ACSP · Analog Circuits And Signal Processing

Athanasios T. Ramkaj Marcel J. M. Pelgrom Michiel S. J. Steyaert Filip Tavernier

Multi-Gigahertz Nyquist Analog-to-Digital Converters

Architecture and Circuit Innovations in Deep-Scaled CMOS and FinFET Technologies

Analog Circuits and Signal Processing

Series Editors

Mohammed Ismail, Khalifa University, Dublin, OH, USA Mohamad Sawan, 18, Shilongshan Road, School of Engineering, Westlake University, Hangzhou, Zhejiang, China

The Analog Circuits and Signal Processing book series, formerly known as the Kluwer International Series in Engineering and Computer Science, is a high level academic and professional series publishing research on the design and applications of analog integrated circuits and signal processing circuits and systems. Typically per year we publish between 5-15 research monographs, professional books, handbooks, and edited volumes with worldwide distribution to engineers, researchers, educators, and libraries. The book series promotes and expedites the dissemination of new research results and tutorial views in the analog field. There is an exciting and large volume of research activity in the field worldwide. Researchers are striving to bridge the gap between classical analog work and recent advances in very large scale integration (VLSI) technologies with improved analog capabilities. Analog VLSI has been recognized as a major technology for future information processing. Analog work is showing signs of dramatic changes with emphasis on interdisciplinary research efforts combining device/circuit/technology issues. Consequently, new design concepts, strategies and design tools are being unveiled. Topics of interest include: Analog Interface Circuits and Systems; Data converters; Active-RC, switched-capacitor and continuous-time integrated filters; Mixed analog/digital VLSI; Simulation and modeling, mixed-mode simulation; Analog nonlinear and computational circuits and signal processing; Analog Artificial Neural Networks/Artificial Intelligence; Current-mode Signal Processing; Computer-Aided Design (CAD) tools; Analog Design in emerging technologies (Scalable CMOS, BiCMOS, GaAs, heterojunction and floating gate technologies, etc.); Analog Design for Test; Integrated sensors and actuators; Analog Design Automation/Knowledge-based Systems; Analog VLSI cell libraries; Analog product development; RF Front ends, Wireless communications and Microwave Circuits; Analog behavioral modeling, Analog HDL.

Athanasios T. Ramkaj • Marcel J. M. Pelgrom • Michiel S. J. Steyaert • Filip Tavernier

Multi-Gigahertz Nyquist Analog-to-Digital Converters

Architecture and Circuit Innovations in Deep-Scaled CMOS and FinFET Technologies

Athanasios T. Ramkaj Stanford University Stanford, CA, USA

Michiel S. J. Steyaert KU Leuven Leuven, Belgium Marcel J. M. Pelgrom Helmond, Noord-Brabant The Netherlands

Filip Tavernier KU Leuven Leuven, Belgium

ISSN 1872-082X ISSN 2197-1854 (electronic) Analog Circuits and Signal Processing ISBN 978-3-031-22708-0 ISBN 978-3-031-22709-7 (eBook) https://doi.org/10.1007/978-3-031-22709-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To Theodhor and Linda

Preface

The analog-to-digital converter (ADC) is considered the cornerstone of modern electronics due to its fundamental role in virtually any application requiring the transfer of information between the physical (analog) world and the processing (digital) world. This task comes with myriad challenges due to the complex multi-functional ADC nature, further exacerbated when the relevant applications demand stringent performance requirements. Furthermore, bridging the analog and digital worlds fundamentally implies that ADCs must deal with the non-idealities of the former while keeping up with the advancements of the latter.

The rapidly accelerating trend for broader-band signals and software-defined systems has spurred the need for ADCs operating in the multi-GHz sample rate and bandwidth regime. Such converters are highly demanded by applications in the realm of next generation high-speed wireless and wireline communications, automotive radar, and high-end instrumentation, and have attracted a growing attention from both industry and academia. The ever-increasing desire of these systems is to maximize speed, while progressively improving the accuracy and the power efficiency, pushing the performance dimensions to new benchmarks. Meeting these requirements at the multi-GHz regime comes with numerous challenges at the circuit, architecture, and system levels. On top, the constant technology downscaling, dictated by the demand for higher functionality at a reduced power and cost, and the improvement in digital performance, exacerbates these challenges for traditional analog-intensive solutions.

