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Preface

Professor Patrick R. Taylor is the George S. Ansell Endowed Chair Professor of
Chemical Metallurgy and Director of the Kroll Institute for Extractive Metallurgy
at the Colorado School of Mines. He is an active member of TMS and has over 45
years of experience in mineral processing, extractive metallurgy, recycling and waste
minimization, engineering, research, teaching, and consulting. He has published
numerous papers and given invited presentations in over 13 nations and holds 9
patents. He has advised and mentored over 100 graduate students and postdoctoral
research associates and served as a consultant for more than 20 companies. Professor
Taylor is a Fellow of ASM International and a Distinguished Member (Fellow) of
SME. He has received several outstanding awards from several societies and organi-
zations including theMilton E.WadsworthAward fromSME, the EPDDistinguished
Lecturer Award, the TMS EPD Distinguished Service Award, and the AIME James
Douglas Gold Medal.

To honor Professor Taylor and his vast contributions to extractive metallurgy,
The Professor Patrick R. Taylor International symposium titled “New Directions
in Mineral Processing, Extractive Metallurgy, Recycling, and Waste Minimization”
was held during the TMS 2023 AnnualMeeting in San Diego, California, USA, from
March 19-23, 2023.

The new concepts and fundamentals, update on reactor design and processes,
industrial practices and developments, and environmental issues which influence
the selection of metallurgical processes are discussed in the scientific papers
published in this proceeding. These issues are discussed relative to new directions in
pyrometallurgy, hydrometallurgy, electrometallurgy, mineral processing, metals and
e-waste recycling, waste minimization and innovations in metallurgical engineering
education and curriculum development.

The editors thank the symposium sponsors Society for Mining, Metallurgy &
Exploration (SME), TMS Extraction and Processing Division, and its committees
of Pyrometallurgy, Hydrometallurgy and Electrometallurgy, Materials Characteri-
zation, Energy, and Recycling and Environmental Technologies. We also thank the
authors for providing the invaluable scientific and technical information contained
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vi Preface

in this book, and session chairs for their keen interest and support in making the
symposium a success.

The lead organizer and editor ProfessorRamanaReddywould like to acknowledge
the assistance and encouragement of Corby G. Anderson, Colorado School ofMines,
Erik D. Spiller, Colorado School of Mines, Edgar E. Vidal, NobelClad, Camille
Fleuriault, Eramet Norway, Alexandra E. Anderson, Gopher Resource, Mingming
Zhang, BaowuOuyeel, ChristinaMeskers, SINTEF, andMark Strauss, AquaMetals,
Inc., who were very helpful in numerous areas, particularly in soliciting invited
papers, organizing sessions, and reviewing and editing the manuscripts.

Finally, we thank TMS Headquarters, particularly Patricia Warren, Kelly Markel,
Trudi Dunlap, and James Robinson who made it possible to organize the symposium
and publish the papers in the book New Directions in Mineral Processing, Extractive
Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of
Patrick R. Taylor.

Dr. Ramana G. Reddy
Lead Organizer
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About the Honoree

Patrick R. Taylor is a registered professional engineer
with over 45 years of experience in mineral processing,
extractive metallurgy, recycling, and waste minimiza-
tion; engineering, research, teaching, and consulting.
He grew up in West Denver and served in the US
Army inVietnam.He then attended theColorado School
of Mines (B.S. Mathematics 1974, B.S. Metallurgical
Engineering 1974, and Ph.D.Metallurgical Engineering
1978). He began his professional career at the Univer-
sity of Idaho in 1977. He progressed through the various
positions and was the Department Head his last five
years (1995–2000). He then joined the University of
Tennessee where he was head of the Material Science
and Engineering Department (2000–2002). In 2002, he
accepted the offer to be the George S. Ansell Endowed
Chair at the Colorado School ofMines (2002–2022). He
directed theKroll Institute for ExtractiveMetallurgy. He
was part of the team that helped develop the Center for
Resource Recovery and Recycling as well as the CSM
part of the Critical Materials Institute.

Dr. Taylor has worked or given invited presentations
in Canada, Mexico, Peru, Venezuela, Argentina, Chile,
Bolivia, Colombia, Brazil, India, England, Turkey, and
Egypt. He is experienced and trained in pyrometallurgy,
hydrometallurgy, and mineral processing. He has been
responsible for lab work, pilot plant work, research,
and process development for mineral processing, and
extractive metallurgy processes related to a wide variety
of metals. He has authored or co-authored numerous
papers and presentations and holds nine patents. He
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has served as a consultant for more than 20 compa-
nies and has been an expert witness. He has directed
research for more than 100 graduate students and post-
docs. He has taught extractive metallurgy and mineral
processing university courses for the past 45 years. He
has developed and taught ten short courses to industry.
He wrote professional engineering exam questions for
25 years.He is active inmany professional organizations
including participation in SME (fellow), TMS, ASM
(fellow), and MMSA.

