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Preface 

The global energy scene, one of the world’s largest and most diversified fields, is 
in a state of flux. These include the moving consumption away from non-renewable 
energy sources, rapid deployment of major renewable energy technologies and deep 
decline in their costs, and a growing shift toward electricity in energy use across 
the globe. This power and energy system is experiencing significant changes and 
challenges due to transitioning from traditional power and energy networks to smart 
power/energy grids. As long as the energy consumption is intended to be more 
economical and more environment-friendly, electrochemical energy production is 
under serious consideration as an alternative energy/power source. In other words, a 
large amount of electricity can be generated from natural sources like solar, wind, and 
tidal energy. It is imperative to stock the produced energy since man has constrained 
control over these natural wonders. Batteries, fuel cells, and supercapacitors belong 
to the same energy storage devices, ubiquitous in our daily lives. But the superca-
pacitor is a step-up device in the field of energy storage. It has a lot of research and 
development scope in design, parts fabrication, and energy storage mechanisms. 

Various types of supercapacitors have been developed, such as electrochem-
ical double-layer capacitors (EDLCs), pseudocapacitors (redox capacitors), and 
capacitors. They store charges electrochemically and exhibit high power densities, 
moderate-to-high energy densities, high rate capabilities, long life, and safe opera-
tion. The electrode, electrolyte, separator, and current collectors are the critical parts 
of the supercapacitors for energy storage to determine the electrochemical properties, 
energy storage mechanism, and other properties of the supercapacitor devices. 

Volume I, i.e., characteristics for the book series Handbook of Nanocomposite 
Supercapacitor, emphasizes the features of the capacitor, i.e., fundamental aspects; 
capacitor to supercapacitor; characteristics of transition metal oxides, activated 
carbons, graphene/reduced graphene oxide, carbon nanotubes, carbon nanofibers, 
and conducting polymers; characteristics of electrode materials, electrolytes, sepa-
rators, and current collectors; and applications of supercapacitors. 

Volume II, i.e., performance for the book series Handbook of Nanocom-
posite Supercapacitor, discusses the electrochemical properties of transition metal 
oxide-based electrode, activated carbon-based electrode, composite electrode based
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on transition metal oxides and activated carbon, carbon nanofiber-based elec-
trode, composite electrode based on different types of transition metal oxides 
and carbon nanofibers, carbon nanotube-based electrodes, combination of carbon 
nanotube and transition metal oxide as a hybrid electrode, graphene-based elec-
trodes, hybrid composites based on transition metal oxides and graphene/reduced 
graphene oxide, electrode materials based on conducting polymers and their nanos-
tructures, composites of conducting polymers and transition metal oxide, and 
comprehensive overview/recent trends of the specific capacitance and cycle life of 
various electrode materials used in supercapacitors, which are carbon nanofibers, 
carbon nanotubes, graphene/reduced graphene oxide, activated carbon, transition 
metal oxides, conducting polymers, and their composites. Finally, it highlights the 
advantages, challenges, applications, and future directions of these materials. 

The performance of devices is still challenging in terms of capacitance, flexibility, 
cycle life, etc. These deciding factors depend on the characteristics of the materials 
used in the devices. The key objective is to select the right materials with new tech-
nologies and developments for the electrodes, electrolytes, separators, and current 
collectors, which are the essential components of supercapacitors with an aim to 
enhance the performance of supercapacitors. Volume III, i.e., material selection for 
the book series Handbook of Nanocomposite Supercapacitor emphasizes a compre-
hensive study on the fundamentals of supercapacitors, recent development of super-
capacitors, material selection for electrodes, electrolytes, separators, and current 
collectors using Ashby chart, market trend of supercapacitors, and applications of 
supercapacitors. 

Many significant breakthroughs have been reported in recent years through the 
development of these materials and novel device designs. Volume IV, i.e., next gener-
ation for the book series Handbook of Nanocomposite Supercapacitor, emphasizes 
micro-supercapacitors, shape memory supercapacitors, self-healing supercapaci-
tors, high mass loading solid-state supercapacitors, magnetoelectric supercapacitors, 
atomic-layer-deposited electrodes for supercapacitor, additive manufacturing/3D 
printing of supercapacitor, etc. 