This book follows a holistic approach, from analysis to implementation, to propose innovative circuit, architecture, and system solutions in deep-scaled CMOS and maximize the *accuracy* · *speed* ÷ *power* of multi-GHz sample rate and bandwidth ADCs. The approach starts by identifying the major error sources of any practical converter's circuits and quantitatively analyzing their significance on the overall performance, establishing the fundamental accuracy-speed-power limits imposed by circuits, and building an understanding as to what may be achievable from a converter's elementary building blocks. The analysis extends to the architecture level, by introducing a mathematical framework to estimate and compare the accuracy-speed-power limits of high-performance architectures, such as flash, SAR, pipeline,

and pipelined-SAR. To gain insight on the system level and peripheral blocks, a framework is introduced to quantitatively compare interleaver architectures, in terms of achievable bandwidth and sampling accuracy. The strength of the newly introduced frameworks is further enhanced by adding technology effects from four deep-scaled CMOS processes: 65 nm, 40 nm, 28 nm, and 16 nm, building insight into both architecture as well as process choices for optimum performance at given specifications.

The validity of the above holistic approach and the feasibility of the proposed solutions are demonstrated by four prototype ICs, realized in 28 nm bulk CMOS and 16 nm FinFET CMOS:

- 1. An ultrahigh-speed three-stage triple-latch feed-forward dynamic comparator improves the gain and reduces the delay of dynamic comparators across the entire input range. [28 nm CMOS, presented at *ESSCIRC 2019*, and published in *SSC-L 2019* and *TCAS-I 2022*]
- A high-speed wide-bandwidth medium resolution single-channel SAR ADC maximizes the *accuracy* · *speed* ÷ *power* ratio with a semi-asynchronous timing, an improved bootstrapped input switch, a triple-tail dynamic comparator, and a Unit-Switch-Plus-Cap DAC. [28 nm CMOS, presented at *ESSCIRC 2017*, and published in *JSSC 2018*]
- 3. A high-resolution wide-bandwidth 8×-interleaved hybrid RF ADC with a bufferless input front end, a 3-stage pipelined-SAR sub-ADC, a low excess jitter clock chain, and co-designed analog-digital calibrations significantly improves the state of the art in RF ADCs. [28 nm CMOS, presented at *ISSCC 2019*, and published in *JSSC 2020*]
- 4. An ultra-wideband highly linear analog front end with a multi-segment distributed attenuation filter and a hybrid amplifier-buffer extends the bandwidth of next-generation direct RF ADC-based receivers to several tens of GHz, enabling direct RF sampling up to mm-wave frequencies. [16 nm FinFET CMOS, presented at *VLSI 2022*, and two US patents]

Stanford, CA, USA Helmond, The Netherlands Leuven, Belgium Leuven, Belgium September 2022 Athanasios T. Ramkaj Marcel J. M. Pelgrom Michiel S. J. Steyaert Filip Tavernier

Acknowledgments

We would like to acknowledge several people and organizations for their valuable contributions to the work in this book.

We thank Boris Murmann (Stanford University, CA, USA), Gabriele Manganaro (MediaTek Inc., MA, USA), Marian Verhelst (KU Leuven, Belgium), and Patrick Wambacq (KU Leuven, Belgium) for their feedback on previous versions of this manuscript and for all the engaging and inspiring discussions throughout the last years. We would also like to acknowledge our collaborators' contributions in the articles discussed throughout this book: Adalberto Cantoni (Analog Devices Inc., MA, USA), Siddharth Devarajan (Analog Devices Inc., MA, USA), Juan Carlos Peña Ramos (ICsense, Leuven, Belgium), and Maarten Strackx (MAGICS Instruments, Geel, Belgium).

Finally, the authors thank Nokia Bell Labs, Antwerp, Belgium, and Analog Devices, Wilmington, MA, USA for their financial support.

Contents

1	Intr	oductio)n	1
	1.1	Data	Converters in a Digital Era: Need and	
		High-	Performance Applications	1
	1.2	Challe	enges in Pushing Performance Boundaries	5
		1.2.1	ADC Core and Peripherals Challenges	6
		1.2.2	The Good, the Bad, and the Ugly of Deep-Scaled CMOS	7
	1.3	Resea	rch Goal and Objectives	10
	1.4	Struct	ure of This Book	12
2	Ana	log-to-	Digital Conversion Fundamentals	15
	2.1	Theor	etical Background	15
		2.1.1	Sampling	16
		2.1.2	Ideal Quantization	21
	2.2	Error	Sources	26
		2.2.1	Noise	26
		2.2.2	Non-linearity	30
		2.2.3	Calibration	33
	2.3	Perfor	mance Evaluation	34
		2.3.1	Metrics	34
		2.3.2	Figures of Merit	36
	2.4	Accur	acy-Speed-Power Limits	37
		2.4.1	Sampler Noise Limit	38
		2.4.2	Quantizer Noise Limit	41
		2.4.3	Metastability Limit	42
		2.4.4	Aperture Jitter Limit	47
		2.4.5	Mismatch Limit	48
		2.4.6	Heisenberg Uncertainty Principle	51
		2.4.7	Putting It All Together	53
	2.5	Concl	usion	54
	App	endix A	A: Proper FFT Evaluation Setup	55