In 1982, he was named Outstanding FacultyMember
in the College of Mines at the University of Idaho.
In 1985, he was the organizing chairman, TMS Fall
Meeting for Process and Extractive Metallurgy: Intl.
Symposium on the Recycle and Secondary Recovery of
Metals. In 1990, he was named Distinguished Faculty
Member at the, University of Idaho. In 1994 he received
the Research Excellence Award from the University of
Idaho. In 1996, he was named Fellow of ASM Interna-
tional. In 2003, he received the Milton E. Wadsworth
Award from SME. In 2004, he was the TMS Extrac-
tion and Processing Division Luncheon Speaker. In
May 2006, he was the CSM Alumni Association MME
Graduating Senior Outstanding Faculty Member. In
December 2006, he was the CSM Alumni Associa-
tion MME Graduating Graduate Student Outstanding
Faculty Member. In 2006, he was the TMS Extrac-
tion and Processing Division Distinguished Lecturer.
In 2008, he was a co-organizer and co-editor of the
SME5th International Hydrometallurgy Symposium. In
2008, he was named a Distinguished Member (Fellow)
of SME. In 2009, he was a co-organizer and co-editor of
the SME Fall meeting, Mineral Processing Plant Design
2009. In 2010, he received the TMS EPD Distinguished
Service Award. He received the AIME James Douglas
Gold Medal in 2013. In 2017, he was a co-organizer of
the symposium “Applications of Process Engineering
Principles in Materials Processing, Energy, and Envi-
ronmental Technologies” TMS. He was elected to the
University of Idaho’s Academy of Engineers in 2017.
He was selected to be interviewed for the AIME Oral
Histories program in 2018. Along with his graduate
students (Tom Boundy), he received the TMS Light
Metals/Extraction and Processing Subject Award—
Recycling, 2019.Alongwith his graduate student (Vivek
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Kashyap), he received the Taggart Award for the best
paper in mineral processing from SME/MPD in 2021.
He received the Industry Involvement award from CSM
in 2021. He was named Emeritus Ansell Distinguished
Professor of Chemical Metallurgy at CSM in 2022.
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heart (Peggy) since 1969. He has two sons (Dylan and
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Development of Ironmaking Technology
by the Direct Gaseous Reduction of Iron
Concentrate

Hong Yong Sohn

Abstract Considering the two most important issues the ironmaking industry faces
today, i.e. energy consumption and greenhouse gas emissions, it would be advan-
tageous to utilize the concentrate-size raw materials directly without pelletizing or
sintering, especially without the use of coke. This plenary lecture describes two such
processes developed at the University of Utah. One is the Flash Ironmaking Tech-
nology (FIT), and the other is a moving-bed process for continuous ironmaking
with gaseous reduction of iron ore concentrate (MBIT). These technologies are
designed to produce iron directly from iron concentrate without requiring pelleti-
zation/sintering and cokemaking. They take advantage of the high reactivity of the
concentrate particles and will significantly reduce energy consumption and carbon
dioxide emissions compared with the current processes. The process of the develop-
ment from the conception of the idea, to kinetic feasibility establishment, and to the
operation of a prototype facility will be discussed.

Keywords Flash ironmaking technology (FIT) ·Moving-bed ironmaking · Carbon
dioxide · Concentrate · Hydrogen ·Magnetite · Natural gas · Pilot plant ·
Reformerless · Energy consumption · Sohn’s law

Introduction

Primary steel is produced from iron oxide minerals through the integrated produc-
tion using blast furnace (BF), combined with subsequent refining steps such as basic
oxygen furnace (BOF), or by direct reduction (DR) process, combined with subse-
quent steelmaking steps such as electric arc furnace (EAF) treatment. Steel is also
made from scraps through the EAF steelmaking process.

The integrated steelmaking process involves many steps, emits a great deal of
carbon dioxide, and requires a large amount of energy compared with steelmaking
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from scraps. However, integrated steelmaking will remain the major steel producing
route for a long time. This is because most steel products last for decades, before
they become scrap and there are insufficient amounts of scrap to meet the rapidly
increasing demand for steel.

Raw materials preparation consumes much energy and emits a large amount of
CO2 gas. The U.S. emitted 55MMTCO2 from iron and steel production in 2014 [1].
Pelletizing, sintering, and cokemaking processes emit ~20% of the total CO2 in the
BF-BOF route and the BF contributes ~70%.