In this book, next-generation supercapacitors, Chap. 1 discusses the fundamen-
tals of supercapacitors, the charge storage mechanism of supercapacitors, electro-
chemical cell configuration (i.e., three-electrode and two-electrode systems), elec-
trochemical measurement techniques for supercapacitor (i.e., cyclic voltammetry, 
constant current charge-discharge, electrochemical impedance spectroscopy, and 
electrochemical methods for determining the contribution of various charge storage 
mechanisms. 

The supercapacitor has four essential components: electrode, electrolyte, current 
collector, and separator, in which electrode material selection is the most important 
factor for the charge storage mechanism. Different types of electrode materials like 
carbon-based electrode material, transition metal oxides, transition metal dichalco-
genides, and conducting polymers are used in supercapacitor applications. Chapter 2 
discusses the properties of electrode materials, nanomaterials as electrode mate-
rials (i.e., zero-dimensional nanoparticles, one-dimensional nanostructures, two-
dimensional nanosheets, three-dimensional porous architectures), carbon materials
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(i.e., activated carbon, carbon aerogels, carbon nanotubes, carbon nanofibers, carbon 
nanodot, graphene, graphene oxide, reduced graphene oxide, fullerenes), transition 
metal dichalcogenides (i.e., molybdenum di-sulfide, tungsten di-sulfide, cobalt di-
sulfide, tin di-sulfide, titanium di-sulfide, zirconium di-sulfide, vanadium di-sulfide, 
molybdenum di-selenide, vanadium di-selenide, tungsten di-selenide, nickel di-
selenide), transition metal oxides (i.e., ruthenium oxide, manganese dioxide, nickel 
oxide, nickel hydroxide, iron oxides, cobalt oxide, cobalt hydroxide, vanadium oxide, 
tin oxide, iridium oxide, titanium oxide, zinc oxide, molybdenum oxide, tungsten 
oxide), and spinel-based nanostructured materials. 

MXenes have been recognized as front-runners in energy storage, thanks to their 
abundant surface functional groups, large electrochemically active surface area, 
redox activity, and metallic conductivity. MXenes display extraordinarily higher 
volumetric capacitance, making them a considerable contender in portable electronic 
devices. Chapter 3 discusses the current advances, achievements, and challenges in 
MXene-based supercapacitors, including important synthetic aspects of MXenes 
along with their physical and chemical characteristics. 

The laser provides a single-step, low-cost, and fast processing of materials to 
form and integrate interdigitated electrodes for micro-supercapacitors. Chapter 4 
illustrates the different parameters of the laser, laser-based processes, effect of laser– 
matter interactions, different materials synthesized from the laser, and the formation 
of micro-supercapacitors with performance details. 

The performance deteriorates with an increase in the size of devices due to the 
internal resistance from non-active materials such as binders and additives, heating 
issues, and the high cost of production. To address these challenges, the designer 
develops electrode structures such as self-standing architectures, mesh-type elec-
trodes, and fractal designs that can be viable solutions to enhance the performance 
of large-scale energy storage devices. Chapter 5 discusses the challenges in scalable-
energy storage devices (i.e., degradation in performance, cost-effectiveness, heating 
issues, voltage imbalance, etc.), ways to address challenges for large-scale super-
capacitors (i.e., geometry/electrode structure, cost-effectiveness by using industrial 
waste, device architecture, voltage stabilization), and various fabrication techniques 
(i.e., printed supercapacitors, additive nanomanufacturing, electrode production, 
electrolyte production, material processing, and optimization). 

Numerous developments have been made in supercapacitors’ three-dimensional 
(3D) printing. In a consistently changing technological landscape, it is important to 
understand how 3D printing could evolve in the future in supercapacitor technology. 
Chapter 6 describes the main 3D printing technologies and the relevant materials used 
to make supercapacitors. The chapter also discusses the prospects of 3D printing-
based development of supercapacitors in the future. 

