




�

� �

�

Zeroing Neural Networks



�

� �

�

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson
Anjan Bose
Adam Drobot
Peter (Yong) Lian

Andreas Molisch
Saeid Nahavandi
Jeffrey Reed
Thomas Robertazzi

Diomidis Spinellis
Ahmet Murat Tekalp



�

� �

�

Zeroing Neural Networks

Finite-time Convergence Design, Analysis and Applications

Lin Xiao
Hunan Normal University

Lei Jia
Hunan Normal University



�

� �

�

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc.

IEEE Standards designations are trademarks of The Institute of Electrical and Electronics
Engineers, Incorporated (www.ieee.org/).

Non-IEEE trademarks are the respective property of their owners.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries and may not be used
without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com

Library of Congress Cataloging-in-Publication Data is Applied for:

Hardback ISBN: 9781119985990

Cover design: Wiley
Cover image: © BAIVECTOR/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

www.ieee.org/
www.copyright.com
http://www.wiley.com/go/permission
www.wiley.com


�

� �

�

To our parents and ancestors, as always



�

� �

�



�

� �

�

vii

Contents

List of Figures xv
List of Tables xxxi
Author Biographies xxxiii
Preface xxxv
Acknowledgments xlv

Part I Application to Matrix Square Root 1

1 FTZNN for Time-varying Matrix Square Root 3
1.1 Introduction 3
1.2 Problem Formulation and ZNN Model 4
1.3 FTZNN Model 4
1.3.1 Model Design 5
1.3.2 Theoretical Analysis 7
1.4 Illustrative Verification 8
1.5 Chapter Summary 11

References 11

2 FTZNN for Static Matrix Square Root 13
2.1 Introduction 13
2.2 Solution Models 14
2.2.1 OZNN Model 14
2.2.2 FTZNN Model 15
2.3 Illustrative Verification 17
2.3.1 Example 1 18
2.3.2 Example 2 20
2.4 Chapter Summary 21

References 21



�

� �

�

viii Contents

Part II Application to Matrix Inversion 23

3 Design Scheme I of FTZNN 25
3.1 Introduction 25
3.2 Problem Formulation and Preliminaries 25
3.3 FTZNN Model 26
3.3.1 Model Design 26
3.3.2 Theoretical Analysis 29
3.4 Illustrative Verification 30
3.4.1 Example 1: Nonrandom Time-varying Coefficients 30
3.4.2 Example 2: Random Time-varying Coefficients 34
3.5 Chapter Summary 35

References 36

4 Design Scheme II of FT ZNN 39
4.1 Introduction 39
4.2 Preliminaries 40
4.2.1 Mathematical Preparation 40
4.2.2 Problem Formulation 41
4.3 NT-FTZNN Model 41
4.4 Theoretical Analysis 43
4.4.1 NT-FTZNN in the Absence of Noises 43
4.4.2 NT-FTZNN in the Presence of Noises 44
4.5 Illustrative Verification 46
4.5.1 Example 1: Two-dimensional Coefficient 47
4.5.2 Example 2: Six-dimensional Coefficient 52
4.5.3 Example 3: Application to Mobile Manipulator 54
4.5.4 Example 4: Physical Comparative Experiments 54
4.6 Chapter Summary 57

References 57

5 Design Scheme III of FTZNN 61
5.1 Introduction 61
5.2 Problem Formulation and Neural Solver 61
5.2.1 FPZNN Model 62
5.2.2 IVP-FTZNN Model 63
5.3 Theoretical Analysis 64
5.4 Illustrative Verification 70
5.4.1 Example 1: Two-Dimensional Coefficient 70
5.4.2 Example 2: Three-Dimensional Coefficient 73
5.5 Chapter Summary 78

References 78



�

� �

�

Contents ix

Part III Application to Linear Matrix Equation 81

6 Design Scheme I of FTZNN 83
6.1 Introduction 83
6.2 Convergence Speed and Robustness Co-design 84
6.3 R-FTZNN Model 90
6.3.1 Design of R-FTZNN 90
6.3.2 Analysis of R-FTZNN 91
6.4 Illustrative Verification 93
6.4.1 Numerical Example 93
6.4.2 Applications: Robotic Motion Tracking 98
6.5 Chapter Summary 101

References 102

7 Design Scheme II of FTZNN 105
7.1 Introduction 105
7.2 Problem Formulation 106
7.3 FTZNN Model 106
7.4 Theoretical Analysis 108
7.4.1 Convergence 108
7.4.2 Robustness 112
7.5 Illustrative Verification 118
7.5.1 Convergence 118
7.5.2 Robustness 121
7.6 Chapter Summary 122

References 122

Part IV Application to Optimization 125

8 FTZNN for Constrained Quadratic Programming 127
8.1 Introduction 127
8.2 Preliminaries 128
8.2.1 Problem Formulation 128
8.2.2 Optimization Theory 128
8.3 U-FTZNN Model 130
8.4 Convergence Analysis 131
8.5 Robustness Analysis 134
8.6 Illustrative Verification 136
8.6.1 Qualitative Experiments 136
8.6.2 Quantitative Experiments 139



�

� �

�

x Contents

8.7 Application to Image Fusion 143
8.8 Application to Robot Control 146
8.9 Chapter Summary 149

References 149

9 FTZNN for Nonlinear Minimization 151
9.1 Introduction 151
9.2 Problem Formulation and ZNN Models 151
9.2.1 Problem Formulation 152
9.2.2 ZNN Model 152
9.2.3 RZNN Model 154
9.3 Design and Analysis of R-FTZNN 154
9.3.1 Second-Order Nonlinear Formula 155
9.3.2 R-FTZNN Model 159
9.4 Illustrative Verification 161
9.4.1 Constant Noise 161
9.4.2 Dynamic Noise 163
9.5 Chapter Summary 165

References 166

10 FTZNN for Quadratic Optimization 169
10.1 Introduction 169
10.2 Problem Formulation 170
10.3 Related Work: GNN and ZNN Models 172
10.3.1 GNN Model 172
10.3.2 ZNN Model 173
10.4 N-FTZNN Model 174
10.4.1 Models Comparison 175
10.4.2 Finite-Time Convergence 176
10.5 Illustrative Verification 178
10.6 Chapter Summary 181

