............................................................	 268
A.12.1	 Strings.............................................................................	 268
A.12.2	 File I/O............................................................................	 268
A.12.3	 Standard Template Library.............................................	 270

A.13	 Closing Thoughts..........................................................................	 270
A.14	 References.....................................................................................	 271

Index..................................................................................................................	 273



1D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_1, © Springer Science+Business Media, LLC 2010

1.1 � Introduction

The goal of this chapter is to explain why it is important for you to learn SystemC. 
If you already know why you are studying SystemC, then you can jump ahead to 
Chapter 2. If you are learning SystemC for a college course or because your boss 
says you must, then you may benefit from this chapter. If your boss doesn’t know 
why you need to spend your time learning SystemC, then you may want to show 
your boss this chapter.

SystemC is a system design and modeling language. This language evolved to 
meet a system designer’s requirements for designing and integrating today’s com-
plex electronic systems very quickly while assuring that the final system will meet 
performance expectations.

Typically, today’s systems contain both application-specific hardware and 
software. Furthermore, the hardware and software are usually co-developed on a 
tight schedule with tight real-time performance constraints and stringent require-
ments for low power. Thorough functional (and architectural) verification is 
required to avoid expensive and sometimes catastrophic failures in the device. In 
some cases, these failures result in the demise of the company or organization 
designing the errant system. The prevailing name for this concurrent and multi-
disciplinary approach to the design of complex systems is electronic system-level 
design or ESL.

The drive for concurrent engineering through ESL has side effects that affect 
more than the design organizations of a company. ESL affects the basic business 
model of a company and how companies interact with their customers and with 
their suppliers.

ESL happens by modeling systems at higher levels of abstraction than traditional 
methods used in the past. Portions of the system model are subsequently iterated 
and refined, as needed. A set of techniques has evolved called Transaction-Level 
Modeling or TLM to aide with this task.

ESL and TLM impose a set of requirements on a language that is different than 
the requirements for hardware description languages (HDLs) or the requirements 

Chapter 1
Why SYSTEMC: ESL and TLM



2 1  Why SYSTEMC: ESL and TLM

for traditional software languages like C, C++1, or Java. The authors believe that 
SystemC is uniquely positioned to meet these requirements.

We will discuss all these topics in more detail in the following sections.

1.2 � ESL Overview

ESL techniques evolved in response to increasing design complexity and increas-
ingly shortened design cycles in many industries. Systems, Integrated Circuits 
(ICs), and Field Programmable Gate Arrays (FPGAs) are becoming large. Many 
more multi-disciplinary trade-offs are required to optimize the hardware, the soft-
ware, and the overall system performance.

1.2.1 � Design Complexity

The primary driver for an ESL methodology is the same driver that drove the evolu-
tion of previous design methodologies: increasing design complexity.

Modern electronic systems consist of many subsystems and components. ESL 
focuses primarily on hardware, software, and algorithms at the architectural level. 
In modern systems, each of these disciplines has become more complex. Likewise, 
the interaction has become increasingly complex.

Interactions imply that trade-offs between the domains are becoming more 
important for meeting customer requirements. System development teams find 
themselves asking questions like:

Should this function be implemented in hardware, software, or with a better •	
algorithm?
Does this function use less power in hardware or software?•	
Do we have enough interconnect bandwidth for our algorithm?•	
What is the minimum precision required for our algorithm to work?•	

These questions are not trivial and the list could go on and on. Systems are so 
complex, just deriving specifications from customer requirements has become a 
daunting task. Hence, this task brings the need for higher levels of abstraction and 
executable specifications or virtual system prototypes.

Figure 1.1 illustrates the complexity issues for just the hardware design in a large 
system-on-a-chip (SoC) design. The figure shows three sample designs from three 
generations: yesterday, today, and tomorrow. In reality, tomorrow’s systems are 
being designed today. The bars for each generation imply the code complexity for 
four common levels of abstraction associated with system hardware design:

Architecture •	
Behavioral•	
RTL•	
Gates•	

1 We will see later that SystemC is actually a C++ class library that “sits on top” of C++.



31.2  ESL Overview

Today’s integrated circuits often exceed 10 million gates, which conservatively 
translates to one hundred thousand lines of RTL code. Today’s designs are practical 
because of the methodologies that apply RTL synthesis for automated generation 
of gates. Tomorrow’s integrated circuits, which are being designed today, will 
exceed one hundred million gates. This size equates to roughly one million lines of 
RTL code, if written using today’s methodologies.