Atomic layer deposition (ALD) is considered an efficient technique for depositing 
various kinds of films with excellent uniformity and conformity. This makes ALD an 
attractive choice for designing high-performance supercapacitor electrode materials 
possessing fast charge transfer kinetics, improved energy, and power delivery with 
better cycling and rate performances. Chapter 7 presents the recent advances in 
the use of ALD to design electrodes for supercapacitors. In addition, the present
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challenges and potential opportunities for future exploration of ALD to achieve 
desired electrochemical performance of next-generation supercapacitors are also 
pointed out. 

Binder restricts the electrode material’s performance by increasing the contact 
resistance and preventing electrolytes from utilizing the whole area of the electrode. A 
binder-free supercapacitor is a new approach for improving the performance of super-
capacitors by growing or depositing the active material on the conducting substrate. 
Binder-free electrode material can be fabricated by physical, thermal, and electrical 
methods. Chapter 8 discusses different fabrication methods (i.e., electrospinning, 
vacuum filtration, physical vapor deposition, thermal treatment, hydrothermal treat-
ment, chemical bath deposition, chemical vapor deposition, atomic layer deposition, 
electroplating, anodization, electrophoretic deposition, etc.) and performances of 
binder-free electrodes. 

High mass loading electrode materials are a commercial requirement of super-
capacitor fabrication. At least 30% of the device weight should be posed by active 
electrode material to stable performance of electrochemical energy storage superca-
pacitor devices. Commercial-level supercapacitors require high mass loading greater 
than 10 mg cm−2 or a film thickness of 150–200 µm. High mass loading supercapac-
itor performance decreases because of the tortuous path of ion diffusion. Chapter 9 
discusses the effect of mass loading, selective electrode materials (i.e., carbon, 
metal oxide, conducting polymer, MXenes, metal-organic framework, intercon-
nected conducting porous network structure, aerogel, doping, surface modification, 
etc.), and electrochemical performance. 

In polymer-in-salt-electrolytes, the ion transport is decoupled from the polymer-
segmental motion. Hence, faster and better-targeted ion transport is achieved. Special 
polymer hosts are required to hold salt concentration above the required threshold 
value for ion-cluster formation. Crosslinked starch seems to be an excellent host to 
hold sufficient salt in dissociated form along with flexible morphology required for 
commercial application and has high conductivity (>0.01 S/cm) and a wide electro-
chemical stability window (>2.5 V). Chapter 10 focuses on starch-based electrolytes 
and their performances. 

Over the last few decades, transition metal oxides have been the most used mate-
rials in pseudocapacitors. The magnetic nature of these materials originates from the 
effective spin interaction of the materials, which can be in short- or long-range order. 
Fe-based materials are mostly used for magnetic applications and have also been used 
as pseudocapacitor electrodes. There are other magnetic transition electrodes that are 
being used in supercapacitors. These include iron oxide, nickel oxide, cobalt oxide, 
copper oxide, manganese oxide, etc. Chapter 11 deals with understanding the effect 
of the external magnetic field on the performance of supercapacitors fabricated using 
magnetically responsive materials, i.e., magnetoelectric supercapacitors. Further, a 
simple theoretical model is also provided chapter to explain the experimental data. 
A new theory was required because the conventional models used to explain the 
supercapacitive behavior do not have any terms which consider the possibility of 
changing magnetic fields and their impact on electrochemical behavior.
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The advancement in the technology application of micro-electronic gadgets has 
seen an upsurge. The progress of micro-scale devices is significantly dependent on the 
development of micro-scale energy storage devices with outstanding charge storage 
properties. In this Chap. 12, the various device architecture designs and the state of 
the art of it have been discussed. Further, the different device preparation methods 
have been discussed, outlining their advantages and disadvantages. This is followed 
by a short and precise discussion about the patterning, and micro-supercapacitor 
systems developed recently. This chapter also discusses works reporting the various 
applications of micro-supercapacitors in different fields. 

This intelligent technology using shape memory is a primary requirement of 
flexible and wearable electronics. NiTi alloy and shape memory polymer are used 
to assemble a smart energy storage device with property shape recovery. Shape 
memory properties bring the device electrochemical stability, high performance, and 
long cycle life. Chapter 13 discusses shape memory alloys, shape memory polymers, 
shape memory characterization techniques, and electrochemical performances. 