References 181

Part V Application to the Lyapunov Equation 183

11 Design Scheme I of FTZNN 185
11.1 Introduction 185
11.2 Problem Formulation and Related Work 186
11.2.1 GNN Model 186
11.2.2 ZNN Model 187



�

� �

�

Contents xi

11.3 FTZNN Model 187
11.4 Illustrative Verification 190
11.5 Chapter Summary 193

References 193

12 Design Scheme II of FTZNN 197
12.1 Introduction 197
12.2 Problem Formulation and Preliminaries 197
12.3 FTZNN Model 198
12.3.1 Design of FTZNN 199
12.3.2 Analysis of FTZNN 200
12.4 Illustrative Verification 202
12.5 Application to Tracking Control 205
12.6 Chapter Summary 207

References 207

13 Design Scheme III of FTZNN 209
13.1 Introduction 209
13.2 N-FTZNN Model 210
13.2.1 Design of N-FTZNN 210
13.2.2 Re-Interpretation from Nonlinear PID Perspective 211
13.3 Theoretical Analysis 212
13.4 Illustrative Verification 219
13.4.1 Numerical Comparison 219
13.4.2 Application Comparison 224
13.4.3 Experimental Verification 228
13.5 Chapter Summary 229

References 229

Part VI Application to the Sylvester Equation 231

14 Design Scheme I of FTZNN 233
14.1 Introduction 233
14.2 Problem Formulation and ZNN Model 233
14.3 N-FTZNN Model 235
14.3.1 Design of N-FTZNN 235
14.3.2 Theoretical Analysis 237
14.4 Illustrative Verification 243
14.5 Robotic Application 248
14.6 Chapter Summary 251

References 251



�

� �

�

xii Contents

15 Design Scheme II of FTZNN 255
15.1 Introduction 255
15.2 ZNN Model and Activation Functions 256
15.2.1 ZNN Model 256
15.2.2 Commonly Used AFs 257
15.2.3 Two Novel Nonlinear AFs 257
15.3 NT-PTZNN Models and Theoretical Analysis 258
15.3.1 NT-PTZNN1 Model 258
15.3.2 NT-PTZNN2 Model 262
15.4 Illustrative Verification 266
15.4.1 Example 1 266
15.4.2 Example 2 269
15.4.3 Example 3 273
15.5 Chapter Summary 274

References 274

16 Design Scheme III of FTZNN 277
16.1 Introduction 277
16.2 ZNN Model and Activation Function 278
16.2.1 ZNN Model 278
16.2.2 Sign-bi-power Activation Function 279
16.3 FTZNN Models with Adaptive Coefficients 282
16.3.1 SA-FTZNN Model 282
16.3.2 PA-FTZNN Model 284
16.3.3 EA-FTZNN Model 286
16.4 Illustrative Verification 289
16.5 Chapter Summary 294

References 294

Part VII Application to Inequality 297

17 Design Scheme I of FTZNN 299
17.1 Introduction 299
17.2 FTZNN Models Design 299
17.2.1 Problem Formulation 300
17.2.2 ZNN Model 300
17.2.3 Vectorization 300
17.2.4 Activation Functions 301
17.2.5 FTZNN Models 302
17.3 Theoretical Analysis 303



�

� �

�

Contents xiii

17.3.1 Global Convergence 303
17.3.2 Finite-Time Convergence 304
17.4 Illustrative Verification 309
17.5 Chapter Summary 314

References 314

18 Design Scheme II of FTZNN 317
18.1 Introduction 317
18.2 NT-FTZNN Model Deisgn 318
18.2.1 Problem Formulation 318
18.2.2 ZNN Model 318
18.2.3 NT-FTZNN Model 319
18.2.4 Activation Functions 319
18.3 Theoretical Analysis 320
18.3.1 Global Convergence 320
18.3.2 Finite-Time Convergence 321
18.3.3 Noise-Tolerant Convergence 326
18.4 Illustrative Verification 327
18.5 Chapter Summary 334

References 335

Part VIII Application to Nonlinear Equation 337

19 Design Scheme I of FTZNN 339
19.1 Introduction 339
19.2 Model Formulation 339
19.2.1 OZNN Model 340
19.2.2 FTZNN Model 340
19.2.3 Models Comparison 341
19.3 Convergence Analysis 341
19.4 Illustrative Verification 343
19.4.1 Nonlinear Equation f (u) with Simple Root 343
19.4.2 Nonlinear Equation f (u) with Multiple Root 346
19.5 Chapter Summary 347

References 347

20 Design Scheme II of FTZNN 349
20.1 Introduction 349
20.2 Problem and Model Formulation 349



�

� �

�

xiv Contents

20.2.1 GNN Model 350
20.2.2 OZNN Model 350
20.3 FTZNN Model and Finite-Time Convergence 351
20.4 Illustrative Verification 354
20.5 Chapter Summary 356

References 356

21 Design Scheme III of FTZNN 359
21.1 Introduction 359
21.2 Problem Formulation and ZNN Models 359
21.2.1 Problem Formulation 360
21.2.2 ZNN Model 360
21.3 Robust and Fixed-Time ZNN Model 361
21.4 Theoretical Analysis 362
21.4.1 Case 1: No Noise 362
21.4.2 Case 2: Under External Noises 363
21.5 Illustrative Verification 367
21.6 Chapter Summary 370

References 371

Index 375



�

� �

�

xv

List of Figures

Figure 1.1 Transient behavior of U(t) synthesized by the OZNN model (1.5)
starting with 10 randomly generated initial states, where solid
curves correspond to neural state U(t), and dash curves
correspond to theoretical matrix square root U∗(t). 9

Figure 1.2 Transient behavior of U(t) synthesized by FTZNN model (1.13)
starting with 10 randomly generated initial states, where solid
curves correspond to neural state U(t), and dash curves
correspond to theoretical time-varying matrix square root
U∗(t). 10

Figure 1.3 Transient behavior of the residual error ||U2(t) − B(t)||F
corresponding to U(t) synthesized by the OZNN model (3.2) and
FTZNN model (3.3). (a) By the OZNN model (3.2) and (b) by
FTZNN model (3.3). 10

