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Preface
The so‐called digital energy networks are gathering numerous
elements that have emerged from different branches of Engineering
and Science. Concepts such as Internet of Things (IoT), Big Data,
Smart Cities, Smart Grid and Industry 4.0 all converge together with
the goal of working more efficiently, and this fact inevitably leads to
Power Quality (PQ) assurance. Apart from its economic losses, a bad
PQ implies serious risks for machines and consequently for people.
Many researchers are endeavouring to develop new analysis
techniques, instruments, measurement methods and new indices and
norms that match and fulfil requirements regarding the current
operation of the electrical network. This book offers a compilation of
the recent advances in this field. The chapters range from computing
issues to technological implementations, going through event
detection strategies and new indices and measurement methods that
contribute significantly to the advance of PQ analysis. Experiments
have been developed within the frames of research units and projects
and deal with real data from industry and public buildings. Human
beings have an unavoidable commitment to sustainability, which
implies adapting PQ monitoring techniques to our dynamic world,
defining a digital and smart concept of quality for electricity.
PQ analysis is evolving continuously, mainly due to the incessant
growth and development of the smart grid (SG) and the incipient
Industry 4.0, which demands quick and accurate tracking of the
electrical power dynamics. Much effort has been put on two main
issues. First, numerous distributed energy resources and loads
provoke highly fluctuating demands that alter the ideal power
delivery conditions, introducing at the same time new types of
electrical disturbances. For this reason, permanent monitoring is
needed in order to track this a priori unpredictable behaviour. Second
and consequently, the huge amount of data (Big Data) generated by
the measurement equipment during a measurement campaign is
usually difficult to manage due to different causes, such as complex
structures and communication protocols that hinder accessibility to
storage units, and the limited possibilities of monitoring equipment,
based on regulations that do not reflect the current network
operation.



The introduction of new indicators in PQ is one of the main subjects
of discussion in the CIRED/CIGRÉ working group; however, it is
necessary to solve future challenges from new perspectives. Indeed,
this book proposes to spread the use of PQ indices based on HOS
from event detection up to cycle‐to‐cycle continuous monitoring,
taking advantage of their most simple calculations in order to detect
the effect of multiple loads acting/working together on a node for a
specific length of time.
Chapter 1 introduces the State of the Art in the power quality field
and will help researchers to bridge the gap between traditional
methods and those applications that use HOS analysis.
Chapters 2–5 propose different and experimental approaches that
have been used to validate HOS applications in monitoring the power
system.
Table A summarizes the monitoring objectives that would be
accomplished using HOS as part of the results of this book and
according to the topics proposed in the Guideline for Selection of
Monitoring Parameters. Compared with other simpler methods, such
as RMS measurements, HOS are not sensitive to noise. In Chapter 3,
the authors demonstrated that HOS can help to detect fundamental
frequency changes in the bi‐dimensional plane and Chapter 4
introduces techniques in the frequency domain, such as spectral
kurtosis.



Table A HOS approach related to different applications.

Monitoring
objective

Variables Sampling
rate

Data
averaging
window

Reference

Compliance
verification‐
connections
agreements/premium
power contracts

Voltage sags
or voltage
swells

5  Hz As
specified
in the
contract

Chapter 3

Performance analysis Steady‐state
voltage
Voltage sags
and swells
Highest or
lowest RMS
voltage per 1
(or 10  min)
Fundamental
frequency
deviations

5  Hz 10  min
averaging
window
1  min
averaging
window

Chapter 3

Site characterization 20  kHz Tables
Chapter 4
Chapter 5

Troubleshooting Disturbance
depending
on the
nature of the
problem
being
investigated

Chapter 3
Chapter 4

Overall, here the authors summarize the last 10 years of power
quality research based on HOS techniques that would be
incorporated in future PQ measurement campaigns, in order to
accomplish the monitoring challenges of the next generation of
advanced metering infrastructure in terms of compression, as well as
reporting PQ efficiently.
This book gathers new advances in techniques and procedures to
describe, measure and visualize the behaviour of the electrical supply,
from physical instruments to statistical signal processing (SSP)



techniques and new indexes for PQ that try to go beyond traditional
norms and standards. The authors are recognized experts in the field,
committed to a main goal: to provide new instrumental and analytical
tools to help mitigate the serious consequences of a bad PQ in our
digitized society, and thus enhancing energy efficiency for a more
sustainable development.

Olivia Florencias‐Oliveros
Juan‐José González‐de‐la‐Rosa
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