3	Arc	hitectural Considerations for High-Efficiency GHz-Range ADCs.	5
	3.1	State of the Art	5
	3.2	The Flash Architecture	e
		3.2.1 Overview	6
		3.2.2 Flash Accuracy-Speed-Power Limits	(
		3.2.3 Impact of Scaling	(
	3.3	The SAR Architecture	(
		3.3.1 Overview	(
		3.3.2 The DAC in a SAR	
		3.3.3 SAR Accuracy-Speed-Power Limits	
	3.4	The Pipeline Architecture	8
		3.4.1 Overview	8
		3.4.2 Pipeline Accuracy-Speed-Power Limits	8
	3.5	The Pipelined-SAR: A Powerful Hybrid	8
		3.5.1 Overview	8
		3.5.2 Pipelined-SAR Accuracy-Speed-Power Limits	9
	3.6	Architectural Limits' Comparison	ç
	3.7	Time-Interleaving	1(
		3.7.1 Overview	1(
		3.7.2 Interleaving Errors	10
		3.7.3 Interleaver Architectures	10
	3.8	Conclusion	11
	App	endix B: Transconductance—Settled RA	11
	App	endix C: Transconductance—Integrator RA	12
4	TIL	which Speed High Consistivity Dynamic Componenter	17
4		Dunamia Paganarativa Comparator	12
	4.1	4.1.1 Single Stage Latch Based Strong APM Comparator	12
		4.1.1 Single-Stage Dauble Tail Latched Comparator	12
	12	Prototype IC: A 28 nm CMOS Three Stage Triple Latch	12
	4.2	Field Forward Comparator	17
		4.2.1 Circuit Operation and Analysis	12
		4.2.1 Circuit Operation and Anarysis	12
		4.2.2 Simulation and Comparison with Thor Art	13
	13	Fynerimental Verification	13
	ч.5	4.3.1 Measurement Setup	13
		4.3.2 Measurement Results	1.
		4.3.2 Micasurement Results	1/
	<u> </u>	Conclusion	1/
	7.7	Conclusion	1-
5	Hig	h-Speed Wide-Bandwidth Single-Channel SAR ADC	14
	5.1	Pushing the SAR Conversion Speed	14
		5.1.1 Conventional Synchronous Clocking Scheme	15
		5.1.2 Speed-Boosting Techniques	15
	5.2	Prototype IC: A 1.25 GS/s 7-bit SAR ADC in 28 nm CMOS	15
		5.2.1 High-Level Design	15

		5.2.2	Semi-asynchronous Processing w/o Logic Delay	157
		5.2.3	Dual-Loop Bootstrapped Input Switch	159
		5.2.4	Unit-Switch-Plus-Cap DAC	162
		5.2.5	Triple-Tail Dynamic Comparator	166
		5.2.6	Custom SAR Logic	171
	5.3	Experi	imental Verification	173
		5.3.1	Measurement Setup	174
		5.3.2	Measurement Results	175
		5.3.3	State-of-the-Art Comparison	178
	5.4	Conclu	usion	179
6	Hig	n-Resol	ution Wide-Bandwidth Time-Interleaved RF ADC	183
	6.1	RF Sa	mpling ADCs: Needs and Challenges	183
		6.1.1	The ADC Role in the Receiver	184
		6.1.2	ADC Architectural Trade-Offs	185
	6.2	Protot	ype IC: A 5 GS/s 12-bit Hybrid TI-ADC in 28 nm CMOS	188
		6.2.1	High-Level Design	188
		6.2.2	Interleaving Factor and Sub-ADC Architecture	189
		6.2.3	Passive Input Front-End	190
		6.2.4	Clock Generation and Distribution	194
		6.2.5	Hybrid Sub-ADC Design	199
		6.2.6	Digital Calibration	203
	6.3	Experi	imental Verification	204
		6.3.1	Measurement Setup	205
		6.3.2	Measurement Results	207
		6.3.3	State-of-the-Art Comparison	213
	6.4	Conclu	usion	214
	App	endix D	: TI ADC Power Estimation with On-Chip Input Buffer	216
7	Ultr	a-Wide	band Direct RF Receiver Analog Front-End	217
	7.1	Pushir	ng the Bandwidth Beyond 20 GHz	218
		7.1.1	Revisiting the Analog Front-End Problem	218
		7.1.2	Increasing Integration and Challenges	221
	7.2	Protot	ype IC: A 30 GHz-Bandwidth <-57 dB-IM3	
		Front-	End in 16 nm FinFET CMOS	222
		7.2.1	High-Level Front-End Chain	223
		7.2.2	Filter with Distributed ESD and Variable Attenuation	224
		7.2.3	Two-Path Push-Pull Hybrid Amplifier	230
		7.2.4	Push-Pull Bootstrapped Cascoded Buffer	232
	7.3	Experi	imental Verification	236
		7.3.1	Measurement Setup	237
		7.3.2	Measurement Results	239
		7.3.3	State-of-the-Art Comparison	244
	7.4	Conclu	usion	246