Figure 2.1 Simulative results of OZNN model (2.3) using linear activation
functions under the condition of 𝛾 = 1 and a randomly generated
U(0) ∈ ℝ2×2 close to U∗(t). (a) Transient behavior of state matrix
U(t) and (b) transient behavior of residual error ||Y (t)||F. 18

Figure 2.2 Simulative results of OZNN model (2.3) using power-sigmoid
activation functions under the condition of 𝛾 = 1 and a randomly
generated U(0) ∈ ℝ2×2 close to U∗(t). (a) Transient behavior of
state matrix U(t) and (b) transient behavior of residual error
||Y (t)||F. 19

Figure 2.3 Simulative results of FTZNN model (2.5) under the condition of
𝛾 = 1, m = 0.25 and a randomly generated U(0) ∈ ℝ2×2 close to
U∗(t). (a) Transient behavior of state matrix U(t) and (b) transient
behavior of residual error ||Y (t)||F. 19



�

� �

�

xvi List of Figures

Figure 2.4 Transient behavior of residual error ||Y (t)||F synthesized by
FTZNN model (2.5) under the condition of m = 0.25 and a
randomly generated U(0) ∈ ℝ6×6 close to U∗(t). (a) With 𝛾 = 1
and (b) with 𝛾 = 10. 20

Figure 3.1 Transient behavior of U(t) synthesized by GNN model (3.2)
starting with 8 randomly generated initial states under the
condition of 𝛾 = 1. 31

Figure 3.2 Transient behavior of U(t) synthesized by OZNN model (3.3)
starting with 8 randomly generated initial states under the
condition of 𝛾 = 1. 32

Figure 3.3 Transient behavior of the residual error ||A(t)U(t) − I||F
corresponding to U(t) synthesized by GNN model (3.2) and
OZNN model (3.3). (a) By GNN model (3.3) and (b) by OZNN
model (3.2). 33

Figure 3.4 Transient behavior of U(t) synthesized by FTZNN model (3.11)
starting with 8 randomly generated initial states under the
conditions of 𝛾 = 𝜅1 = 𝜅2 = 1. 33

Figure 3.5 Transient behavior of the residual error ||A(t)U(t) − I||F
synthesized by FTZNN model (3.11) under the conditions of
𝜅1 = 𝜅2 = 1. (a) 𝛾 = 1 and (b) 𝛾 = 100. 34

Figure 3.6 Transient behavior of the residual error ||A(t)U(t) − I||F
synthesized by FTZNN model (3.11) under the conditions of
𝜅1 = 𝜅2 = 10. (a) 𝛾 = 100 and (b) 𝛾 = 106. 34

Figure 3.7 Transient behavior of the residual error ||A(t)U(t) − I||F
synthesized by FTZNN model (3.11) using random time-varying
coefficients under the conditions of 𝜅1 = 𝜅2 = 1. (a) 𝛾 = 1 and
(b) 𝛾 = 10. 35

Figure 4.1 Transient behavior of NT-FTZNN model (4.6) activated by VAF
for solving time-dependent matrix inversion (4.9) without noise.
(a) State solutions and (b) residual error. 47

Figure 4.2 Transient behavior of the ZNN model activated by LAF for solving
time-dependent matrix inversion (4.9) with noise zij(t) = 1.
(a) State solutions and (b) residual error. 48

Figure 4.3 Transient behavior of the ZNN model activated by
abbtextpower-sum activation function (PSAF) for solving
time-dependent matrix inversion (4.9) with noise zij(t) = 1.
(a) State solutions and (b) residual error. 49



�

� �

�

List of Figures xvii

Figure 4.4 Transient behavior of the ZNN model activated by SBPAF for
solving time-dependent matrix inversion (4.9) with noise
zij(t) = 1. (a) State solutions and (b) residual error. 49

Figure 4.5 Transient behavior of NT-FTZNN model (4.6) activated by VAF
for solving time-dependent matrix inversion (4.9) with noise
zij(t) = 1. (a) State solutions and (b) residual error. 50

Figure 4.6 Transient behavior of residual errors ||L(t)U(t) − I||F synthesized
by NT-FTZNN model (4.6) activated by VAF and other ZNN
models activated by different activation functions in different
noise environments for solving time-dependent matrix inversion
(4.9). (a) Noise zij(t) = 0 with 𝛾 = 1, (b) noise zij(t) = 0.4|yij(t)|
with 𝛾 = 1, (c) noise zij(t) = 0.1 exp(0.2t) with 𝛾 = 1, and (d) noise
zij(t) = 0.4 cos(2t) with 𝛾 = 1. 50

Figure 4.7 Transient behavior of residual errors ||L(t)U(t) − I||F synthesized
by NT-FTZNN model (4.6) activated by VAF and other ZNN
models activated by different activation functions in different
noise environments for solving time-dependent matrix inversion
(4.9) with different values of parameter 𝛾 . (a) Noise zij(t) = 2t with
𝛾 = 10 and (b) noise zij(t) = 20 with 𝛾 = 20. 51

Figure 4.8 Transient behavior of residual errors ||L(t)U(t) − I||F synthesized
by NT-FTZNN model (4.6) activated by VAF, GNN model, IEZNN
model, and other ZNN models activated by LAF, PSAF, and
SBPAF under different noise environments for solving
time-dependent matrix inversion (4.11). (a) zij(t) = 1, (b)
zij(t) = 0.5 sin(2.2t), and (c) zij(t) = 0.15 exp(0.2t). 53

Figure 4.9 Circular task tracking synthesized by the original ZNN model
activated by the SBP activation function in the presence of
additive noise zij(t) = 0.35. (a) Whole tracking process, (b) task
comparison, and (c) position error. 55

Figure 4.10 Circular task tracking synthesized by NT-FTZNN model (4.6) in
the presence of additive noise zij = 0.35. (a) Whole tracking
process, (b) task comparison, and (c) position error. 56

Figure 4.11 Physical comparative experiments of a butterfly-path tracking
task generated by different ZNN models and performed on the
Kinova JACO2 robot manipulator when disturbed by external
noise. (a) Failure by SBPAF activated ZNN and (b) success by
NT-FTZNN. 56