With the advancement of current wearable electronic gadgets, a flexible and 
self-healing supercapacitor is required. Flexible supercapacitors can often endure 
bending, and stretching stains, so mechanical damage or micro-cracks can degrade 
the electrochemical performance of supercapacitors. Intrinsic and extrinsic self-
healing mechanisms are used during repair. Since self-healing supercapacitors are 
developing rapidly, still these are in their infancy because of many limitations like 
high cost and lower performance. Chapter 14 discusses various fabrication methods 
of self-healing electrode material and self-healing electrolyte materials with their 
electrochemical performances in supercapacitors. 

The world is utilizing optics through optical fibers, data communication, 
processing, and fabrication of high-resolution or precise instruments. Chapter 15 
deals with the applications of optics-based devices, fabrication of optical chips, 
transmission systems, and infrastructure, along with computational and gover-
nance requirements. Laser-based on-chip micro-supercapacitors and energy storage 
management facilities for clean, renewable energy are also discussed. 

The use of supercapacitors is increasing in the electronics field due to their proper-
ties and sustainability. Controlling this e-waste generation by supercapacitors should 
be considered seriously to overcome the upcoming problem of e-waste manage-
ment. Recycling supercapacitors is cost-effective and beneficial for the environment 
because it keeps dangerous elements out after the device has completely degraded. 
Chapter 16 discusses the recycling of ruthenium oxide-based supercapacitors. Soni-
cation, chemical separation, and thermal decomposition methods were discussed. 
The electrochemical performance of the supercapacitor based on recycled RuO2 

material was also reported. 
Therefore, this book will provide the readers with a complete and composed 

idea about the fundamentals of supercapacitors, the recent development of elec-
trode materials for supercapacitors, and the design of their novel flexible solid-state 
devices. This book will be useful to graduate students and researchers from various 
fields of science and technology, who wish to learn about the recent development of 
supercapacitors and select the right material for high-performance supercapacitors.
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The editor and authors hope that readers from materials science, engineering, and 
technology will be benefited from reading these high-quality review articles related to 
the characteristics of materials and their selections used in supercapacitors. This book 
is not intended to be a collection of all research activities on composites worldwide, 
as it would be rather challenging to keep up with the pace of progress in this field. The 
editor would like to acknowledge many material researchers, who have contributed 
to the contents of the book. The editor would also like to thank all the publishers 
and authors for permitting us to use their published images and original work. I 
also take this opportunity to thank Viradasarani, Zachary, Viradasarani Natarajan, 
Adelheid Duhm, and the editorial team of Springer Nature for their helpful advice 
and guidance. 

There were lean patches when I felt I would not be able to take time out and 
complete the book, but my wife, Sutapa, and my little daughter, Srishtisudha, played 
a crucial role in inspiring me to complete it. I hope that this book will attract more 
researchers to this field and that it will form a networking nucleus for the community. 
Please enjoy the book, and please communicate to the editor/authors any comments 
that you might have about its content. 

Kanpur, Uttar Pradesh, India Prof. Kamal K. Kar 
kamalkk@iitk.ac.in

mailto:kamalkk@iitk.ac.in
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Chapter 1 
Introduction to Supercapacitors 

Chirag Mevada and Mausumi Mukhopadhyay 

Abstract Supercapacitors (SCs) are the essential module of uninterruptible power 
supplies, hybrid electric vehicles, laptops, video cameras, cellphones, wearable 
devices, etc. SCs are primarily categorized as electrical double-layer capacitors and 
pseudocapacitors according to their charge storage mechanism. Various nanostruc-
tured carbon, transition metal oxides, conducting polymers, MXenes, and metal– 
organic frameworks based on electroactive materials are extensively studied for prac-
tical application. Moreover, electroanalytical techniques such as cyclic voltammetry 
(CV), constant current charge–discharge (CCCD), and electrochemical impedance 
spectroscopy (EIS) are used to evaluate the performance parameters like operating 
potential window, specific/areal/volumetric capacitance, equivalent series resistance, 
time constant, energy density, and power density of the assembled device/cell. 
Furthermore, the contribution of different charge storage mechanisms like the capaci-
tive and diffusion-limited processes is estimated via several electrochemical methods 
such as CV recorded at different scan rates to obtain the relationship between voltam-
metric current and scan rate, a voltammetric charge and scan rate, and step poten-
tial electrochemical spectroscopy. Additionally, the key performance metrics such 
as mass loading, capacitance, potential window, cycle stability, leakage current, 
dwelling time, equivalent series resistance, time constant, device configuration and 
energy, and power densities of SCs need to study carefully for practical application. 