8 Conclusions, Contributions, and Future Work			247
	8.1	Overview and General Conclusions	247
	8.2	Original Scientific Contributions	251
	8.3	Suggestions for Future Work	254
Bi	Bibliography		
In	Index		

Fig. 1.1	Illustration of the data conversion as an indispensable	
	bridging function between the real analog world and the	
	digital signal processing world	2
Fig. 1.2	Popular ADC applications and architectures covering	
	them	3
Fig. 1.3	Wideband ADC-based heterodyne (top left) and zero-IF	
	(top right) vs. direct RF sampling receiver (bottom)	4
Fig. 1.4	The three main ADC performance parameters and several	
	factors affecting them on different levels	6
Fig. 1.5	CMOS scaling evolution from planar FET to FinFET to	
	GAAFET. Picture credit: Samsung	8
Fig. 1.6	Theoretical cut-off frequency versus channel length	
	scaling [10]	8
Fig. 1.7	Supply and threshold voltage versus channel length scaling	9
Fig. 1.8	BEOL interconnect comparison between 65 nm (left) and	
	32 nm (right) CMOS processes [11]	10
Fig. 2.1	Block diagram of an ideal A/D conversion (top) and the	
	resulting waveforms at every part of the chain (bottom)	16
Fig. 2.2	Sampling a continuous-time signal using a Dirac pulse	
	sequence	17
Fig. 2.3	Frequency spectrum of a signal multiplied with a	
	sequence of Dirac pulses	18
Fig. 2.4	(a) Single-tone signals with different frequencies (b) fall	
	in the same frequency location after spectrum processing	18
Fig. 2.5	Dual-sided frequency spectrum highlighting different	
	Nyquist zones	19
Fig. 2.6	(a), (b) Two cases of signals with bands meeting the	
	Nyquist criterion and (c) one scenario where bands are	
	overlapping leading to information loss	19

Fig. 2.7	Anti-aliasing filter on a parasitic tone when (a) sampling at Nyquist rate (slightly oversampled in practice) and (b)	•
Fig. 2.8	oversampling by $M > 1$ Conceptual model and transfer characteristic of an ideal	20
F ' 2 0		22
Fig. 2.9	Sawtooth approximation of ϵ_q as a function of time	22
Fig. 2.10	Uniformly distributed PDF of ϵ_q within $\pm \Delta/2$	23
Fig. 2.11	resolutions 77 MHz signal sampled at 1 GS/s ($N_{\text{FFT}} = 1024$)	24
Fig. 2.12	Conceptual model of a real converter including error	24
	sources from the different blocks	26
Fig. 2.13	(a) Simple model of a sampler and (b) its noise spectrum	27
Fig. 2.14	(a) Simple quantizer model and (b) its allowed operation time	28
Fig. 2.15	(a) Sampler with jitter and (b) time to voltage error	20
115. 2.15	translation	29
Fig 2.16	(a) DNL in transfer characteristic with corresponding	27
115. 2.10	curve and (b) INL in transfer characteristic with	
	corresponding curve	31
Fig. 2.17	Simple sampler model with input termination network	30
Fig. 2.17	Fundamental limits due to sampler noise: (a)	57
115. 2.10	accuracy-speed and (b) accuracy-power	40
Fig 2.19	Fundamental limits due to quantizer noise: (a)	40
115. 2.17	accuracy-speed and (b) accuracy-power	43
Fig 2.20	Quantizer output for a valid (grav) and a metastable	10
1 19. 2.20	(black) case	44
Fig 2.21	Fundamental limits due to metastability of a standalone	•••
1.9. 2.21	quantizer: (a) accuracy-speed and (b) accuracy-power	46
Fig. 2.22	Simple model for clock power estimation for a certain	
8	iitter	48
Fig. 2.23	Fundamental limits due to aperture iitter: (a)	
8	accuracy-speed and (b) accuracy-power	49
Fig. 2.24	Limits imposed by mismatch: (a) accuracy-speed and (b)	.,
8	accuracy-power	51
Fig. 2.25	Fundamental accuracy-speed limit due to Heisenberg	52
Fig. 2.26	Fundamental limit curves from all the error sources	0-
8	analyzed in this chapter: (a) accuracy-speed and (b)	
	accuracy-power	53
Fig. 3.1	State-of-the-art performance of various ADC architectures	
	with data points taken from $[36]$ (a) accuracy-speed and	
	(b) accuracy-energy	58
Fig. 3.2	Block diagram of a B-bit flash ADC (the S/H is optional)	60
Fig. 3.3	Simplified small-signal model of an NMOS transistor	
	(bulk is omitted for simplicity)	66