According to the above discussion, the two most critical issues that the steel
industry currently faces are energy consumption andgreenhouse gas emissions. Large
amounts of energy are consumed in the sintering/pelletizing steps and cokemaking,
which are also responsible for much carbon dioxide emissions. Up to ~70% of iron
production in the U.S. currently depends on magnetite concentrate produced from
the low-grade taconite ore. Further, there is a trend to upgrade even reasonably high-
grade iron ores up front to remove bulk of impurities before reduction. This required
grinding the ores to concentrate-size particles.

It would then be advantageous to utilize the concentrate-size rawmaterials directly
without pelletizing or sintering, especially without the use of coke. This plenary
lecture describes two such processes developed at the University of Utah. One is the
Flash Ironmaking Technology (FIT) [2–8], and the other is a moving-bed process for
continuous ironmaking with gaseous reduction of iron ore concentrate (MBIT) [9].

Flash Ironmaking Technology (FIT)

The Flash Ironmaking Technology (FIT) is based on the reduction of iron oxide
concentrates by gas in a flash reactor. This technology utilizes hydrogen or natural
gas as a fuel as well as reducing agent. The development of FIT started from the
kinetic feasibility determination to the laboratory flash furnace work and finally the
tests in a pilot plant. Process simulation and economic analysis on the new process
were also performed.

A sketch of the Flash Ironmaking process is shown in Fig. 1. A gaseous fuel is
partially oxidized with industrial oxygen to generate a reducing gas at 1600–1900 K.
Iron ore concentrate is fed from the top, and the reduced iron product can be collected
as a solid powder or as a molten bath for direct steelmaking.

Natural gas is plentiful in the U.S. and could easily supply potential ironmaking
based on the FIT. Hydrogen would be cleaner once the hydrogen economy is
developed.

The development of the FIT started with the establishment of sufficient kinetic
feasibility, considering the fact that there are only a few seconds of residence time
available in a typical flash reactor. Upon the establishment of the kinetic feasibility,
a laboratory flash reactor was tested, which was followed by a pilot-scale reactor test
program.
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Fig. 1 A sketch of a direct steelmaking process based on the Flash Ironmaking Technology (FIT)
(Adapted from Sohn and Choi [10])

Reduction Kinetics of Magnetite Concentrate Particles

Magnetite concentrate from a taconite ore of theMesabi Rangewas used in this study.
Sohn and coworkers [11–16] investigated the reduction rates ofmagnetite concentrate
under the conditions of the FIT. The results were expressed by the following equation
for component gases H2 or CO:

dX

dt
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∣
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= k j ·
[

p
m j

j −
(
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where kj is the reaction rate constant for gas j, k j = ko, jexp
(
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pressure of gas j; Kj is the equilibrium constant for the reduction of FeO by gas j;
m j is the reaction order with respect to gas j; nj is the Avrami parameter; d

−s j
p is the

particle size dependence; and X is the fraction of the total removable oxygen in the
concentrate particles removed by the reaction.
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Table 1 Kinetic parameters for reduction of magnetite concentrate by each component gas

Reducing
gas, j

Temperature
range (K)

ko, j Ej (kJ/mol) mj nj sj

H2 1423–1623 1.23× 107 atm−1 s−1 196 1 1 0

1623–1873 6.07× 107 atm−1·s−1·
µm

180 1 1 1

CO 1423–1623 1.07× 1014 atm−1 s−1 451 1 0.5 0

1623–1873 6.45× 103 atm−1·s−1·
µm

88 1 0.5 1

The relevant kinetic parameters are given in Table 1. The reader is referred to the
original papers [11, 13, 14, 16] for other details of the rate measurements and data
analyses.

When magnetite concentrate is reduced by a mixture of H2+CO, the CO enhances
the rate of reaction between H2 and iron oxide. This is most likely due to the effect of
CO on themorphology of the reduced iron by forming whiskers, which was observed
in a separate study [17]. Taking this into consideration, Fan et al. [13] developed the
following rate expression.

The complete rate equations for magnetite concentrate reduction by a H2+CO
mixture at 1423 K (1150 °C)–1623 K (1350 °C) and 1623 K (1350 °C)–1873 K
(1600 °C) are given, respectively, as:

dX
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=

(

1+ 1.3 · pco
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· dX
dt
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where dX
dt

∣
∣
H2

and dX
dt

∣
∣
CO

represent the rates of reduction individually by H2 and CO,
respectively, obtained from Eq. (1) with the parameters listed in Table 1.

These kinetics measurements confirmed the fact that a few seconds of residence
time in a flash reactor at temperatures of 1473 K or higher are sufficient to reduce
iron ore concentrate.

