Lin Xiao • Lei Jia

Zeroing Neural Networks

Finite-time Convergence Design, Analysis and Applications

Zeroing Neural Networks

IEEE Press
445 Hoes Lane
Piscataway, NJ 08854

IEEE Press Editorial Board

Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson	Andreas Molisch	Diomidis Spinellis
Anjan Bose	Saeid Nahavandi	Ahmet Murat Tekalp
Adam Drobot	Jeffrey Reed	
Peter (Yong) Lian	Thomas Robertazzi	

Zeroing Neural Networks

Finite-time Convergence Design, Analysis and Applications

Lin Xiao
Hunan Normal University

Lei Jia
Hunan Normal University

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc.
IEEE Standards designations are trademarks of The Institute of Electrical and Electronics Engineers, Incorporated (www.ieee.org/).

Non-IEEE trademarks are the respective property of their owners.
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley \& Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley \& Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com

Library of Congress Cataloging-in-Publication Data is Applied for:
Hardback ISBN: 9781119985990
Cover design: Wiley
Cover image: © BAIVECTOR/Shutterstock
Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

To our parents and ancestors, as always

Contents

List of Figures $x v$
List of Tables xxxi
Author Biographies xxxiii
Preface xxxy
Acknowledgments $x l v$
Part I Application to Matrix Square Root 1
1 FTZNN for Time-varying Matrix Square Root 3
1.1 Introduction 3
1.2 Problem Formulation and ZNN Model 4
1.3 FTZNN Model 4
1.3.1 Model Design 5
1.3.2 Theoretical Analysis 7
1.4 Illustrative Verification 8
1.5 Chapter Summary 11
References 11
2 FTZNN for Static Matrix Square Root 13
2.1 Introduction 13
2.2 Solution Models 14
2.2.1 OZNN Model 14
2.2.2 FTZNN Model 15
2.3 Illustrative Verification 17
2.3.1 Example 1 18
2.3.2 Example 2 20
2.4 Chapter Summary 21
References 21
Part II Application to Matrix Inversion 23
3 Design Scheme I of FTZNN 25
3.1 Introduction 25
3.2 Problem Formulation and Preliminaries 25
3.3 FTZNN Model 26
3.3.1 Model Design 26
3.3.2 Theoretical Analysis 29
3.4 Illustrative Verification 30
3.4.1 Example 1: Nonrandom Time-varying Coefficients 30
3.4.2 Example 2: Random Time-varying Coefficients 34
3.5 Chapter Summary 35
References 36
4 Design Scheme II of FT ZNN 39
4.1 Introduction 39
4.2 Preliminaries 40
4.2.1 Mathematical Preparation 40
4.2.2 Problem Formulation 41
$4.3 \quad$ NT-FTZNN Model 41
4.4 Theoretical Analysis 43
4.4.1 NT-FTZNN in the Absence of Noises 43
4.4.2 NT-FTZNN in the Presence of Noises 44
4.5 Illustrative Verification 46
4.5.1 Example 1: Two-dimensional Coefficient 47
4.5.2 Example 2: Six-dimensional Coefficient 52
4.5.3 Example 3: Application to Mobile Manipulator 54
4.5.4 Example 4: Physical Comparative Experiments 54
4.6 Chapter Summary 57
References 57
5 Design Scheme III of FTZNN 61
5.1 Introduction 61
5.2 Problem Formulation and Neural Solver 61
5.2.1 FPZNN Model 62
5.2.2 IVP-FTZNN Model 63
5.3 Theoretical Analysis 64
5.4 Illustrative Verification 70
5.4.1 Example 1: Two-Dimensional Coefficient 70
5.4.2 Example 2: Three-Dimensional Coefficient 73
5.5 Chapter Summary 78
References 78
Part III Application to Linear Matrix Equation 81
6 Design Scheme I of FTZNN 83
6.1 Introduction 83
6.2 Convergence Speed and Robustness Co-design 84
6.3 R-FTZNN Model 90
6.3.1 Design of R-FTZNN 90
6.3.2 Analysis of R-FTZNN 91
6.4 Illustrative Verification 93
6.4.1 Numerical Example 93
6.4.2 Applications: Robotic Motion Tracking 98
6.5 Chapter Summary 101
References 102
7 Design Scheme II of FTZNN 105
7.1 Introduction 105
7.2 Problem Formulation 106
7.3 FTZNN Model 106
7.4 Theoretical Analysis 108
7.4.1 Convergence 108
7.4.2 Robustness 112
7.5 Illustrative Verification 118
7.5.1 Convergence 118
7.5.2 Robustness 121
7.6 Chapter Summary 122
References 122
Part IV Application to Optimization 125
8 FTZNN for Constrained Quadratic Programming 127
8.1 Introduction 127
8.2 Preliminaries 128
8.2.1 Problem Formulation 128
8.2.2 Optimization Theory 128
8.3 U-FTZNN Model 130
8.4 Convergence Analysis 131
8.5 Robustness Analysis 134
8.6 Illustrative Verification 136
8.6.1 Qualitative Experiments 136
8.6.2 Quantitative Experiments 139
\mathbf{x} Contents
8.7 Application to Image Fusion 143
8.8 Application to Robot Control 146
8.9 Chapter Summary 149
References 149
$9 \quad$ FTZNN for Nonlinear Minimization 151
9.1 Introduction 151
9.2 Problem Formulation and ZNN Models 151
9.2.1 Problem Formulation 152
9.2.2 ZNN Model 152
9.2.3 RZNN Model 154
9.3 Design and Analysis of R-FTZNN 154
9.3.1 Second-Order Nonlinear Formula 155
9.3.2 R-FTZNN Model 159
9.4 Illustrative Verification 161
9.4.1 Constant Noise 161
9.4.2 Dynamic Noise 163
9.5 Chapter Summary 165
References 166
10 FTZNN for Quadratic Optimization 169
10.1 Introduction 169
10.2 Problem Formulation 170
10.3 Related Work: GNN and ZNN Models 172
10.3.1 GNN Model 172
10.3.2 ZNN Model 173
$10.4 \quad$ N-FTZNN Model 174
10.4.1 Models Comparison 175
10.4.2 Finite-Time Convergence 176
10.5 Illustrative Verification 178
10.6 Chapter Summary 181
References 181
Part V Application to the Lyapunov Equation 183
11 Design Scheme I of FTZNN 185
11.1 Introduction 185
11.2 Problem Formulation and Related Work 186
11.2.1 GNN Model 186
11.2.2 ZNN Model 187
11.3 FTZNN Model 187
11.4 Illustrative Verification 190
11.5 Chapter Summary 193
References 193
12 Design Scheme II of FTZNN 197
12.1 Introduction 197
12.2 Problem Formulation and Preliminaries 197
12.3 FTZNN Model 198
12.3.1 Design of FTZNN 199
12.3.2 Analysis of FTZNN 200
12.4 Illustrative Verification 202
12.5 Application to Tracking Control 205
12.6 Chapter Summary 207
References 207
13 Design Scheme III of FTZNN 209
13.1 Introduction 209
$13.2 \quad$ N-FTZNN Model 210
13.2.1 Design of N-FTZNN 210
13.2.2 Re-Interpretation from Nonlinear PID Perspective 211
13.3 Theoretical Analysis 212
13.4 Illustrative Verification 219
13.4.1 Numerical Comparison 219
13.4.2 Application Comparison 224
13.4.3 Experimental Verification 228
13.5 Chapter Summary 229
References 229
Part VI Application to the Sylvester Equation 231
14 Design Scheme I of FTZNN 233
14.1 Introduction 233
14.2 Problem Formulation and ZNN Model 233
14.3 N-FTZNN Model 235
14.3.1 Design of N-FTZNN 235
14.3.2 Theoretical Analysis 237
14.4 Illustrative Verification 243
14.5 Robotic Application 248
14.6 Chapter Summary 251
References 251
15 Design Scheme II of FTZNN 255
15.1 Introduction 255
15.2 ZNN Model and Activation Functions 256
15.2.1 ZNN Model 256
15.2.2 Commonly Used AFs 257
15.2.3 Two Novel Nonlinear AFs 257
15.3 NT-PTZNN Models and Theoretical Analysis 258
15.3.1 NT-PTZNN1 Model 258
15.3.2 NT-PTZNN2 Model 262
15.4 Illustrative Verification 266
15.4.1 Example 1 266
15.4.2 Example 2 269
15.4.3 Example 3 273
15.5 Chapter Summary 274
References 274
16 Design Scheme III of FTZNN 277
16.1 Introduction 277
16.2 ZNN Model and Activation Function 278
16.2.1 ZNN Model 278
16.2.2 Sign-bi-power Activation Function 279
16.3 FTZNN Models with Adaptive Coefficients 282
16.3.1 SA-FTZNN Model 282
16.3.2 PA-FTZNN Model 284
16.3.3 EA-FTZNN Model 286
16.4 Illustrative Verification 289
16.5 Chapter Summary 294
References 294
Part VII Application to Inequality 297
17 Design Scheme I of FTZNN 299
17.1 Introduction 299
17.2 FTZNN Models Design 299
17.2.1 Problem Formulation 300
17.2.2 ZNN Model 300
17.2.3 Vectorization 300
17.2.4 Activation Functions 301
17.2.5 FTZNN Models 302
17.3 Theoretical Analysis 303
17.3.1 Global Convergence 303
17.3.2 Finite-Time Convergence 304
17.4 Illustrative Verification 309
17.5 Chapter Summary 314
References 314
18 Design Scheme II of FTZNN 317
18.1 Introduction 317
18.2 NT-FTZNN Model Deisgn 318
18.2.1 Problem Formulation 318
18.2.2 ZNN Model 318
18.2.3 NT-FTZNN Model 319
18.2.4 Activation Functions 319
18.3 Theoretical Analysis 320
18.3.1 Global Convergence 320
18.3.2 Finite-Time Convergence 321
18.3.3 Noise-Tolerant Convergence 326
18.4 Illustrative Verification 327
18.5 Chapter Summary 334
References 335
Part VIII Application to Nonlinear Equation 337
19 Design Scheme I of FTZNN 339
19.1 Introduction 339
19.2 Model Formulation 339
19.2.1 OZNN Model 340
19.2.2 FTZNN Model 340
19.2.3 Models Comparison 341
19.3 Convergence Analysis 341
19.4 Illustrative Verification 343
19.4.1 Nonlinear Equation $f(u)$ with Simple Root 343
19.4.2 Nonlinear Equation $f(u)$ with Multiple Root 346
19.5 Chapter Summary 347
References 347
20 Design Scheme II of FTZNN 349
20.1 Introduction 349
20.2 Problem and Model Formulation 349
20.2.1 GNN Model 350
20.2.2 OZNN Model 350
20.3 FTZNN Model and Finite-Time Convergence 351
20.4 Illustrative Verification 354
20.5 Chapter Summary 356
References 356
21 Design Scheme III of FTZNN 359
21.1 Introduction 359
21.2 Problem Formulation and ZNN Models 359
21.2.1 Problem Formulation 360
21.2.2 ZNN Model 360
21.3 Robust and Fixed-Time ZNN Model 361
21.4 Theoretical Analysis 362
21.4.1 Case 1: No Noise 362
21.4.2 Case 2: Under External Noises 363
21.5 Illustrative Verification 367
21.6 Chapter Summary 370
References 371
Index 375