Fig. 3.4	$f_{\rm T}$ vs. $g_{\rm m}/I_{\rm D}$ and $f_{\rm T} \cdot g_{\rm m}/I_{\rm D}$ vs. $g_{\rm m}/I_{\rm D}$ in four CMOS
Fig. 3.5	Flash accuracy-speed-power limits: (a) for different f_s in 28 pm and (b) at $f = 4$ GHz in the processes under
	$f_{s} = 4 \text{ GHz in the processes under }$
Fig. 3.6	Block diagram of a <i>B</i> -bit SAR ADC
Fig. 3.7	(a) Scale equivalent of a binary SA algorithm and (b)
0	waveform operation in the voltage vs. time domain
Fig. 3.8	3-bit example of the conventional CDAC switching
-	scheme. V_{REF} is annotated as V_{R} to preserve clarity due
	to space constraints
Fig. 3.9	3-bit example of the split-capacitor CDAC switching
	scheme. V_{REF} is annotated as V_{R} to preserve clarity due
	to space constraints
Fig. 3.10	3-bit example of the energy-saving CDAC switching
	scheme. V_{REF} is annotated as V_{R} to preserve clarity due
	to space constraints
Fig. 3.11	3-bit example of the monotonic CDAC switching scheme.
	$V_{\rm REF}$ is annotated as $V_{\rm R}$ to preserve clarity due to space
E'. 2.12	constraints
F1g. 3.12	3-bit example of the MCS CDAC switching scheme.
	$v_{\rm REF}$ is annotated as $v_{\rm R}$ to preserve clarity due to space
Fig. 3.13	Switching energy for the different CDAC switching
Fig. 5.15	schemes
Fig 3 14	SAR accuracy-speed-power limits: (a) for different f_c in
119. 5.11	28 nm and (b) for $f_c = 500$ MHz in the processes under
	comparison
Fig. 3.15	Block diagram of a <i>B</i> -bit <i>m</i> -stages pipeline ADC
Fig. 3.16	Residue plot of stage-s: (a) ideal case with $A_s = 2^{B_s}$, (b)
C	$A_s = 2^{B_s}$ with error and no OR, and (c) $A_s = 2^{B_s-1}$ with
	error and 2×-OR
Fig. 3.17	Basic $g_m - C$ amplifier for modeling the RA gain stage
Fig. 3.18	Pipeline with 1,2,3,4-bit/stage effective resolution
	accuracy-speed-power limits in 28 nm: (a) $f_s = 500 \text{ kHz}$,
	(b) $f_s = 500 \text{ MHz}$, and (c) $f_s = 1.3 \text{ GHz}$
Fig. 3.19	Pipeline accuracy-speed-power limits across different
	processes at $f_s = 500 \text{ MHz:}$ (a) 1-bit/stage, (b) 2-bit/stage,
	and (c) 3-bit/stage
Fig. 3.20	Block diagram of a <i>B</i> -bit two-stage pipelined-SAR ADC
Fig. 3.21	Illustration of conversion energy requirement in (a) a
	binary SAR ADC and (b) a two-stage pipelined-SAR
	ADC