Tests in a Laboratory Flash Reactor

Tests were then performed in a laboratory flash reactor shown in Fig. 2 [18, 19], based
on the partial oxidation of methane, generating H2+CO mixtures, and/or hydrogen
with oxygen. The heating was supplemented by electrical heating.
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Fig. 2 The Utah laboratory flash ironmaking reactor (I.D. 0.19 m and height 2.13 m) (Adapted
from Sohn et al. [3])

In these tests, a number of aspects that are relevant to the operation of an industrial
flash ironmaking reactor were investigated. In addition to the effects of the main
operating conditions of temperature and gas composition, other important features
such as the position of concentrate feeding relative to the flame and the configuration
of the flame in terms of the injection of fuel vis-à-vis that of oxygen were evaluated.
For details of the significant test results, the reader is referred to the published articles
by the author and coworkers [3, 18, 19].

In addition to the experimental test work, a CFD simulation model of the labo-
ratory flash reactor operation was also developed to analyze and interpret the
experimental results [18, 19].

The test work in the laboratory flash reactor confirmed the technical feasibility
of ironmaking by the in-situ partial oxidation of natural gas or hydrogen in a flash
reactor and established a number of useful operating conditions.

Design, Installation, and Operation of a Pilot-Plant Scale
Flash Reactor

The laboratory flash reactor work was followed by the installation and operation of
a Pilot Flash Reactor run at 1200–1550 °C with a solid feed rate of 1–7 kg/h, shown
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Fig. 3 The pilot plant with a flash reactor installed at the University of Utah (Adapted from
Elzohiery [20])

in Fig. 3. In this reactor, natural gas was used as the fuel/reducing gas instead of
methane, as would be in an industrial flash ironmaking process.

This Pilot Flash Reactor system was designed to be fully computer-controlled
with an emphasis on numerous safety aspects as well as high levels of operational
control features. The facility consisted of a main reactor vessel, various burners, a
quench tank for product collection, a stack, a concentrate feeding system, an off-gas
analyzer, and human-machine interface for computer control and inputs from various
sensors.

The reactor roof housed an opening for the main burner and a separate preheat
burner with a pilot flame and provided a number of ports for gas and solid feeding as
well as an emergency off-gas conduit equippedwith a rupture disc. The configuration
of the main burner in terms of injecting natural gas and oxygen was designed based
on what was learned from the laboratory flash reactor.

The Human Machine Interface (HMI) consisted of the main PLC and a PC. The
operator monitored all parts of the facility and ran the reactor through the computer
to which the main PLC continuously fed information. All the safety and emergency
procedures relied on the PLC. Details of the facilities and operation of the Pilot
Reactor are described elsewhere [3].

Results from Pilot Flash Reactor Runs

The experiments in the pilot plant were performed at different temperatures and
reducing powers of the gas with the aim of obtaining enough data for designing the
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industrial flash reactor. The results from the Pilot Flash Reactor runs were reported in
Elzohiery [20]. The results showed good reproducibility within±5% of the average
reduction degree by repeating the same experiment at least 3 times. This represents
a very high degree of reproducibility, considering the complexity of the operation
and design of this large unit.

These results were used to develop a CFD model that would be used to optimize
the operating conditions and reactor sizes to be used in an industrial reactor [5].
Different experimental runs were designed and made in this reactor to yield a range
of reduction degrees, deliberately at less than complete reduction, to better examine
the effects of the operating conditions and validate the CFD model.

CFD Simulation of the Pilot Reactor Operation

The same CFD model for the laboratory flash reactor discussed above was used for
the pilot reactor runs [5]. The run conditions used for CFD simulation and the results
are compared with the experimental results in Table 2.

The CFD model predicted the H2 and CO concentrations within 93% accuracy
for most runs. The experimental values of % reduction are compared with the CFD
results in Table 2. The reduction degrees agree well for the first three runs. The
agreement is not as good for the last three runs. The reason for this is likely to be
because of the neglect of particle interactions for Runs 4–6. The temperature of the
particle-gas stream in the main reaction zone was largely uniform, and this value is
used to represent the reactor temperature. These runs had higher ratios of oxygen to
natural gas and thus higher temperatures than the other runs, above 1577 °C, which
is higher than the melting point of iron at 1538 °C. Particle agglomerates together
more readily at these high temperatures, as shown previously during flash smelting
of copper [21]. This might have caused lower reduction rates in the actual cases than
in the simulation. This points to the need for improving the CFD model to account
for particle coalescence at high temperatures.