1.1 Introduction 

Nowadays, renewable energy sources like solar, wind, and tidal are used to generate 
electricity. These resources need highly efficient energy storage devices to provide 
reliable, steady, and economically viable energy supplies from these reserves. 
Because of this, major efforts have been made to develop high-performance energy 
storage devices. Batteries and electrochemical capacitors are a prime area of interest
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in the field of high-performance electrical energy storage devices [1]. The charge– 
discharge processes of batteries generate thermochemical heat as well as reduce the 
cycle life due to continuous reversible redox reactions. In contrast, supercapacitors 
or electrochemical capacitors, or ultracapacitors are delivering excellent advantages 
like safe usage, fast charging–discharging, and superior cycle stability (> 100,000 
cycles) compared to batteries [2]. Supercapacitors are mainly classified into two 
categories which are electrochemical double-layer capacitors (EDLCs), and pseudo-
capacitors (PCs). EDLCs use reversible ion adsorption at the interface between elec-
trode and electrolyte to store energy therefore the key property of ELDCs includes 
the high specific surface area (SSA). Nanosized carbon materials are chosen as 
EDLCs materials which provide high SSA and good electronic conductivity. EDLCs 
provide high cycle stability and power densities which are characterized by rectan-
gular cyclic voltammetry (CV) and triangular galvanostatic charge–discharge (GCD). 
PCs utilized faradic reactions to store energy at the electrode surface by changing 
its oxidation state during charging and discharging processes [3]. The fundaments 
and charge storage mechanism of the supercapacitor are explained in detail in the 
forthcoming section. 

1.2 Fundamentals of Supercapacitor 

The charge storage mechanism of the supercapacitor is easily understood when it is 
compared with the conventional capacitors. Conventional capacitors such as dielec-
tric capacitors and electrolytic capacitors are widely used in electronic devices. 
The schematic illustration of conventional capacitors is displayed in Fig. 1.1. As  
displayed in Fig. 1.1a, the dielectric material (e.g., mica) is placed in between the 
two conducting plates. When the power is supplied to dielectric capacitors, the charge 
is stored due to an equal amount of positive charge (Q+) and negative charge (Q−) 
accumulating on both conducting plates. On the contrary, the electrolytic capaci-
tors (Fig. 1.1b) utilize a liquid electrolyte instead of a dielectric medium, where 
the charge storage is accomplished via the accumulation of cations (positive ions) of 
electrolyte at the interface between the negative current collector and electrolyte, and 
an equal amount of anions (negative) are assembled at the in the interface between 
the positive–negative current collector and electrolyte [4].

The charge density of electrolytic capacitors is more in comparison to dielectric 
capacitors due to the high mobility of the electrolytic ions. Therefore, the elec-
trolytic capacitor capacitance is generally in the range of millifarads (mF), whereas 
the dielectric capacitors capacitance exhibit microfarads (µF). The amount of elec-
trical charge storage (Q) in the conventional capacitors is proportional to the applied 
voltage (V ) between the positive and negative conducting plates [1, 4]. Hence, the 
fundamental relationship between Q and ΔV is given as Eq. 1.1. 

Q = CV (1.1)
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Fig. 1.1 Conventional capacitors: a dielectric capacitors and b electrolytic capacitors

C = 
ε0εr A 

d 
(1.2) 

where Q: stored charge in (coulombs), V: applied voltage between two terminals 
(volts), C: capacitance (mF or µF), ε0: vacuum permittivity (8.854 × 10−12 Fm−1), 
εr: relative permittivity of the dielectric medium, A: area of the plate (m2), d: distance 
between two plates (m) or thickness of the dielectric. 