Fig. 3.22	2,3,4,5-stage pipelined-SAR with accuracy-speed-power	
	limits in 28 nm: (a) $f_s = 500 \text{ kHz}$, (b) $f_s = 500 \text{ MHz}$, and	
	(c) $f_{\rm s} = 1.3 \rm GHz$	96
Fig. 3.23	Pipelined-SAR accuracy-speed-power limits across	
	different processes at $f_s = 500 \text{ MHz}$: (a) three-stage, (b)	
	four-stage, and (c) five-stage	97
Fig. 3.24	Accuracy-speed-power limits for the different ADC	
	architectures studied at $f_s = 500 \text{ kHz}$	99
Fig. 3.25	Accuracy-speed-power limits for the different ADC	
	architectures studied at $f_s = 500 \text{ MHz}$	100
Fig. 3.26	Accuracy-speed-power limits for the different ADC	
	architectures studied at $f_s = 1.3 \text{ GHz}$	101
Fig. 3.27	(a) High-level block diagram of an N-channel TI-ADC	
	and (b) sampling of a signal using an <i>N</i> -interleaved Dirac	
	pulse sequence	103
Fig. 3.28	Power vs. frequency illustration of a non-TI- and a	
	TI-ADC	103
Fig. 3.29	Illustration of mismatch errors in a four-channel TI-ADC	
	example	105
Fig. 3.30	Graphical illustration of sub-ADC offset mismatch errors	
	in a four-channel TI-ADC: (a) time waveform and (b)	
	frequency spectrum	105
Fig. 3.31	Graphical illustration of sub-ADC gain mismatch errors	
C	in a four-channel TI-ADC: (a) time waveform and (b)	
	frequency spectrum	106
Fig. 3.32	Graphical illustration of sub-ADC timing mismatch errors	
U	in a four-channel TI-ADC: (a) time waveform and (b)	
	frequency spectrum	107
Fig. 3.33	Graphical illustration of sub-ADC bandwidth mismatch	
0	errors in a four-channel TI-ADC: (a) time waveform and	
	(b) frequency spectrum	108
Fig. 3.34	Simulated SNDR vs. (a) σ_{OS}/V_{DD} , (b) σ_G/G , (c)	
0	$\sigma_{\Lambda T}/T_{\rm s}$ TI, (d) $\sigma_{\rm BW}/BW$, and (e) $\sigma_{\rm BW}/BW$ with	
	separated gain/phase and (f) combined errors	110
Fig. 3.35	Classification tree for different interleaver architectures	110
Fig. 3.36	(a) Direct interleaver architecture and timing diagram	
0	for $N = 8$ (b) with 50% duty-cycle clocks and (c) with	
	(1/8)·100% duty-cycle clocks	111
Fig. 3.37	(a) Interleaver architecture with a hierarchical $N = L \times K$	
8	de-multiplexing and (b) timing diagram for $N = 8$ with	
	$L \times K = 2 \times 4$	112
Fig. 3.38	(a) Interleaver architecture with $N = L \times K$ re-sampling	
	hierarchy and (b) timing diagram for $N = 8$ with	
	$L \times K = 2 \times 4$	113
	<u> </u>	115

Fig. 3.39	Equivalent <i>RC</i> model for (a) interleaver and (b) simple switch	114
Fig. 3.40	Bandwidth vs. channel count for different interleavers in	
U	(a) 65 nm, (b) 40 nm, (c) 28 nm, and (d) 16 nm CMOS	115
Fig. 3.41	Sampling accuracy vs. channel count for the interleavers	
U	in 28 nm at (a) $Nf_s = 2.5$ GHz, (b) $Nf_s = 5.0$ GHz, (c)	
	$N f_{s} = 7.5 \text{ GHz}$, and (d) $N f_{s} = 10 \text{ GHz}$	117
Fig. 4.1	Single-stage strong-ARM comparator and its signal	
0	waveforms	122
Fig. 4.2	Double-tail comparator and its signal waveforms	126
Fig. 4.3	Proposed three-stage TLFF dynamic comparator	129
Fig. 4.4	LTV representation of the proposed TLFF comparator	130
Fig. 4.5	Simulated timing waveforms of the proposed TLFF	
	comparator	134
Fig. 4.6	Simulated outputs and delay versus $\Delta V_{\rm I}$ for different	
	comparators	135
Fig. 4.7	Top-level diagram of the multiple comparators test chip	137
Fig. 4.8	Die photo of the 28 nm IC with zoomed-in comparator	
	layout views	138
Fig. 4.9	Measurement setup of the multiple comparators test chip	
	with the prototype 13.5 Gb/s TLFF comparator	139
Fig. 4.10	Measured CLK-OUT delays for the TLFF, SAC, and	
	DTC comparators versus (a) ΔV_{I} , (b) V_{CM} , and (c) V_{DD}	141
Fig. 4.11	Measured noise cumulative distribution and Gaussian	
	distribution fitting curve for (a) the SAC, (b) the DTC, (c)	
	the TLFF, and (d) measured input-referred noise vs. V _{CM}	143
Fig. 4.12	Measured (a) energy consumption of the TLFF, SAC, and	
	DTC versus V_{DD} and (b) energy delay product versus V_{DD}	144
Fig. 4.13	(a) Measured $\Delta V_{\rm I}$ eye, (b) measured bathtub curve of the	
	TLFF, (c) measured CLK eye, and (d) measured OUT eye	145
Fig. 5.1	Timing sequence illustration of a <i>B</i> -bit SAR with a	
	conventional synchronous clocking scheme	150
Fig. 5.2	Timing sequence illustration of a <i>B</i> -bit SAR with an	
	internally asynchronous clocking scheme	151
Fig. 5.3	Timing sequence illustration of a <i>B</i> -bit SAR with a	
C .	multi-bit per cycle resolving scheme (2-bit per cycle	
	shown in the example)	153
Fig. 5.4	Timing sequence illustration of a <i>B</i> -bit SAR with multiple	
U	comparators loop unrolling clocking scheme	153
Fig. 5.5	Timing sequence illustration of a <i>B</i> -bit SAR with extra	
C	cycles and redundancy implemented (one extra cycle	
	shown in the example)	155
Fig. 5.6	Top-level architecture of the proposed ADC and its timing	
0	diagram	157