List of Figures

Figure 1.1 Transient behavior of $U(t)$ synthesized by the OZNN model (1.5) starting with 10 randomly generated initial states, where solid curves correspond to neural state $U(t)$, and dash curves correspond to theoretical matrix square root $U^{*}(t)$. 9
Figure 1.2 Transient behavior of $U(t)$ synthesized by FTZNN model (1.13) starting with 10 randomly generated initial states, where solid curves correspond to neural state $U(t)$, and dash curves correspond to theoretical time-varying matrix square root $U^{*}(t) . \quad 10$
Figure 1.3 Transient behavior of the residual error $\left\|U^{2}(t)-B(t)\right\|_{\mathrm{F}}$ corresponding to $U(t)$ synthesized by the OZNN model (3.2) and FTZNN model (3.3). (a) By the OZNN model (3.2) and (b) by FTZNN model (3.3). 10

Figure 2.1 Simulative results of OZNN model (2.3) using linear activation functions under the condition of $\gamma=1$ and a randomly generated $U(0) \in \mathbb{R}^{2 \times 2}$ close to $U^{*}(t)$. (a) Transient behavior of state matrix $U(t)$ and (b) transient behavior of residual error $\|Y(t)\|_{\mathrm{F}} . \quad 18$
Figure 2.2 Simulative results of OZNN model (2.3) using power-sigmoid activation functions under the condition of $\gamma=1$ and a randomly generated $U(0) \in \mathbb{R}^{2 \times 2}$ close to $U^{*}(t)$. (a) Transient behavior of state matrix $U(t)$ and (b) transient behavior of residual error $\|Y(t)\|_{\mathrm{F}} . \quad 19$
Figure 2.3 Simulative results of FTZNN model (2.5) under the condition of $\gamma=1, m=0.25$ and a randomly generated $U(0) \in \mathbb{R}^{2 \times 2}$ close to $U^{*}(t)$. (a) Transient behavior of state matrix $U(t)$ and (b) transient behavior of residual error $\|Y(t)\|_{\mathrm{F}} . \quad 19$