�

� �

�

xviii List of Figures

Figure 5.1 Simulative results using FPZNN model (5.4) with SBPAF when
solving TVMI (5.1) of Example 1 with k = 1.5. (a) State solution
U(t) and (b) residual error ||Y (t)||F. 71

Figure 5.2 Simulative results using EVPZNN model (5.7) with SBPAF when
solving TVMI (5.1) of Example 1 with k = 1.5. (a) State solution
U(t) and (b) residual error ||Y (t)||F. 71

Figure 5.3 Simulative results using VPZNN model (5.9) with SBPAF when
solving TVMI (5.1) of Example 1 with k = 1.5. (a) State solution
U(t) and (b) residual error ||Y (t)||F. 72

Figure 5.4 Simulative results using IVP-FTZNN model (5.11) with SBPAF
when solving TVMI (5.1) of Example 1 with k = 1.5. (a) State
solution U(t) and (b) residual error ||Y (t)||F. 72

Figure 5.5 Residual errors ||Y (t)||F of FPZNN (5.4), EVPZNN (5.4), VPZNN
(5.7), and IVP-FTZNN (5.9) with SBPAF when solving TVMI
(5.11) of Example 1 with 𝛾 = k = 1.5. 73

Figure 5.6 Residual errors ||Y (t)||F of IVP-FTZNN model (5.11) with different
activation functions when solving TVMI (5.1) of Example 1 with
k = 1.5. 73

Figure 5.7 Simulative results using IVP-FTZNN model (5.11) with SBPAF
when solving TVMI (5.1) of Example 2 with k = 1.5. (a) State
solution U(t) and (b) residual error ||Y (t)||F. 74

Figure 5.8 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7),
VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving
TVMI (5.1) of Example 2 with different 𝛾 and k. (a) With
𝛾 = k = 0.5, (b) with 𝛾 = k = 2, (c) with 𝛾 = k = 5, and (d) with
𝛾 = k = 10. 75

Figure 5.9 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7),
VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving
TVMI (5.1) of Example 2 with different 𝛾 , k and noises nij(t).
(a) With 𝛾 = k = 0.5 and nij(t) = 0.2||Y (t)||F, (b) with 𝛾 = k = 1.2
and nij(t) = 0.5, (c) with 𝛾 = k = 2 and nij(t) = 0.5 sin(2t), and
(d) With 𝛾 = k = 2 and −1 ≤ nij(t) ≤ 1. 76

Figure 5.10 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7),
VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving
TVMI (5.1) of Example 2 with 𝛾 = k = 5 and different noises nij(t).
(a) With nij(t) = 1.2t and with nij(t) = 0.8 exp(0.2t). 77

Figure 6.1 Simulative results generated by the R-FTZNN model (6.26) for
solving the time-varying linear equation system with no noise.
(a) The first element of the neural state u(t) and the theoretical



�

� �

�

List of Figures xix

solution u(t). (b) The second element of neural state u(t) and the
theoretical solution u(t). (c) The residual error ||A(t)u(t) − b(t)||2
corresponding to the neural state u(t). 94

Figure 6.2 Simulative results generated by ZNN model (6.27) for solving the
time-varying linear equation system with no noise. (a) The first
element of the neural state u(t) and the theoretical solution u(t).
(b) The second element of neural state u(t) and the theoretical
solution u(t). (c) The residual error ||A(t)u(t) − b(t)||2
corresponding to the neural state u(t). 95

Figure 6.3 Simulative results generated by the R-FTZNN model (6.26) for
solving the time-varying linear equation system with the constant
noise 𝜂j = 0.5. (a) The first element of the neural state u(t) and the
theoretical solution u(t). (b) The second element of neural state
u(t) and the theoretical solution u(t). (c) The residual error
||A(t)u(t) − b(t)||2 corresponding to the neural state u(t). 96

Figure 6.4 Simulative results generated by ZNN model (6.27) for solving the
time-varying linear equation system with the constant noise
𝜂j = 0.5. (a) The first element of the neural state u(t) and the
theoretical solution u(t). (b) The second element of neural state
u(t) and the theoretical solution u(t). (c) The residual error
||A(t)u(t) − b(t)||2 corresponding to the neural state u(t). 97

Figure 6.5 Residual errors ||A(t)u(t) − b(t)||2 generated by the R-FTZNN
model (6.35) and ZNN model (6.36) for solving the time-varying
linear equation system with the different noises and parameters.
(a) The bounded noise 𝜂j = 20 with 𝛾1 = 𝛾2 = 𝛾 = 10. (b) The
time-varying noise 𝜂j(t) = 5u(t) with 𝛾1 = 𝛾2 = 𝛾 = 10. (c) The
bounded noise 𝜂j = 20 with 𝛾1 = 𝛾2 = 𝛾 = 100. 98

Figure 6.6 Actual ellipse-tracking results synthesized by ZNN model (6.27)
in the presence of the additive noise 𝜂j = 2t. (a) Actual ellipse-
tracking process. (b) Desired ellipse path and actual
ellipse-tracking trajectory. (c) Position error between desired
ellipse path and actual ellipse-tracking trajectory. 99

Figure 6.7 Actual ellipse-tracking results synthesized by R-FTZNN model
(6.26) in the presence of the additive noise 𝜂j = 2t. (a) Actual
ellipse-tracking process. (b) Desired ellipse path and actual
ellipse-tracking trajectory. (c) Position error between desired
ellipse path and actual ellipse-tracking trajectory. 100

Figure 6.8 Actual circle-tracking results of the thee-dimensional (3D)
manipulator synthesized by R-FTZNN model (6.26) in the



�

� �

�

xx List of Figures

presence of the additive noise 𝜂j = 1. (a) Desired circle path and
actual circle-tracking trajectory. (b) Position error between desired
circle path and actual circle-tracking trajectory. (c) Dynamic
behavior of joint angle. 101

Figure 7.1 Solved by the FTZNN1 model with 𝜏 = 0.2 and 𝛾 = 1, where dash
curves represent theoretical solution of (7.1) and solid curves
represent state solution of (7.5). 119