Fig. 5.7	Implemented semi-asynchronous scheme with the logic delay eliminated from the critical path	158
Fig. 5.8	Typical bootstrap circuit with its speed critical loop	130
	highlighted	159
Fig. 5.9	Improved dual-loop bootstrap circuit proposed in this work	160
Fig 5 10	(a) Timing illustration and (b) simulated $M_{\rm S}$ on-resistance	100
1.8.0110	for the typical and the proposed bootstrap circuit	161
Fig. 5.11	DAC topology with a constant $V_{\rm CM}$ and $C_{\rm H}$ to set the	
0	signal range	162
Fig. 5.12	Schematic and simulated settling time of (a) a	
-	conventional UC CDAC and (b) the proposed USPC	
	CDAC	164
Fig. 5.13	Single-ended partial layout of the USPC CDAC (the	
	actual implementation is differential)	165
Fig. 5.14	Schematic of the implemented triple-tail dynamic	
	comparator	166
Fig. 5.15	Simulated performance of the triple-tail comparator	167
Fig. 5.16	Simulated outputs of the triple-tail comparator (top) and	
	one of the logic memory latches (bottom)	168
Fig. 5.17	(a) Simulated comparator resolving time and (b)	
	input-referred noise versus $V_{CM,I}$ and (c) resolving time	
	and (d) energy versus $\Delta V_{\rm I}$	170
Fig. 5.18	Custom SAR logic including the comparator clock, bit	
	phases, and memory elements	171
Fig. 5.19	Schematic of one memory cell with optimized critical	
	path toward the CDAC reference switches (top). Timing	170
E'. 5 20	diagram and truth table of the memory cell (bottom)	172
F1g. 5.20	Die micrograph of the 28 nm IC with a zoomed-in view of the SAD area accurately and a set in a set in a set in $2000000000000000000000000000000000000$	172
Eig 5 21	Of the SAR core occupying an active area of 0.00/1 mm ⁻	173
Fig. 5.21	Measured static performance with the histogram (adda	1/4
Fig. 3.22	density) test at 1.25 GS/s for a sinusoidal input of	
	160 kHz; (a) DNL and (b) INL	176
Fig. 5.23	Measured output spectra at 1.25 GS/s for (a) a Nyquist	170
1 Ig. <i>3.23</i>	input frequency and (b) an 8x Nyquist input frequency	177
Fig 5.24	Measured SEDR/SNDR versus (a) input frequency at	1//
1 16. 5.2 1	1 25 GS/s and (b) sample rate for a 76 MHz input	178
Fig. 5.25	Measured FoM versus (a) input frequency at 1.25 GS/s	170
1.8.0.20	and (b) sample rate for a 76 MHz input	179
Fig. 6.1	Generic block diagram of a direct RF sampling receiver	184
Fig. 6.2	Sub-ADC and interleaving overhead vs. channel count	
0	illustration	186
Fig. 6.3	Major design strategies regarding the choice of the	
-	sub-ADC and the interleaving factor	186