Figure 2.4 Transient behavior of residual error $\|Y(t)\|_{\mathrm{F}}$ synthesized by FTZNN model (2.5) under the condition of $m=0.25$ and a randomly generated $U(0) \in \mathbb{R}^{6 \times 6}$ close to $U^{*}(t)$. (a) With $\gamma=1$ and (b) with $\gamma=10.20$
Figure 3.1 Transient behavior of $U(t)$ synthesized by GNN model (3.2) starting with 8 randomly generated initial states under the condition of $\gamma=1 . \quad 31$
Figure 3.2 Transient behavior of $U(t)$ synthesized by OZNN model (3.3) starting with 8 randomly generated initial states under the condition of $\gamma=1 . \quad 32$
Figure 3.3 Transient behavior of the residual error $\|A(t) U(t)-I\|_{\mathrm{F}}$ corresponding to $U(t)$ synthesized by GNN model (3.2) and OZNN model (3.3). (a) By GNN model (3.3) and (b) by OZNN model (3.2). 33
Figure 3.4 Transient behavior of $U(t)$ synthesized by FTZNN model (3.11) starting with 8 randomly generated initial states under the conditions of $\gamma=\kappa_{1}=\kappa_{2}=1.33$
Figure 3.5 Transient behavior of the residual error $\|A(t) U(t)-I\|_{\mathrm{F}}$ synthesized by FTZNN model (3.11) under the conditions of $\kappa_{1}=\kappa_{2}=1$. (a) $\gamma=1$ and (b) $\gamma=100.34$
Figure 3.6 Transient behavior of the residual error $\|A(t) U(t)-I\|_{\mathrm{F}}$ synthesized by FTZNN model (3.11) under the conditions of $\kappa_{1}=\kappa_{2}=10$. (a) $\gamma=100$ and (b) $\gamma=10^{6} .34$
Figure 3.7 Transient behavior of the residual error $\|A(t) U(t)-I\|_{\mathrm{F}}$ synthesized by FTZNN model (3.11) using random time-varying coefficients under the conditions of $\kappa_{1}=\kappa_{2}=1$. (a) $\gamma=1$ and (b) $\gamma=10 . \quad 35$

Figure 4.1 Transient behavior of NT-FTZNN model (4.6) activated by VAF for solving time-dependent matrix inversion (4.9) without noise. (a) State solutions and (b) residual error. 47

Figure 4.2 Transient behavior of the ZNN model activated by LAF for solving time-dependent matrix inversion (4.9) with noise $z_{i j}(t)=1$.
(a) State solutions and (b) residual error. 48

Figure 4.3 Transient behavior of the ZNN model activated by abbtextpower-sum activation function (PSAF) for solving time-dependent matrix inversion (4.9) with noise $z_{i j}(t)=1$.
(a) State solutions and (b) residual error.
49

Figure 4.4 Transient behavior of the ZNN model activated by SBPAF for solving time-dependent matrix inversion (4.9) with noise $z_{i j}(t)=1$. (a) State solutions and (b) residual error. 49
Figure 4.5 Transient behavior of NT-FTZNN model (4.6) activated by VAF for solving time-dependent matrix inversion (4.9) with noise $z_{i j}(t)=1$. (a) State solutions and (b) residual error. 50
Figure 4.6 Transient behavior of residual errors $\|L(t) U(t)-I\|_{\mathrm{F}}$ synthesized by NT-FTZNN model (4.6) activated by VAF and other ZNN models activated by different activation functions in different noise environments for solving time-dependent matrix inversion (4.9). (a) Noise $z_{i j}(t)=0$ with $\gamma=1$, (b) noise $z_{i j}(t)=0.4\left|y_{i j}(t)\right|$ with $\gamma=1$, (c) noise $z_{i j}(t)=0.1 \exp (0.2 t)$ with $\gamma=1$, and (d) noise $z_{i j}(t)=0.4 \cos (2 t)$ with $\gamma=1 . \quad 50$
Figure 4.7 Transient behavior of residual errors $\|L(t) U(t)-I\|_{\mathrm{F}}$ synthesized by NT-FTZNN model (4.6) activated by VAF and other ZNN models activated by different activation functions in different noise environments for solving time-dependent matrix inversion (4.9) with different values of parameter γ. (a) Noise $z_{i j}(t)=2 t$ with $\gamma=10$ and (b) noise $z_{i j}(t)=20$ with $\gamma=20.51$
Figure 4.8 Transient behavior of residual errors $\|L(t) U(t)-I\|_{\mathrm{F}}$ synthesized by NT-FTZNN model (4.6) activated by VAF, GNN model, IEZNN model, and other ZNN models activated by LAF, PSAF, and SBPAF under different noise environments for solving time-dependent matrix inversion (4.11). (a) $z_{i j}(t)=1$, (b) $z_{i j}(t)=0.5 \sin (2.2 t)$, and $(\mathrm{c}) z_{i j}(t)=0.15 \exp (0.2 t) . \quad 53$
Figure 4.9 Circular task tracking synthesized by the original ZNN model activated by the SBP activation function in the presence of additive noise $z_{i j}(t)=0.35$. (a) Whole tracking process, (b) task comparison, and (c) position error. 55
Figure 4.10 Circular task tracking synthesized by NT-FTZNN model (4.6) in the presence of additive noise $z_{i j}=0.35$. (a) Whole tracking process, (b) task comparison, and (c) position error. 56
Figure 4.11 Physical comparative experiments of a butterfly-path tracking task generated by different ZNN models and performed on the Kinova JACO ${ }^{2}$ robot manipulator when disturbed by external noise. (a) Failure by SBPAF activated ZNN and (b) success by NT-FTZNN. 56