The charge storage (Q) and applied voltage (V ) both are time-dependent 
parameters so the mathematically differentiating form of Eq. 1.1 with respect to 
time, 

dQ 

dt 
= C 

dV 

dt 
+ V 

dC 

dt 
= C 

dV 

dt 
(1.3) 

On the left side, 

dQ 

dt 
= 

di 

dt 
(1.4) 

Further modifying Eq. 1.4 based on the charge–discharge curve; 

dQ 

dt 
= i (1.5) 

Thus, Eq. 1.3 is simplified as: 

i = C 
dV  

dt  
(1.6)
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If the applied voltage varies linearly with time, 

V = V0 + Δt (1.7) 

where V 0: initial voltage which is equal to zero, Δ: scan rate or sweep rate (speed of 
the potential change, mVs−1) and t is the time. Then, 

dV 

dt 
= Δ (1.8) 

Substituting them into Eq. 1.6 yields, 

i = CΔ (1.9) 

Equation 1.9 signify that the current (i) passing through a capacitor is a strong 
function of scan rate (Δ) and more importantly, it is independent of the applied 
voltage (V ). Additionally, the plot of the current versus voltage (i vs. V ) for various 
scan rates yields a rectangular shape which is known as a cyclic voltammogram (CV) 
(Fig. 1.2a). CV is the electroanalytical technique that is used to justify the capacitive 
behavior of electrode material or device. The voltage in the three-electrode config-
uration is referred to as the electrode potential. Thus, the plot of applied potential 
(V ) against the charging–discharging time (t) at a constant current gives a triangular 
shape of the curve (V vs. t) as displayed in Fig. 1.2b. 

This technique is widely known as constant current charge–discharge (CCCD) or 
galvanostatic charging–discharging (GCD) which is a reliable and accurate method 
for estimating the capacitance and ohmic drop (IR drop) of the capacitor electrode 
or device [5]. Both electrochemical measurements (CV and CCCD) methods are 
discussed in more detail in the forthcoming section. Furthermore, the amount of 
energy stored and delivered by the capacitor can be evaluated from the CCCD curves 
of the device. The triangle area of the working diagram of CCCD curves shown in 
Fig. 1.2b is utilized to evaluate the energy store [1].

Fig. 1.2 a CV curves at various scan rates and b CCCD curves at various current densities 
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E = 
Q∫

0 

V dQ (1.10) 

Now, substituting Eq. 1.1 into Eq. 1.10 gives, 

E = 
Q∫

0 

Q 

C 
dQ = 

Q2 

2C 
= 

QV 

2 
= 

CV  2 

2 
(1.11) 

where E is the energy density of the device (volumetrically: Wh L−1 or gravimet-
rically: Wh kg−1) which demonstrates the amount of energy stored in the device 
during charging and similarly the power density (P) (W L−1 or W kg−1) from the  
device can be obtained by dividing E by the time needed to fully discharge of device 
excluding ohmic resistance (iR drop) [3]. Thus, 

P = 
E

Δt 
(1.12) 

However, the maximum power output of the device is evaluated using the shortest 
discharging time. The current transfer via circuit is given by I = V /R, where R is the 
internal resistance or also referred to as equivalent series resistance (ESR). When the 
power source is connected to a load, R = RL + ESR. The power transmitted from 
the source to the load is given by P = iV = i2RL [4]. Thus, 

P =
(

V 

RL + ES  R

)2 

RL (1.13) 

The maximum power (Pmax) output can be reached when RL = ESR. Hence, 
Eq. 1.13 can be converted to: 

Pmax =
(

V 

ES  R  + ES  R

)2 

ES  R  = V 2 

4ES  R  
(1.14) 

Pmax is a function of applied voltage and ESR but is independent of the capacitance 
of the device. However, the energy density is the strong function of the capacitance 
of the device [6]. Additionally, the shortest discharge time (tmin) can also evaluate 
by putting Eq. 1.14 into Eq. 1.12, 

tmin = 
CV  2 

2Pmax 
= 

CV  2 

2 
× 

4ESR 

V 2 
= 2CESR (1.15) 

Based on the above mention Eq. 1.15, the discharge time or time constant (τ ) 
of the device is the ratio of energy density to power density which can be simply