The temperature of the particle-gas stream in Run 1 was also above 1577 °C, but
the solid feed rate in this run was only about one-half of the values in Runs 4–6. The
lower solid feed rate in Run 1 together with the fact that portions of the particles
usually get stuck on the wall significantly lowered the possibility of particles in the
gas stream to agglomerate in Run 1.

Process and Economic Analysis of Flash Ironmaking
Technology

Based on the potential advantages of the new technology and the results of the process
feasibility studies, process and economic analyses have been performed [7, 8, 22,
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23]. The results of these analyses indicated that the new ironmaking technology will
consume up to 44% less energy than the blast furnace when the former is run in the
reformerless mode, i.e. direct partial combustion in the reactor, and it will emit up
to 51% less carbon dioxide. When hydrogen is used, the proposed process would
consume up to 60% less energy with little CO2 emissions. However, it is noted that a
more accurate comparison must include the energy consumption and CO2 emissions
for the production of natural gas, hydrogen, or coal.

An economic feasibility analysis [23] indicated that the new technology using
natural gas with in-situ partial combustion would be economical at this time, owing
to the small capital and operating costs as well as the low price of natural gas. The
sensitivity analysis performedon the estimatedNPV indicated that the price of natural
gas affects the NPV most strongly. These economic analyses point to the fact that
the proposed ironmaking technology would be economically feasible at this time if
it is operated using natural gas.

Summary on Flash Ironmaking Technology

The overall process of developing a novel Flash Ironmaking Technology (FIT) has
been described in this article.

Rate equations for the reduction of iron ore concentrate by hydrogen, carbon
monoxide, and a mixture of the two formulated in this work established the funda-
mental feasibility of the concept of the flash ironmaking and form the basis of the
design of a reactor to realize the process. Scale-up experiments were performed in a
laboratory flash reactor that operated at conditions similar to those of the industrial
flash ironmaking reactor, and >90% reduction degree was obtained at temperature
as low as 1175 °C.

A pilot reactor that operated in the temperature range 1200–1550 °C was installed
and operated to collect the data necessary for scaling up the process to an industrial
scale. This reactor was used to validate the design concept of the Flash Ironmaking
in terms of heat supply, residence time, reduction degree, and the determination
of optimum operating conditions. These tests also identified a number of technical
hurdles. This investigation proved the technical feasibility of the flash ironmaking
technology for large-scale iron production. The results of this work will facilitate the
complete design for the industrial flash ironmaking reactor.

The new technology does not require pellets, sinters, and coke. Instead, it would
produce iron directly from concentrates using natural gas or hydrogen. As a result,
the energy consumption is expected to be up to 44% less than that for the average
blast furnace process when the Flash Ironmaking Technology (FIT) is operated with
natural gas in the reformerless mode, i.e. in-situ partial combustion, and it will emit
up to 51% less carbon dioxide. When hydrogen is used, the proposed process would
consume up to 60% less energy with little carbon dioxide emissions.
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Moving-Bed Ironmaking Technology (MBIT)

Anovel horizontalmoving-bed ironmakingprocess has beendeveloped at theUniver-
sity ofUtah. This process uses iron concentrate directlywithout sintering or pelletiza-
tion and reduces it with hydrogen in the temperature range of 500–1000 °C. Thework
started with the determination of the particle kinetics, which was then combined with
diffusional effect to analyze the reduction rate of a particle bed. Based on the kinetics
formulation, a mathematical model of the furnace for the proposed technology was
developed for a modest industrial ironmaking operation designed to produce iron at
a rate of 0.1 million tonnes per year (Mtpy).

Process Concept

The Flash Ironmaking Technology (FIT) described above requires an operating
temperature of 1300–1600 °C and could produce either solid-phase iron or molten
hot metal. Further, it is thought to be more suitable for a large-scale ironmaking
plant. For medium-level steelmaking operations, sponge iron produced at a lower
temperature would make a suitable feed. Even in the latter case, direct use of iron
concentrate with its high reactivity would be advantageous. Based on this reasoning,
a process using a moving-bed reactor has been developed [9].

Configuration of a Horizontal Moving-Bed Furnace

The furnace to be used for the proposed process would continuously carry iron
concentrate placed as a layer on a moving grate in a counter-current flow with the
reducing gas. A sketch of such a counter-current moving-bed reactor is shown in
Fig. 4.

The evaluation of the feasibility of such a moving bed for direct reduction of
iron concentrate requires a quantitative information on the kinetics of reduction of
concentrate particles in the anticipated temperature range, that of a particle bed
including diffusional effects, and finally a mathematical model of the moving-bed
reactor.

Fig. 4 Sketch of a
counter-current horizontal
moving-bed reactor
(Adapted from Roy [24])