Figure 5.1 Simulative results using FPZNN model (5.4) with SBPAF when solving TVMI (5.1) of Example 1 with $k=1.5$. (a) State solution $U(t)$ and (b) residual error $\|Y(t)\|_{\mathrm{F}} . \quad 71$
Figure 5.2 Simulative results using EVPZNN model (5.7) with SBPAF when solving TVMI (5.1) of Example 1 with $k=1.5$. (a) State solution $U(t)$ and (b) residual error $\|Y(t)\|_{\mathrm{F}} . \quad 71$
Figure 5.3 Simulative results using VPZNN model (5.9) with SBPAF when solving TVMI (5.1) of Example 1 with $k=1.5$. (a) State solution $U(t)$ and (b) residual error $\|Y(t)\|_{\mathrm{F}} . \quad 72$
Figure 5.4 Simulative results using IVP-FTZNN model (5.11) with SBPAF when solving TVMI (5.1) of Example 1 with $k=1.5$. (a) State solution $U(t)$ and (b) residual error $\|Y(t)\|_{\mathrm{F}} . \quad 72$
Figure 5.5 Residual errors $\|Y(t)\|_{\mathrm{F}}$ of FPZNN (5.4), EVPZNN (5.4), VPZNN (5.7), and IVP-FTZNN (5.9) with SBPAF when solving TVMI (5.11) of Example 1 with $\gamma=k=1.5 . \quad 73$

Figure 5.6 Residual errors $\|Y(t)\|_{F}$ of IVP-FTZNN model (5.11) with different activation functions when solving TVMI (5.1) of Example 1 with $k=1.5$. 73
Figure 5.7 Simulative results using IVP-FTZNN model (5.11) with SBPAF when solving TVMI (5.1) of Example 2 with $k=1.5$. (a) State solution $U(t)$ and (b) residual error $\|Y(t)\|_{\mathrm{F}} . \quad 74$
Figure 5.8 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7), VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving TVMI (5.1) of Example 2 with different γ and k. (a) With $\gamma=k=0.5$, (b) with $\gamma=k=2$, (c) with $\gamma=k=5$, and (d) with $\gamma=k=10 . \quad 75$
Figure 5.9 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7), VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving TVMI (5.1) of Example 2 with different γ, k and noises $n_{i j}(t)$.
(a) With $\gamma=k=0.5$ and $n_{i j}(t)=0.2\|Y(t)\|_{\mathrm{F}}$, (b) with $\gamma=k=1.2$ and $n_{i j}(t)=0.5$, (c) with $\gamma=k=2$ and $n_{i j}(t)=0.5 \sin (2 t)$, and (d) With $\gamma=k=2$ and $-1 \leq n_{i j}(t) \leq 1 . \quad 76$

Figure 5.10 Simulative residual errors using FPZNN (5.4), EVPZNN (5.7), VPZNN (5.9), and IVP-FTZNN (5.11) with SBPAF when solving TVMI (5.1) of Example 2 with $\gamma=k=5$ and different noises $n_{i j}(t)$. (a) With $n_{i j}(t)=1.2 t$ and with $n_{i j}(t)=0.8 \exp (0.2 t) . \quad 77$

Figure 6.1 Simulative results generated by the R-FTZNN model (6.26) for solving the time-varying linear equation system with no noise.
(a) The first element of the neural state $\boldsymbol{u}(t)$ and the theoretical
solution $\boldsymbol{u}(t)$. (b) The second element of neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (c) The residual error $\|A(t) \boldsymbol{u}(t)-\boldsymbol{b}(t)\|_{2}$ corresponding to the neural state $\boldsymbol{u}(t)$. 94
Figure 6.2 Simulative results generated by ZNN model (6.27) for solving the time-varying linear equation system with no noise. (a) The first element of the neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$.
(b) The second element of neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (c) The residual error $\|A(t) \boldsymbol{u}(t)-\boldsymbol{b}(t)\|_{2}$ corresponding to the neural state $\boldsymbol{u}(t)$. 95

Figure 6.3 Simulative results generated by the R-FTZNN model (6.26) for solving the time-varying linear equation system with the constant noise $\eta_{j}=0.5$. (a) The first element of the neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (b) The second element of neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (c) The residual error $\|A(t) \boldsymbol{u}(t)-\boldsymbol{b}(t)\|_{2}$ corresponding to the neural state $\boldsymbol{u}(t)$. 96
Figure 6.4 Simulative results generated by ZNN model (6.27) for solving the time-varying linear equation system with the constant noise $\eta_{j}=0.5$. (a) The first element of the neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (b) The second element of neural state $\boldsymbol{u}(t)$ and the theoretical solution $\boldsymbol{u}(t)$. (c) The residual error $\|A(t) \boldsymbol{u}(t)-\boldsymbol{b}(t)\|_{2}$ corresponding to the neural state $\boldsymbol{u}(t) . \quad 97$

Figure 6.5 Residual errors $\|A(t) \boldsymbol{u}(t)-\boldsymbol{b}(t)\|_{2}$ generated by the R-FTZNN model (6.35) and ZNN model (6.36) for solving the time-varying linear equation system with the different noises and parameters.
(a) The bounded noise $\eta_{j}=20$ with $\gamma_{1}=\gamma_{2}=\gamma=10$. (b) The time-varying noise $\eta_{j}(t)=5 \boldsymbol{u}(t)$ with $\gamma_{1}=\gamma_{2}=\gamma=10$. (c) The bounded noise $\eta_{j}=20$ with $\gamma_{1}=\gamma_{2}=\gamma=100$. 98
Figure 6.6 Actual ellipse-tracking results synthesized by ZNN model (6.27) in the presence of the additive noise $\eta_{j}=2 t$. (a) Actual ellipsetracking process. (b) Desired ellipse path and actual ellipse-tracking trajectory. (c) Position error between desired ellipse path and actual ellipse-tracking trajectory. 99
Figure 6.7 Actual ellipse-tracking results synthesized by R-FTZNN model (6.26) in the presence of the additive noise $\eta_{j}=2 t$. (a) Actual ellipse-tracking process. (b) Desired ellipse path and actual ellipse-tracking trajectory. (c) Position error between desired ellipse path and actual ellipse-tracking trajectory. 100
Figure 6.8 Actual circle-tracking results of the thee-dimensional (3D) manipulator synthesized by R-FTZNN model (6.26) in the
presence of the additive noise $\eta_{j}=1$. (a) Desired circle path and actual circle-tracking trajectory. (b) Position error between desired circle path and actual circle-tracking trajectory. (c) Dynamic behavior of joint angle. 101
Figure 7.1 Solved by the FTZNN1 model with $\tau=0.2$ and $\gamma=1$, where dash curves represent theoretical solution of (7.1) and solid curves represent state solution of (7.5). 119
Figure 7.2 Solved by the FTZNN2 model with $\tau=0.2$ and $\gamma=1$, where dash curves represent theoretical solution of (7.1) and solid curves represent state solution of (7.5). 120
Figure 7.3 Steady-state error $\|Y(t)\|_{\mathrm{F}}$ produced by proposed FTZNN models with $\tau=0.2$ and $\gamma=1$. (a) By FTZNN1. (b) By FTZNN2. 120