Notice that Figure 1.1 considers only a single integrated circuit. It does not 
reflect the greater complexity of a system with several large chips (integrated circuits 
or FPGAs) and gigabytes of application software. Many stop-gap approaches are 
being applied, but the requirement for a fundamentally new approach is clear.

1.2.2 � Shortened Design Cycle = Need For Concurrent Design

Anyone who has been part of a system design realizes that typical design cycles are 
experiencing more and more schedule pressure. Part of the reason for the drive for 
a shortened design cycle is the perceived need for a very fast product cycle in the 
marketplace. Anyone who has attempted to find a cell phone or a laptop “just like 
my last one”, even just nine months after buying the “latest and greatest” model, 
will find themselves looking long and hard throughout the web for a 
replacement2.

Complexity

E
xp

on
en

tia
l L

in
es

 o
f C

od
e

A B
eh

R
T

L

G
at

es

A
rc

h

R
T

L

B
eh

av
io

ra
l

G
at

es

A
rc

h
it

ec
tu

ra
l

B
eh

av
io

ra
l

R
T

L

G
at

es

Yesterday Today Tomorrow

Unwieldy

Spreadsheet

Impossible

10K

1M

100M

1M

10 M

100M

100

1.5K

8K

100K

Fig. 1.1  Code complexity for four levels of abstraction

2 This scenario describes a recent experience by one of the authors.



4 1  Why SYSTEMC: ESL and TLM

Many are under the misguided assumption that shorter design cycles imply 
reduced development expenses. If the scope of the new system is not reduced and 
the schedule is reduced, then additional resources are required. In this scenario, a 
shorter design cycle actually requires more resources (expenses). The project 
requires more communication between development groups (because of concurrent 
design), more tools, more people, and more of everything. ESL and TLM are an 
approach to reduce the cost of development through more efficient communication 
and through reduced rework.

1.2.2.1 � Traditional System Design Approach

In the past, when many systems were a more manageable size, a system could be 
grasped by one person. This person was known by a variety of titles such as system 
architect, chief engineer, lead engineer, or project engineer. This guru may have 
been a software engineer, hardware engineer, or algorithm expert depending on the 
primary technology leveraged for the system. The complexity was such that this 
person could keep most or all of the details in his or her head. This technical leader 
was able to use spreadsheets and paper-based methods to communicate thoughts 
and concepts to the rest of the team.

The guru’s background usually dictated his or her success in communicating 
requirements to each of the communities involved in the design of the system. The 
guru’s past experiences also controlled the quality of the multi-disciplinary trade-
offs such as hardware implementation versus software implementation versus 
algorithm improvements.

In most cases, these trade-offs resulted in conceptual disconnects among the 
three groups. For example, cellular telephone systems consist of very complex 
algorithms, software, and hardware. Teams working on them have traditionally 
leveraged more rigorous but still ad-hoc methods.

The ad-hoc methods usually consist of a software-based model. This model 
is sometimes called a system architectural model (SAM), written in C, Java, or 
a similar language. The SAM is a communication vehicle between algorithm, 
hardware, and software groups. The model can be used for algorithmic refine-
ment or used as basis for deriving hardware and software subsystem specifica-
tions. The exact parameters modeled are specific to the system type and 
application, but the model is typically un-timed (more on this topic in the fol-
lowing section). Typically, each team then uses a different language to refine the 
design for their portion of the system. The teams leave behind the original multi-
discipline system model and in many cases, any informal communication among 
the groups.

The traditional approach often resulted in each design group working serially 
with a series of paper specifications being tossed “over the wall” to the other orga-
nization. This approach also resulted in a fairly serial process that is many times 
described as a “waterfall schedule” or “transom engineering” by many program 
managers and is illustrated in Fig. 1.2.



51.2  ESL Overview

Architecture Hardware Hardware
Verification

SoftwareArchitectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

System
Integration

Program Management

Fig. 1.2  The traditional approach of waterfall scheduling

To minimize the serialization of the design process, many techniques have been 
used to create some design concurrency. These techniques include processor devel-
opment boards using a single-chip implementation of the processor. These imple-
mentations were used on the SoC or embedded system, FPGA prototypes of 
algorithms, and hardware emulation systems, just to name a few. These techniques 
were focused on early development of software, usually the last thing completed 
before a system is deployed.