Figure 7.2 Solved by the FTZNN2 model with 𝜏 = 0.2 and 𝛾 = 1, where dash
curves represent theoretical solution of (7.1) and solid curves
represent state solution of (7.5). 120

Figure 7.3 Steady-state error ||Y (t)||F produced by proposed FTZNN models
with 𝜏 = 0.2 and 𝛾 = 1. (a) By FTZNN1. (b) By FTZNN2. 120

Figure 7.4 Steady-state error ||Y (t)||F. (a) By ZNN model (7.5) activated by
different activation functions with 𝜏 = 0.2 and 𝛾 = 1. (b) By the
perturbed ZNN model (7.11) activated by different activation
functions with 𝜏 = 0.2 and 𝛾 = 3. 121

Figure 7.5 Steady-state error ||Y (t)||F produced by perturbed ZNN model
(7.11) activated by NFTAF activation functions with 𝜏 = 0.2.
(a) By NFTAF1 activation function with different 𝛾 . (b) By
NFTAF2 activation function with different 𝛾 . 122

Figure 8.1 The state solutions computed by U-FTZNN model (8.12) on
solving different TVQP problems. (a) TVQPEI (8.27)–(8.29).
(b) TVQPE (8.30)–(8.31). 137

Figure 8.2 The residual error ||y(t)||2 generated by U-FTZNN model (8.9) on
solving different TVQP problems. (a) TVQPEI (8.27)–(8.29).
(b) TVQPE (8.30)–(8.31). 138

Figure 8.3 Comparisons of residual error ||y(t)||2 produced by different
models with different noises. (a) by perturbed ZNN (8.21) and
perturbed U-FTZNN (8.19) with 0.1𝝃l(t). (b) by perturbed
U-FTZNN with 𝝃c, 𝝃l(t) and 𝝃s(t). 139

Figure 8.4 The convergence time of the U-FTZNN model (8.10) solving the
TVQPEI-C2 problem starting from different initial condition q(0)
with different model variable settings. Tp is the predefined
convergence time bound by Eq. (8.18). (a) r2 = 0.5, 𝛾1 = 𝛾2 = 1
while changing r1. (b) r1 = 3, 𝛾1 = 𝛾2 = 1 while changing r2.
(c) r1 = 2, r2 = 0.6, 𝛾1 = 𝛾2 while changing 𝛾1 and 𝛾2. 141

Figure 8.5 The maximum steady-state residual error (MSSRE) of 𝝃c(t, an)
noise perturbed U-FTZNN model (8.21) solving the TVQPEI-C2
problem with different model variable settings, where MSSREpred



�

� �

�

List of Figures xxi

is the predicted MSSRE bound by inequality (8.26) when
𝜙 = 4 × 103. (a) r1 = 4, r2 = 0.6, 𝛾1 = 𝛾2 = 1 while changing an and
q(0). (b) r1 = 2, r2 = 0.6, q(0) = q1(0), an = 10 while changing 𝛾1
and 𝛾2. (c) 𝛾1 = 𝛾2 = 1, an = 10 while changing r1 and r2. 142

Figure 8.6 Results of image fusion on a 512 × 512 gray scale picture using
U-FTZNN model (8.10). (a) Original image. (b) Noisy image with
SNR = 1 dB. (c) Fused image when S = 20. (d) Fused image when
S = 50. 144

Figure 8.7 Computation error ||y(t)||2 synthesized by U-FTZNN model (8.9)
during image fusion with different S. (a) S = 20. (b) S = 50. 145

Figure 8.8 Results of image fusion on T1-MR images using U-FTZNN model
(8.10). (a) Slice 50 of T1-MR. (b) Slice 50 polluted by Gaussian
noise. (c) Fused image of noise-polluted slice 50 when S = 100.
(d) Slice 80 of T1-MR. (e) Slice 80 polluted by the Rician noise.
(f) Fused image of noise-polluted slice 80 when S = 100. 145

Figure 8.9 Residual error ||y(t)||2 synthesized by U-FTZNN model (8.10)
during image fusion when using different T1-MR images.
(a) Using Gaussian noise polluted Slice 50. (b) Using Rician noise
polluted Slice 80. 146

Figure 8.10 Simulation results of using U-FTZNN model (8.10) to control
PUM560 robot manipulator to track the Lissajous curve path.
(a) Relationship between 𝜃1 and 𝜂1. (b) Trajectory of end effector
and desired path. (c) Full view of path tracking with robot arm in
Cartesian space. (d) Traces of joint angles. (e) Traces of joint
velocities. (f) Position errors of the end effector in three
dimensions. 148

Figure 9.1 Computing nonlinear minimization problem by ZNN model (9.6)
using the sign-bi-power activation function with 𝜛 = 5 in front of
constant noise 𝜐 = 0.5. (a) Neural output U(t). (b) Residual error
||z(u(t), t)||2. 162

Figure 9.2 Computing nonlinear minimization problem by RZNN model
(9.8) with 𝛾1 = 𝛾2 = 5 in front of constant noise 𝜐 = 0.5. (a) Neural
output U(t). (b) Residual error ||z(u(t), t)||2. 162

Figure 9.3 Computing nonlinear minimization problem by R-FTZNN model
(9.27) using the sign-bi-power activation function with 𝛾1 = 𝛾2 = 5
in front of constant noise 𝜐 = 0.5. (a) Neural output U(t). (b)
Residual error ||z(u(t), t)||2. 163

Figure 9.4 Computing nonlinear minimization problem by ZNN model (9.6)
using the sign-bi-power activation function with 𝜛 = 10 under



�

� �

�

xxii List of Figures

constant noise 𝜐 = 2 sin(t). (a) Neural output u(t). (b) Residual
error ||z(u(t), t)||2. 164

Figure 9.5 Computing nonlinear minimization problem by RZNN model
(9.8) with 𝛾1 = 𝛾2 = 10 under dynamic noise 𝜐 = 2 sin(t).
(a) Neural output u(t). (b) Residual error ||z(u(t), t)||2. 164

Figure 9.6 Computing nonlinear minimization problem by R-FTZNN model
(9.27) using the sign-bi-power activation function with
𝛾1 = 𝛾2 = 10 in front of dynamic noise 𝜐 = 2 sin(t). (a) Neural
output u(t). (b) Residual error ||z(u(t), t)||2. 165