Figure 7.4 Steady-state error $\|Y(t)\|_{\mathrm{F}}$. (a) By ZNN model (7.5) activated by different activation functions with $\tau=0.2$ and $\gamma=1$. (b) By the perturbed ZNN model (7.11) activated by different activation functions with $\tau=0.2$ and $\gamma=3$. 121
Figure 7.5 Steady-state error $\|Y(t)\|_{\mathrm{F}}$ produced by perturbed ZNN model (7.11) activated by NFTAF activation functions with $\tau=0.2$. (a) By NFTAF1 activation function with different γ. (b) By NFTAF2 activation function with different $\gamma .122$

Figure 8.1 The state solutions computed by U-FTZNN model (8.12) on solving different TVQP problems. (a) TVQPEI (8.27)-(8.29). (b) TVQPE (8.30)-(8.31). 137

Figure 8.2 The residual error $\|\boldsymbol{y}(t)\|_{2}$ generated by U-FTZNN model (8.9) on solving different TVQP problems. (a) TVQPEI (8.27)-(8.29).
(b) TVQPE (8.30)-(8.31). 138

Figure 8.3 Comparisons of residual error $\|\boldsymbol{y}(t)\|_{2}$ produced by different models with different noises. (a) by perturbed ZNN (8.21) and perturbed U-FTZNN (8.19) with $0.1 \xi_{1}(t)$. (b) by perturbed U-FTZNN with $\boldsymbol{\xi}_{\mathrm{c}}, \boldsymbol{\xi}_{1}(t)$ and $\boldsymbol{\xi}_{\mathrm{s}}(t) . \quad 139$
Figure 8.4 The convergence time of the U-FTZNN model (8.10) solving the TVQPEI-C2 problem starting from different initial condition $q(0)$ with different model variable settings. T_{p} is the predefined convergence time bound by Eq. (8.18). (a) $r_{2}=0.5, \gamma_{1}=\gamma_{2}=1$ while changing r_{1}.(b) $r_{1}=3, \gamma_{1}=\gamma_{2}=1$ while changing r_{2}. (c) $r_{1}=2, r_{2}=0.6, \gamma_{1}=\gamma_{2}$ while changing γ_{1} and γ_{2}. 141

Figure 8.5 The maximum steady-state residual error (MSSRE) of $\boldsymbol{\xi}_{c}\left(t, a_{n}\right)$ noise perturbed U-FTZNN model (8.21) solving the TVQPEI-C2 problem with different model variable settings, where MSSRE $_{\text {pred }}$
is the predicted MSSRE bound by inequality (8.26) when $\phi=4 \times 10^{3}$. (a) $r_{1}=4, r_{2}=0.6, \gamma_{1}=\gamma_{2}=1$ while changing a_{n} and $q(0)$. (b) $r_{1}=2, r_{2}=0.6, q(0)=q_{1}(0), a_{n}=10$ while changing γ_{1} and γ_{2}. (c) $\gamma_{1}=\gamma_{2}=1, a_{n}=10$ while changing r_{1} and $r_{2} .142$
Figure 8.6 Results of image fusion on a 512×512 gray scale picture using U-FTZNN model (8.10). (a) Original image. (b) Noisy image with SNR $=1$ dB. (c) Fused image when $S=20$. (d) Fused image when $S=50.144$

Figure 8.7 Computation error $\|\boldsymbol{y}(t)\|_{2}$ synthesized by U-FTZNN model (8.9) during image fusion with different S. (a) $S=20$. (b) $S=50.145$
Figure 8.8 Results of image fusion on T1-MR images using U-FTZNN model (8.10). (a) Slice 50 of T1-MR. (b) Slice 50 polluted by Gaussian noise. (c) Fused image of noise-polluted slice 50 when $S=100$.
(d) Slice 80 of T1-MR. (e) Slice 80 polluted by the Rician noise.
(f) Fused image of noise-polluted slice 80 when $S=100 . \quad 145$

Figure 8.9 Residual error $\|\boldsymbol{y}(t)\|_{2}$ synthesized by U-FTZNN model (8.10) during image fusion when using different T1-MR images.
(a) Using Gaussian noise polluted Slice 50. (b) Using Rician noise polluted Slice 80. 146

Figure 8.10 Simulation results of using U-FTZNN model (8.10) to control PUM560 robot manipulator to track the Lissajous curve path.
(a) Relationship between θ_{1} and η_{1}.(b) Trajectory of end effector and desired path. (c) Full view of path tracking with robot arm in Cartesian space. (d) Traces of joint angles. (e) Traces of joint velocities. (f) Position errors of the end effector in three dimensions. 148
Figure 9.1 Computing nonlinear minimization problem by ZNN model (9.6) using the sign-bi-power activation function with $\varpi=5$ in front of constant noise $v=0.5$. (a) Neural output $U(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 162$
Figure 9.2 Computing nonlinear minimization problem by RZNN model (9.8) with $\gamma_{1}=\gamma_{2}=5$ in front of constant noise $v=0.5$. (a) Neural output $U(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 162$
Figure 9.3 Computing nonlinear minimization problem by R-FTZNN model (9.27) using the sign-bi-power activation function with $\gamma_{1}=\gamma_{2}=5$ in front of constant noise $v=0.5$. (a) Neural output $U(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 163$
Figure 9.4 Computing nonlinear minimization problem by ZNN model (9.6) using the sign-bi-power activation function with $\varpi=10$ under
constant noise $v=2 \sin (t)$. (a) Neural output $\boldsymbol{u}(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 164$
Figure 9.5 Computing nonlinear minimization problem by RZNN model (9.8) with $\gamma_{1}=\gamma_{2}=10$ under dynamic noise $v=2 \sin (t)$.
(a) Neural output $\boldsymbol{u}(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 164$

Figure 9.6 Computing nonlinear minimization problem by R-FTZNN model
(9.27) using the sign-bi-power activation function with
$\gamma_{1}=\gamma_{2}=10$ in front of dynamic noise $v=2 \sin (t)$. (a) Neural output $\boldsymbol{u}(t)$. (b) Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2} . \quad 165$