The ESL approach uses these existing techniques. ESL also leverages a virtual 
system prototype or a TLM model of the system to enable all the system design 
disciplines to work in parallel. This virtual system prototype is the common 
specification among the groups. The resulting Gantt chart is illustrated next in 
Fig. 1.3.

Even though all of the electronic system design organizations will finish their 
tasks earlier, the primary reason for ESL is earlier development of software. Even 
getting a product to market a month earlier can mean tens of millions of dollars of 
business to a company.

Not using ESL methods will likely result in the under-design or over-design of 
the system. Both of these results are not good. Under-design is obviously not good. 
The product may be bug-free, but it doesn’t necessarily meet the customer’s 
requirements. The product may not operate fast enough, may not have long enough 
battery life, or just may not have the features required by the customer.

Over-design is not as obvious, but it is not good either. Over-design takes signifi-
cantly more resources and time to achieve, and it adds a heavy cost to an organization. 
In addition, over-designed products usually are more complex, more expensive to 
manufacture, and are not as reliable.

The authors have significant anecdotal stories of under-design and over-design 
of systems. One company built an ASIC with multi-processors that made “timing 
closure” and paired those processors with software that made the “timing budget.” 



6 1  Why SYSTEMC: ESL and TLM

Unfortunately, the ASIC didn’t meet the customers requirements because of “on 
chip” bottlenecks. Another company related how a significant function on a chip 
caused weeks of schedule slip for design and verification. However, the function 
was later found not to be used by the software.

Things become even more interesting if a system, say a cell phone, are really a 
subsystem for the customer, who is a mobile phone and infrastructure provider. 
Now, the customer needs models very early in their design process and will be making 
system design trade-offs based on a model provided by the subsystem provider 
(previously system). In addition, the subsystem provider likely relies on third-party 
intellectual property. The subsystem cell phone supplier will then need a model of 
the intellectual property used in their subsystem very early in the development 
cycle to enable their design trade-offs. Customers up and down the value chain may 
now be making business decisions based on the type and quality of the model 
provided by their supplier. This hierarchy of reliance is fundamentally a different 
way of doing business.

The virtual system prototype may have different blocks (or components or 
subsystems) at different levels of abstraction for a particular task to be performed 
by one of the system disciplines. Initially, most of the system may be very abstract 
for software development until the software team is reasonably sure of the function-
ality. At this point, a more detailed model of the blocks that closely interact with 
the software can be introduced into the model.

Architecture

Hardware

Software

Architectural
Verification

Hardware
Development

Hardware
Verification

Software
Development

System
Integration

Program Management

Hardware
Verification

Virtual System
Prototype

Fig. 1.3  The ESL approach of parallel schedule



71.3  Transaction-Level Modeling

The technique that allows this “mixing and matching” of blocks at different 
levels of abstraction is called Transaction-Level Modeling or TLM. We will discuss 
TLM in much greater detail in the following section.

1.3 � Transaction-Level Modeling

TLM and the associated methodologies are the basic techniques that enable ESL 
and make it practical. To understand TLM, one must first have a terminology for 
describing abstraction levels. Secondly, one must understand the ways the models 
will probably be used (the use cases).

1.3.1 � Abstraction Models

Several years ago, Professor Gajski from UC Irvine proposed a taxonomy for 
describing abstraction levels of models. The basic concept states that refinement of 
the interface or communication of a logical block can be refined independently of 
functionality or algorithm of the logical block [3]. We have significantly modified 
his concept and presented the result in the figure below.

3 Gajski and L. Cai, “Transaction Level Modeling,” First IEEE/ACM/IFIP International Conference 
on Hardware/Software Codesign and System Synthesis (CODES+ISSS 2003), Newport Beach, 
CA, October 1, 2003

M
o

d
el

 F
u

n
ct

io
n

al
it

y

Model Interface

UT

AT

UT AT PCA

LT

LT

RTL
–  Un-Timed (UT)

–  Loosely Timed (LT)

–  Approximately Timed (AT)

–  Register Transfer Logic
    (RTL) 

–  Pin and Cycle Accurate
    (PCA)

Fig. 1.4  Decoupling of abstraction refinement