Figure 9.7 Residual error ||z(u(t), t)||2 generated by R-FTZNN model (9.8),
ZNN model (9.6), and RZNN model (9.8) with 𝜛 = 𝛾1 = 𝛾2 = 10
in front of different types of noises. (a) Bounded additive noise
𝜐 = 15. (b) Linearly increasing noise 𝜐 = 3t. 165

Figure 10.1 “Moving” nonlinear constraint, “Moving” objective function, and
“Moving” optimal solution of nonstationary quadratic
optimization (10.1) and (10.2). (a) Snapshot at t = 0.15 second.
(b) Snapshot at t = 1.50 seconds. (c) Snapshot at t = 3.25 seconds.
(d) Snapshot at t = 5.80 seconds. 171

Figure 10.2 Simulative results of real-time solution to nonstationary quadratic
optimization (10.4) and (10.5) synthesized by GNN model (10.12)
with 𝛾 = 1. (a) Transient behavior of neural state g(t).
(b) Transient behavior of ||C(t)g(t) − d(t)||2. 179

Figure 10.3 Simulative results of real-time solution to nonstationary quadratic
optimization (10.4) and (10.5) synthesized by ZNN model (10.15)
with 𝛾 = 1. (a) Transient behavior of neural state g(t).
(b) Transient behavior of ||C(t)g(t) − d(t)||2. 180

Figure 10.4 Simulative results of real-time solution to nonstationary quadratic
optimization (10.4) and (10.5) synthesized by N-FTZNN model
(10.18) with 𝛾 = 1. (a) Transient behavior of neural state g(t).
(b) Transient behavior of ||C(t)g(t) − d(t)||2. 180

Figure 11.1 Transient behavior of U(t) synthesized by GNN model (11.3) and
ZNN model (11.5) starting from randomly generated initial state
matrices U(0) ∈ ℝ2×2. (a) By GNN model (11.3) and (b) by ZNN
model (11.5). 191

Figure 11.2 Transient behavior of ||ATU(t) + U(t)A + C||F synthesized by
GNN model (11.3) and ZNN model (11.5) starting from randomly
generated initial state matrices U(0) ∈ ℝ2×2. (a) By GNN model
(11.3) and (b) by ZNN model (11.5). 192



�

� �

�

List of Figures xxiii

Figure 11.3 Simulative results synthesized by FTZNN model (11.8) starting
from randomly generated initial state matrices U(0) ∈ ℝ2×2.
(a) Transient behavior of state matrices and (b) transient behavior
of residual errors. 192

Figure 11.4 Transient behavior of ||ATU(t) + U(t)A + C||F synthesized by
FTZNN model (11.8) starting with a randomly generated initial
state, where dash-dotted curves denote the time-varying
theoretical solution of (11.1) and solid curves denote the
neural-state solution. (a) With 𝛾 = 100 and (b) With
𝛾 = 1000. 193

Figure 12.1 Transient behavior of neural state U(t) synthesized by original
ZNN model (12.4). 203

Figure 12.2 Transient behavior of neural state U(t) synthesized by FTZNN
model (12.11). 204

Figure 12.3 Transient behavior of residual error ||AT(t)U(t) + U(t)A(t) +
C(t)||F corresponding to the neural state U(t) synthesized by
original ZNN model (12.4) and FTZNN model (12.11). (a) By the
original ZNN model (12.4) and (b) by FTZNN model (12.11). 205

Figure 12.4 Tracking ellipse-path results of the mobile manipulator
synthesized by the proposed model (12.15). (a) Whole tracking
motion trajectories and (b) top graph of tracking motion
trajectories. 206

Figure 12.5 Tracking ellipse-path results of the mobile manipulator
synthesized by the proposed model (12.15). (a) Desired path and
actual trajectory and (b) tracking errors at the joint position
level. 206

Figure 13.1 Block diagram of the control architecture of N-FTZNN model
(13.4) for solving dynamic Lyapunov from the nonlinear PID
perspective. 212

Figure 13.2 Convergence property of each element of state output U(t)
corresponding to the one of theoretical solution U∗(t) synthesized
by N-FTZNN model (13.5) with 𝛾1 = 𝛾2 = 1 in the presence of
additive constant noise 𝜍 = 1. 220

Figure 13.3 Convergence property of each element of state output U(t)
corresponding to the one of theoretical solution U∗(t) synthesized
by ZNN model (13.6) with 𝛾1 = 𝛾2 = 1 in the presence of additive
constant noise 𝜍 = 1. 221

Figure 13.4 Convergence of residual error ||CT(t)U(t) + U(t)C(t) + G(t)||F
produced by two different models with 𝛾1 = 𝛾2 = 1 in the presence



�

� �

�

xxiv List of Figures

of additive constant noise 𝜍 = 1. (a) By N-FTZNN model (13.5).
(b) By ZNN model (13.6). 221

Figure 13.5 Convergence of residual error ||CT(t)U(t) + U(t)C(t) + G(t)||F
produced by N-FTZNN model (13.5) with different values of
parameters 𝛾1 and 𝛾2 in the presence of additive constant noise
𝜍 = 1. (a) 𝛾1 = 𝛾2 = 10. (b) 𝛾1 = 𝛾2 = 106. 222

Figure 13.6 Convergence of residual error ||CT(t)U(t) + U(t)C(t) + G(t)||F
produced by N-FTZNN model (13.5) and ZNN model (13.6) with
𝛾1 = 𝛾2 = 10 in the presence of different kinds of additive noises.
(a) Bounded random additive 𝜍 = 10. (b) Time-varying additive
𝜍 = 5U(t). 223

Figure 13.7 Circular tracking results of the planar six-link manipulator
synthesized by the N-FTZNN-based control law with
𝛾1 = 𝛾2 = 100 in the presence of additive constant noise 𝜍 = 5.
(a) Joint motion trajectories of planar six-link manipulator.
(b) Comparison between the desired path and the actual
trajectory. (c) Position error between the desired path and the
actual trajectory. (d) Dynamic behavior of joint angle. 225