Figure 9.7 Residual error $\|\boldsymbol{z}(\boldsymbol{u}(t), t)\|_{2}$ generated by R-FTZNN model (9.8), ZNN model (9.6), and RZNN model (9.8) with $\varpi=\gamma_{1}=\gamma_{2}=10$ in front of different types of noises. (a) Bounded additive noise $v=15$. (b) Linearly increasing noise $v=3 t . \quad 165$
Figure 10.1 "Moving" nonlinear constraint, "Moving" objective function, and "Moving" optimal solution of nonstationary quadratic optimization (10.1) and (10.2). (a) Snapshot at $t=0.15$ second.
(b) Snapshot at $t=1.50$ seconds. (c) Snapshot at $t=3.25$ seconds.
(d) Snapshot at $t=5.80$ seconds. 171

Figure 10.2 Simulative results of real-time solution to nonstationary quadratic optimization (10.4) and (10.5) synthesized by GNN model (10.12) with $\gamma=1$. (a) Transient behavior of neural state $g(t)$.
(b) Transient behavior of $\|C(t) \boldsymbol{g}(t)-\boldsymbol{d}(t)\|_{2} . \quad 179$

Figure 10.3 Simulative results of real-time solution to nonstationary quadratic optimization (10.4) and (10.5) synthesized by ZNN model (10.15) with $\gamma=1$. (a) Transient behavior of neural state $g(t)$.
(b) Transient behavior of $\|C(t) \boldsymbol{g}(t)-\boldsymbol{d}(t)\|_{2} . \quad 180$

Figure 10.4 Simulative results of real-time solution to nonstationary quadratic optimization (10.4) and (10.5) synthesized by N-FTZNN model (10.18) with $\gamma=1$. (a) Transient behavior of neural state $g(t)$.
(b) Transient behavior of $\|C(t) \boldsymbol{g}(t)-\boldsymbol{d}(t)\|_{2} . \quad 180$

Figure 11.1 Transient behavior of $U(t)$ synthesized by GNN model (11.3) and ZNN model (11.5) starting from randomly generated initial state matrices $U(0) \in \mathbb{R}^{2 \times 2}$. (a) By GNN model (11.3) and (b) by ZNN model (11.5). 191

Figure 11.2 Transient behavior of $\left\|A^{\mathrm{T}} U(t)+U(t) A+C\right\|_{\mathrm{F}}$ synthesized by GNN model (11.3) and ZNN model (11.5) starting from randomly generated initial state matrices $U(0) \in \mathbb{R}^{2 \times 2}$. (a) By GNN model (11.3) and (b) by ZNN model (11.5). 192

Figure 11.3 Simulative results synthesized by FTZNN model (11.8) starting from randomly generated initial state matrices $U(0) \in \mathbb{R}^{2 \times 2}$.
(a) Transient behavior of state matrices and (b) transient behavior of residual errors. 192
Figure 11.4 Transient behavior of $\left\|A^{\mathrm{T}} U(t)+U(t) A+C\right\|_{\mathrm{F}}$ synthesized by FTZNN model (11.8) starting with a randomly generated initial state, where dash-dotted curves denote the time-varying theoretical solution of (11.1) and solid curves denote the neural-state solution. (a) With $\gamma=100$ and (b) With $\gamma=1000 . \quad 193$
Figure 12.1 Transient behavior of neural state $U(t)$ synthesized by original ZNN model (12.4). 203
Figure 12.2 Transient behavior of neural state $U(t)$ synthesized by FTZNN model (12.11). 204
Figure 12.3 Transient behavior of residual error $\| A^{\mathrm{T}}(t) U(t)+U(t) A(t)+$ $C(t) \|_{\mathrm{F}}$ corresponding to the neural state $U(t)$ synthesized by original ZNN model (12.4) and FTZNN model (12.11). (a) By the original ZNN model (12.4) and (b) by FTZNN model (12.11). 205
Figure 12.4 Tracking ellipse-path results of the mobile manipulator synthesized by the proposed model (12.15). (a) Whole tracking motion trajectories and (b) top graph of tracking motion trajectories. 206
Figure 12.5 Tracking ellipse-path results of the mobile manipulator synthesized by the proposed model (12.15). (a) Desired path and actual trajectory and (b) tracking errors at the joint position level. 206
Figure 13.1 Block diagram of the control architecture of N-FTZNN model (13.4) for solving dynamic Lyapunov from the nonlinear PID perspective. 212
Figure 13.2 Convergence property of each element of state output $U(t)$ corresponding to the one of theoretical solution $U^{*}(t)$ synthesized by N-FTZNN model (13.5) with $\gamma_{1}=\gamma_{2}=1$ in the presence of additive constant noise $\varsigma=1 . \quad 220$
Figure 13.3 Convergence property of each element of state output $U(t)$ corresponding to the one of theoretical solution $U^{*}(t)$ synthesized by ZNN model (13.6) with $\gamma_{1}=\gamma_{2}=1$ in the presence of additive constant noise $\varsigma=1 . \quad 221$
Figure 13.4 Convergence of residual error $\left\|C^{\mathrm{T}}(t) U(t)+U(t) C(t)+G(t)\right\|_{\mathrm{F}}$ produced by two different models with $\gamma_{1}=\gamma_{2}=1$ in the presence
of additive constant noise $\varsigma=1$. (a) By N-FTZNN model (13.5). (b) By ZNN model (13.6). 221

Figure 13.5 Convergence of residual error $\left\|C^{\mathrm{T}}(t) U(t)+U(t) C(t)+G(t)\right\|_{\mathrm{F}}$ produced by N-FTZNN model (13.5) with different values of parameters γ_{1} and γ_{2} in the presence of additive constant noise $\varsigma=1$. (a) $\gamma_{1}=\gamma_{2}=10$. (b) $\gamma_{1}=\gamma_{2}=10^{6}$.222

Figure 13.6 Convergence of residual error $\left\|C^{\mathrm{T}}(t) U(t)+U(t) C(t)+G(t)\right\|_{\mathrm{F}}$ produced by N-FTZNN model (13.5) and ZNN model (13.6) with $\gamma_{1}=\gamma_{2}=10$ in the presence of different kinds of additive noises.
(a) Bounded random additive $\varsigma=10$. (b) Time-varying additive $\varsigma=5 U(t) . \quad 223$
Figure 13.7 Circular tracking results of the planar six-link manipulator synthesized by the N-FTZNN-based control law with $\gamma_{1}=\gamma_{2}=100$ in the presence of additive constant noise $\varsigma=5$.
(a) Joint motion trajectories of planar six-link manipulator.
(b) Comparison between the desired path and the actual trajectory. (c) Position error between the desired path and the actual trajectory. (d) Dynamic behavior of joint angle. 225
Figure 13.8 Circular tracking results of the planar six-link manipulator synthesized by the ZNN-based control law with $\gamma_{1}=\gamma_{2}=100$ in the presence of additive constant noise $\varsigma=5$. (a) Joint motion trajectories of planar six-link manipulator. (b) Comparison between the desired path and the actual trajectory. (c) Position error between the desired path and the actual trajectory.
(d) Dynamic behavior of joint angle. 226

Figure 13.9 Circular tracking experiment results synthesized by the N-FTZNN-based control law with $\gamma_{1}=\gamma_{2}=100$ in the presence of additive constant noise $\varsigma=1.227$

Figure 13.10 Data profiles during the circular tracking experiment of the 3-axis physical manipulator. (a) Comparison between the desired path and the actual trajectory. (b) Position error between the desired path and the actual trajectory. (c) Dynamic behavior of joint angle. (d) Dynamic behavior of joint velocity. 228

Figure 14.1 The circuit topology of design formula (14.6) for hardware implementation. 236
Figure 14.2 Trajectories of theoretical solution $U^{*}(t)$ and state output $U(t)$ generated by N-FTZNN model (14.9) with $\gamma_{1}=\gamma_{2}=1$ in front of no noise, where solid curves denote the elements of state output $U(t)$, and dash curves denotes the elements of $U^{*}(t) . \quad 244$

Figure 14.3 Trajectories of residual error $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ generated by N-FTZNN model (14.9) with different values of γ_{1} and γ_{2} in front of no noise. (a) With $\gamma_{1}=\gamma_{2}=1$. (b) With $\gamma_{1}=\gamma_{2}=1000$. 245

Figure 14.4 Trajectories of theoretical solution $U^{*}(t)$ and state output $U(t)$ generated by ZNN model (14.4) with $\gamma_{1}=\gamma_{2}=1$ in front of the additive constant noise $\varepsilon=3$, where solid curves denote the elements of state output $U(t)$, and dash curves denotes the elements of $U^{*}(t) . \quad 246$

Figure 14.5 Trajectories of residual error $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ generated by two different models with $\gamma=\gamma_{1}=\gamma_{2}=1$ in front of additive constant noise $\varepsilon=3$. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 246

Figure 14.6 Trajectories of residual error $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ generated by two different models with $\gamma=\gamma_{1}=\gamma_{2}=10$ in front of additive constant noise $\varepsilon=3$. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 247

Figure 14.7 Trajectories of residual error $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ generated by two different models with $\gamma=\gamma_{1}=\gamma_{2}=10$ in front of additive dynamic noise $\varepsilon=4$ t. (a) By ZNN model (14.5).
(b) By N-FTZNN model (14.9). 247

Figure 14.8 Motion trajectories of a two-link planar manipulator synthesized by the N-FTZNN-based model (14.43) with $\gamma_{1}=\gamma_{2}=50$ in front of the additive constant noise $\varepsilon=2.5$. (a) The actual circle trajectory and the desired path. (b) The whole motion process. (c) The control law $u=\dot{\theta}$. (d) The position tracking error $Y(t)=r(t)-r_{\mathrm{d}}(t) . \quad 249$
Figure 14.9 Motion trajectories of a two-link planar manipulator synthesized by ZNN-based model (14.31) with $\gamma=50$ in front of the additive constant noise $\varepsilon=2.5$. (a) The actual circle trajectory and the desired path. (b) The whole motion process. (c) The control law $u=\dot{\theta}$. (d) The position tracking error $Y(t)=r(t)-r_{\mathrm{d}}(t) . \quad 250$
Figure 15.1 Transient behavior of state solutions $U(t)$ generated by NT-PTZNN1 model (15.9) and NT-PTZNN2 model (15.13) when solving time-variant Sylvester equation of Example 1 with noise $Y(t)=0$. (a) By NT-PTZNN1 model (15.9). (b) By NT-PTZNN2 model (15.13). 267
Figure 15.2 Transient behavior of residual errors $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ generated by NT-PTZNN1 model (15.9) and NT-PTZNN2
model (15.13) when solving time-variant Sylvester equation of Example 1 with noise $d_{i j}(t)=0$. (a) By NT-PTZNN1 model (15.9). (b) By NT-PTZNN2 model (15.13). 268

Figure 15.3 Transient behavior of residual errors $\|A(t) U(t)-U(t) B(t)+C(t)\|_{F}$ synthesized by NT-PTZNN1 model (15.9) activated by AF (15.5), NT-PTZNN2 model (15.13) activated by AF (15.6) and ZNN model (15.4) activated by LAF, PSAF, and SBPAF under different kinds of noises $D(t)$. (a) With noise $d_{i j}=0$. (b) With noise $d_{i j}=0.45\left|y_{i j}(t)\right|$. (c) With noise $d_{i j}=1$. (d) With noise $d_{i j}=0.45 \cos (2 t) .268$

Figure 15.4 Transient behavior of state solution $U(t)$ generated by NT-PTZNN1 model (15.9) and NT-PTZNN2 model (15.13) when solving time-variant Sylvester equation of Example 2 with noise $D(t)=1$. (a) By NT-PTZNN1 model (15.9). (b) By NT-PTZNN2 model (15.13). 270