Figure 13.8 Circular tracking results of the planar six-link manipulator
synthesized by the ZNN-based control law with 𝛾1 = 𝛾2 = 100 in
the presence of additive constant noise 𝜍 = 5. (a) Joint motion
trajectories of planar six-link manipulator. (b) Comparison
between the desired path and the actual trajectory. (c) Position
error between the desired path and the actual trajectory.
(d) Dynamic behavior of joint angle. 226

Figure 13.9 Circular tracking experiment results synthesized by the
N-FTZNN-based control law with 𝛾1 = 𝛾2 = 100 in the presence of
additive constant noise 𝜍 = 1. 227

Figure 13.10 Data profiles during the circular tracking experiment of the 3-axis
physical manipulator. (a) Comparison between the desired path
and the actual trajectory. (b) Position error between the desired
path and the actual trajectory. (c) Dynamic behavior of joint
angle. (d) Dynamic behavior of joint velocity. 228

Figure 14.1 The circuit topology of design formula (14.6) for hardware
implementation. 236

Figure 14.2 Trajectories of theoretical solution U∗(t) and state output U(t)
generated by N-FTZNN model (14.9) with 𝛾1 = 𝛾2 = 1 in front of
no noise, where solid curves denote the elements of state output
U(t), and dash curves denotes the elements of U∗(t). 244



�

� �

�

List of Figures xxv

Figure 14.3 Trajectories of residual error ||A(t)U(t) − U(t)B(t) + C(t)||F
generated by N-FTZNN model (14.9) with different values of 𝛾1
and 𝛾2 in front of no noise. (a) With 𝛾1 = 𝛾2 = 1. (b) With
𝛾1 = 𝛾2 = 1000. 245

Figure 14.4 Trajectories of theoretical solution U∗(t) and state output U(t)
generated by ZNN model (14.4) with 𝛾1 = 𝛾2 = 1 in front of the
additive constant noise 𝜀 = 3, where solid curves denote the
elements of state output U(t), and dash curves denotes the
elements of U∗(t). 246

Figure 14.5 Trajectories of residual error ||A(t)U(t) − U(t)B(t) + C(t)||F
generated by two different models with 𝛾 = 𝛾1 = 𝛾2 = 1 in front of
additive constant noise 𝜀 = 3. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 246

Figure 14.6 Trajectories of residual error ||A(t)U(t) − U(t)B(t) + C(t)||F
generated by two different models with 𝛾 = 𝛾1 = 𝛾2 = 10 in front
of additive constant noise 𝜀 = 3. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 247

Figure 14.7 Trajectories of residual error ||A(t)U(t) − U(t)B(t) + C(t)||F
generated by two different models with 𝛾 = 𝛾1 = 𝛾2 = 10 in front
of additive dynamic noise 𝜀 = 4t. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 247

Figure 14.8 Motion trajectories of a two-link planar manipulator synthesized
by the N-FTZNN-based model (14.43) with 𝛾1 = 𝛾2 = 50 in front of
the additive constant noise 𝜀 = 2.5. (a) The actual circle trajectory
and the desired path. (b) The whole motion process. (c) The
control law u = �̇�. (d) The position tracking error
Y (t) = r(t) − rd(t). 249

Figure 14.9 Motion trajectories of a two-link planar manipulator synthesized
by ZNN-based model (14.31) with 𝛾 = 50 in front of the additive
constant noise 𝜀 = 2.5. (a) The actual circle trajectory and the
desired path. (b) The whole motion process. (c) The control law
u = �̇�. (d) The position tracking error Y (t) = r(t) − rd(t). 250

Figure 15.1 Transient behavior of state solutions U(t) generated by
NT-PTZNN1 model (15.9) and NT-PTZNN2 model (15.13) when
solving time-variant Sylvester equation of Example 1 with noise
Y (t) = 0. (a) By NT-PTZNN1 model (15.9). (b) By NT-PTZNN2
model (15.13). 267

Figure 15.2 Transient behavior of residual errors ||A(t)U(t) − U(t)B(t) + C(t)||F
generated by NT-PTZNN1 model (15.9) and NT-PTZNN2



�

� �

�

xxvi List of Figures

model (15.13) when solving time-variant Sylvester equation of
Example 1 with noise dij(t) = 0. (a) By NT-PTZNN1 model (15.9).
(b) By NT-PTZNN2 model (15.13). 268

Figure 15.3 Transient behavior of residual errors ||A(t)U(t) − U(t)B(t) + C(t)∥F
synthesized by NT-PTZNN1 model (15.9) activated by AF (15.5),
NT-PTZNN2 model (15.13) activated by AF (15.6) and ZNN model
(15.4) activated by LAF, PSAF, and SBPAF under different kinds of
noises D(t). (a) With noise dij = 0. (b) With noise dij = 0.45|yij(t)|.
(c) With noise dij = 1. (d) With noise dij = 0.45 cos(2t). 268

Figure 15.4 Transient behavior of state solution U(t) generated by
NT-PTZNN1 model (15.9) and NT-PTZNN2 model (15.13) when
solving time-variant Sylvester equation of Example 2 with noise
D(t) = 1. (a) By NT-PTZNN1 model (15.9). (b) By NT-PTZNN2
model (15.13). 270

Figure 15.5 Transient behavior of residual errors ||A(t)U(t) − U(t)B(t) + C(t)∥F
synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model
(15.13), and ZNN model (15.4) activated by LAF, PSAF, and
SBPAF under different kinds of noises D(t) with 𝛾 = 1. (a) With
noise dij(t) = 1. (b) With noise dij(t) = 0.6|yij(t)|. (c) With noise
dij(t) = 0.6 cos(2.5t). (d) With noise dij(t) = 0.125 exp(0.2t). 271

Figure 15.6 Transient behavior of residual errors ||A(t)U(t) − U(t)B(t) + C(t)∥F
synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model
(15.13), and ZNN model (15.4) activated by LAF, PSAF, and
SBPAF under different kinds of noises D(t) with 𝛾 = 10 and
𝛾 = 20. (a) With noise dij(t) = 2.1t and 𝛾 = 10. (b) With noise
dij(t) = 18.5 and 𝛾 = 20. 272

Figure 15.7 Transient behavior of residual errors ||A(t)U(t) − U(t)B(t) + C(t)∥F
synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model
(15.13), and ZNN model (15.4) activated by LAF, PSAF, and
SBPAF under different kinds of noises D(t) with 𝛾 = 1. (a) With
noise dij(t) = 1. (b) With noise dij(t) = 0.5|yij(t)|. (c) With noise
dij(t) = 0.5 sin(1.6t). (d) With noise dij(t) = 0.1 exp(0.1t). 273

Figure 16.1 Trajectories of theoretical solutions (black solid lines) of the
time-varying Sylvester equation and state solutions (dotted
curves) generated by SA-FTZNN model (16.22), PA-FTZNN
model (16.29), and EA-FTZNN model (16.37). 290

Figure 16.2 Comparisons of the computational errors generated by
SA-FTZNN model (16.22), PA-FTZNN model (16.29), EA-FTZNN
model (16.37), and the ZNN activated by sign-bi-power function
(16.5). 290



�

� �

�

List of Figures xxvii

Figure 16.3 Comparisons of the SA-FTZNN model (16.22) with different
values of k. 292

Figure 16.4 Comparisons of SA-FTZNN model (16.22), PA-FTZNN model
(16.29), EA-FTZNN model (16.37) and the ZNN activated by SP-1
function (16.7) and SP-2 function (16.8) while setting a large and
small initial state. (a) Large initial state. (b) Small initial
state. 292

Figure 17.1 Trajectories of state vector U(t) by applying FTZNN-1 model
(17.17) to solve LMI (17.1) when U(0) is outside Ω(0) with 𝛾 = 1
and 𝛼 = 0.3. (a) u11(t), (b) u12(t), (c) u21(t), (d) u22(t), (e) u31(t), and
(f) u32(t). 310

Figure 17.2 Comparisons of three FTZNN models with the conventional ZNN
models activated by other AFs with 𝛾 = 1 and 𝛼 = 0.3 when
p(0) > 1. (a) By FTZNN-1 model (17.17) and FTZNN-2 model
(17.19). (b) By FTZNN-1 model (17.17) and FTZNN-3 model
(17.21). 311

Figure 17.3 Comparisons of three FTZNN models with the conventional ZNN
models activated by other AFs with 𝛾 = 1 and 𝛼 = 0.3 when
p(0) < 1. (a) By FTZNN-1 model (17.17) and FTZNN-2 model
(17.19). (b) By FTZNN-1 model (17.17) and FTZNN-3 model
(17.21). 312

Figure 17.4 Comparisons among three cases of FTZNN-3 model (17.21) with
different tunable parameters. (a) p(0) > 1. (b) p(0) < 1. 313

Figure 17.5 Transient behaviors of the error function ||Y (t)||2 synthesized by
FTZNN-3 model (17.21) with k2 = 1, k3 = 1 and different values of
k1. 313

Figure 18.1 Trajectories of state matrix U(t) by applying NT-FTZNN model
(18.6) to solve linear inequalities (18.1) when U(0) is outside Ω(0)
with 𝛾 = 1 and λ = 10. (a) u11(t), (b) u12(t), (c) u21(t), and
(d) u22(t). 328

Figure 18.2 Trajectories of five random state matrix U(t) by applying
NT-FTZNN model (18.6) with 𝛾 = 1 and λ = 10 to solve linear
inequalities (18.1) when U(0) is outside Ω(0). 328

Figure 18.3 Comparisons of the error function generated by NT-FTZNN
model (18.6) with 𝛾 = 1 and λ = 1 and the error function created
by the CZNN model with 𝛾 = 1 which are both activated by linear
AF. 329



�

� �

�

xxviii List of Figures

Figure 18.4 Comparisons of the error functions generated by NT-FTZNN
model (18.6) with 𝛾 = 1 and λ = 1 which are activated by several
of AFs under the same conditions. 329

Figure 18.5 Trajectories of the error function generated by NT-FTZNN model
(18.6) activated by two sign-bi-power AFs with 𝛾 = 1, λ = 1 and
r = 0.3 to solve linear inequalities (18.1). (a) When the initial state
p(0) < 1. (b) When the initial state p(0) > 1. 330

Figure 18.6 Comparisons among three cases of NT-FTZNN model (18.6) with
different 𝛼 to solve linear time-varying inequalities (18.1). 332

Figure 18.7 Comparisons among three cases of NT-FTZNN model (18.6) with
𝛼 = 0.3 and different λ to solve linear time-varying inequalities
(18.1). 332

Figure 18.8 Trajectories of theoretical solutions of the higher-order time-
varying inequalities and actual solutions starting with random
initial state using NT-FTZNN model (18.6) with 𝛾 = 1, λ = 1, and
𝛼 = 0.3. 333

Figure 18.9 Comparisons of the error functions generated by NT-FTZNN
model (18.6) with 𝛾 = 1 and λ = 10 which are activated by
different AFs for solving higher-order time-varying
inequalities. 334

Figure 19.1 Transient behavior of neural states u(t) synthesized by different
dynamical models with 𝛾 = 1 and 50 randomly generated initial
states within [−10, 10]. (a) By OZNN model (19.4). (b) By FTZNN
model (19.5). 344

Figure 19.2 Transient behavior of residual functions |y(t)| synthesized by
different dynamical models with 𝛾 = 1 and 50 randomly
generated initial states within [−10, 10]. (a) By OZNN model
(19.4). (b) By FTZNN model (19.5). 345

Figure 19.3 Transient behavior of residual functions |y(t)| synthesized by
FTZNN model (19.5) with different values of 𝛾 and 50 randomly
generated initial states within [−10, 10]. (a) 𝛾 = 10.
(b) 𝛾 = 106. 345

Figure 19.4 Transient behavior of residual functions |y(t)| synthesized by
different dynamical models with 𝛾 = 1 and 5 randomly generated
initial states within [−4, 4]. (a) By OZNN model (19.4).
(b) By FTZNN model (19.5). 346

Figure 20.1 Transient behavior of neural states u(t) solved by GNN model
(20.2) and OZNN model (20.4) starting with 20 randomly
generated initial states and with 𝛾 = 1, where solid curves