Figure 15.5 Transient behavior of residual errors $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model (15.13), and ZNN model (15.4) activated by LAF, PSAF, and SBPAF under different kinds of noises $D(t)$ with $\gamma=1$. (a) With noise $d_{i j}(t)=1$. (b) With noise $d_{i j}(t)=0.6\left|y_{i j}(t)\right|$. (c) With noise $d_{i j}(t)=0.6 \cos (2.5 t)$. (d) With noise $d_{i j}(t)=0.125 \exp (0.2 t) . \quad 271$
Figure 15.6 Transient behavior of residual errors $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model (15.13), and ZNN model (15.4) activated by LAF, PSAF, and SBPAF under different kinds of noises $D(t)$ with $\gamma=10$ and $\gamma=20$. (a) With noise $d_{i j}(t)=2.1 t$ and $\gamma=10$. (b) With noise $d_{i j}(t)=18.5$ and $\gamma=20 . \quad 272$
Figure 15.7 Transient behavior of residual errors $\|A(t) U(t)-U(t) B(t)+C(t)\|_{\mathrm{F}}$ synthesized by NT-PTZNN1 model (15.9), NT-PTZNN2 model (15.13), and ZNN model (15.4) activated by LAF, PSAF, and SBPAF under different kinds of noises $D(t)$ with $\gamma=1$. (a) With noise $d_{i j}(t)=1$. (b) With noise $d_{i j}(t)=0.5\left|y_{i j}(t)\right|$. (c) With noise $d_{i j}(t)=0.5 \sin (1.6 t)$. (d) With noise $d_{i j}(t)=0.1 \exp (0.1 t) .273$
Figure 16.1 Trajectories of theoretical solutions (black solid lines) of the time-varying Sylvester equation and state solutions (dotted curves) generated by SA-FTZNN model (16.22), PA-FTZNN model (16.29), and EA-FTZNN model (16.37). 290
Figure 16.2 Comparisons of the computational errors generated by SA-FTZNN model (16.22), PA-FTZNN model (16.29), EA-FTZNN model (16.37), and the ZNN activated by sign-bi-power function (16.5). 290

Figure 16.3 Comparisons of the SA-FTZNN model (16.22) with different values of k. 292

Figure 16.4 Comparisons of SA-FTZNN model (16.22), PA-FTZNN model (16.29), EA-FTZNN model (16.37) and the ZNN activated by SP-1 function (16.7) and SP-2 function (16.8) while setting a large and small initial state. (a) Large initial state. (b) Small initial state. 292

Figure 17.1 Trajectories of state vector $U(t)$ by applying FTZNN-1 model (17.17) to solve LMI (17.1) when $U(0)$ is outside $\Omega(0)$ with $\gamma=1$ and $\alpha=0.3$. (a) $u_{11}(t)$, (b) $u_{12}(t)$, (c) $u_{21}(t)$, (d) $u_{22}(t)$, (e) $u_{31}(t)$, and (f) $u_{32}(t) . \quad 310$

Figure 17.2 Comparisons of three FTZNN models with the conventional ZNN models activated by other AFs with $\gamma=1$ and $\alpha=0.3$ when $p(0)>1$. (a) By FTZNN-1 model (17.17) and FTZNN-2 model (17.19). (b) By FTZNN-1 model (17.17) and FTZNN-3 model (17.21). 311

Figure 17.3 Comparisons of three FTZNN models with the conventional ZNN models activated by other AFs with $\gamma=1$ and $\alpha=0.3$ when $p(0)<1$. (a) By FTZNN-1 model (17.17) and FTZNN-2 model (17.19). (b) By FTZNN-1 model (17.17) and FTZNN-3 model (17.21). 312

Figure 17.4 Comparisons among three cases of FTZNN-3 model (17.21) with different tunable parameters. (a) $p(0)>1$. (b) $p(0)<1.313$

Figure 17.5 Transient behaviors of the error function $\|Y(t)\|_{2}$ synthesized by FTZNN-3 model (17.21) with $k_{2}=1, k_{3}=1$ and different values of k_{1}. 313

Figure 18.1 Trajectories of state matrix $U(t)$ by applying NT-FTZNN model (18.6) to solve linear inequalities (18.1) when $U(0)$ is outside $\Omega(0)$ with $\gamma=1$ and $\lambda=10$. (a) $u_{11}(t)$, (b) $u_{12}(t)$, (c) $u_{21}(t)$, and (d) $u_{22}(t) . \quad 328$

Figure 18.2 Trajectories of five random state matrix $U(t)$ by applying NT-FTZNN model (18.6) with $\gamma=1$ and $\lambda=10$ to solve linear inequalities (18.1) when $U(0)$ is outside $\Omega(0) . \quad 328$

Figure 18.3 Comparisons of the error function generated by NT-FTZNN model (18.6) with $\gamma=1$ and $\lambda=1$ and the error function created by the CZNN model with $\gamma=1$ which are both activated by linear AF. 329

Figure 18.4 Comparisons of the error functions generated by NT-FTZNN model (18.6) with $\gamma=1$ and $\lambda=1$ which are activated by several of AFs under the same conditions. 329

Figure 18.5 Trajectories of the error function generated by NT-FTZNN model (18.6) activated by two sign-bi-power AFs with $\gamma=1, \lambda=1$ and $r=0.3$ to solve linear inequalities (18.1). (a) When the initial state $p(0)<1$. (b) When the initial state $p(0)>1.330$
Figure 18.6 Comparisons among three cases of NT-FTZNN model (18.6) with different α to solve linear time-varying inequalities (18.1). 332
Figure 18.7 Comparisons among three cases of NT-FTZNN model (18.6) with $\alpha=0.3$ and different λ to solve linear time-varying inequalities (18.1). 332

Figure 18.8 Trajectories of theoretical solutions of the higher-order timevarying inequalities and actual solutions starting with random initial state using NT-FTZNN model (18.6) with $\gamma=1, \lambda=1$, and $\alpha=0.3 . \quad 333$

Figure 18.9 Comparisons of the error functions generated by NT-FTZNN model (18.6) with $\gamma=1$ and $\lambda=10$ which are activated by different AFs for solving higher-order time-varying inequalities. 334
Figure 19.1 Transient behavior of neural states $u(t)$ synthesized by different dynamical models with $\gamma=1$ and 50 randomly generated initial states within $[-10,10]$. (a) By OZNN model (19.4). (b) By FTZNN model (19.5). 344

Figure 19.2 Transient behavior of residual functions $|y(t)|$ synthesized by different dynamical models with $\gamma=1$ and 50 randomly generated initial states within $[-10,10]$. (a) By OZNN model (19.4). (b) By FTZNN model (19.5). 345

Figure 19.3 Transient behavior of residual functions $|y(t)|$ synthesized by FTZNN model (19.5) with different values of γ and 50 randomly generated initial states within $[-10,10]$. (a) $\gamma=10$.
(b) $\gamma=10^{6} .345$

Figure 19.4 Transient behavior of residual functions $|y(t)|$ synthesized by different dynamical models with $\gamma=1$ and 5 randomly generated initial states within $[-4,4]$. (a) By OZNN model (19.4).
(b) By FTZNN model (19.5). 346

Figure 20.1 Transient behavior of neural states $u(t)$ solved by GNN model (20.2) and OZNN model (20.4) starting with 20 randomly generated initial states and with $\gamma=1$, where solid curves