Fig. 6.4	Accuracy-speed standings of the ADCs adopting the two design strategies. Points taken from [36]	187
Fig. 6.5	Top-level diagram of the complete 5 GS/s 12-bit TI-ADC	107
	architecture (single-ended shown for simplicity)	189
Fig. 6.6	Passive front-end model of this ADC (single-ended shown)	190
Fig. 6.7	(a) Bootstrap circuit employed for $S_{\rm IN}$ and (b) timing	170
U	waveforms of the important nodes	192
Fig. 6.8	Proposed intertwisted input/clock Y-tree structure to	
F ' (0	minimize the front-end loading	192
F1g. 6.9	Simulated (a) S-parameters and (b) input impedance of this front-end	194
Fig. 6.10	Input current profile of this front-end for (a) 300 MHz	171
U	and (b) 2.4 GHz input frequencies	195
Fig. 6.11	Simulated HD2 vs. differential input-clock coupling	
	(unbalancing) for a near-2.5 GHz input	195
Fig. 6.12	Timing diagram with the generated clocks of the TI-ADC	196
Fig. 6.13	(a) Simulated SNR vs. σ_{jitter} and (b) SFDR vs. σ_{skew} at	106
Fig 6 14	Block diagram of the proposed clock conditioning chain	190
115.0.11	for this ADC	197
Fig. 6.15	(a) DDT circuit with simulated (b) sampling edge skew	
	and tuning range and (c) capacitance spread of one DDT	
	unit cell	198
Fig. 6.16	Detailed block diagram of the implemented 12-bit	• • • •
D ' (17	three-stage pipelined-SAR sub-ADC	200
F1g. 6.1/	Dynamic integrator RA with simulated SAR ₁ - SAR ₂	201
Fig 6.18	Sub-ADC internal asynchronous timing sequence with	201
115. 0.10	re-timing	202
Fig. 6.19	One slice top-level diagram of the 8× synthesized	
C	correction block	203
Fig. 6.20	Die micrograph of the 28 nm complete IC with a	
	sub-ADC layout view occupying a core area of 0.015 mm ²	205
Fig. 6.21	Measurement setup of the 12-bit 5 GS/s TI ADC	
	prototype (top). Photo of the overall setup (bottom-left).	
	Closer view of the motherboard with the four-layer	
	high-speed Samtec connectors (bottom-right). The bare	
	die is placed in a plated cavity	206
Fig. 6.22	Measured (black solid curve) and simulated (gray dotted	_00
0	curve) ADC transfer characteristic showing a bandwidth	
	in excess of 6 GHz	208
Fig. 6.23	Measured calibrated output spectra at 5 GS/s for (a)	
	75 MHz, (b) 2.4 GHz, and (c) 4.8 GHz input frequencies	209

Fig. 6.24	Measured SFDR/SNDR versus (a) input frequency at $5 GS/s$ and (b) sample rate for a 2.4 GHz input	210
Fig. 6.25	Measured static performance at 5 GS/s for a sinusoidal	210
	input of 7.4 MHz: (a) DNL and (b) INL	211
Fig. 6.26	Measured output spectrum at 5 GS/s for a -6.1 dBFS	
	two-tone input signal at 74.5 MHz 81.7 MHz	212
Fig. 6.27	Measured output spectrum at 5 GS/s for a -6.4 dBFS	
	two-tone input signal at 1.67 GHz 1.85 GHz	212
Fig. 6.28	Measured power partitioning versus sample rate for a	010
E'. (00	2.4 GHz	213
Fig. 0.29	FoMs comparison with relevant Sola RF ADCs [36]	213
Fig. 7.1	copper pillars and (b) wire bonding through gold	
	bondwires	220
Fig 72	Buffered front-end model including	220
1 18. 7.2	on-chip/interface/off-chip contributions (single-ended	
	shown)	220
Fig. 7.3	Simulated S-parameters of the front-end model, gradually	
C	adding the contributions: (a) S_{21} and (b) S_{11}	221
Fig. 7.4	Top-level block diagram of the proposed front-end	
	(single-ended shown for simplicity)	223
Fig. 7.5	(a) Ideal ninth-order Chebyshev filter with its component	
	values for two $R_{\rm T}$ values and (b) simulated S-parameters	
	and group delay	226
Fig. 7.6	Implementation of the proposed filter with the distributed	
F: 77	ESD and variable attenuation (single-ended shown)	226
F1g. /./	Attenuator cells employed in this work: (a) 11 -cell, (b)	
	n-cell, and (c) their resistance values rounded to include	227
Fig 7.8	Simulated bandwidth (relative) and linearity of the two	221
1 lg. 7.0	attenuator cells for the different attenuation settings: (a)	
	1 dB, (b) 2 dB, and (c) 4 dB.	228
Fig. 7.9	Simulated S-parameters of the implemented filter across	0
0	the different attenuation settings: (a) S_{21} and (b) S_{11}	229
Fig. 7.10	Simulated filter two-tone IM3 vs. frequency for the best	
	(0 dB) and worst (11 dB) attenuation settings	230
Fig. 7.11	Proposed push-pull hybrid CG-CS amplifier with resistive	
	source degeneration and series-shunt peaking	231
Fig. 7.12	Push-pull buffer with two-level bootstrapped cascoding	233
Fig. 7.13	Simulated amplifier-buffer transfer characteristic for a	
F '. 7.14	capacitive load and the implemented matched load	234
гıg. /.14	Simulated two-tone IM3 vs. frequency of the	7 74
Fig. 7.15	AC noise simulation of the amplifur huffer shein with	234
11g. 7.13	300 fF load	235
	JUU 11 1000	255

Fig. 7.16	Simulated two-tone IM3 vs. frequency of the complete	
	front-end chain for three different load cases	236
Fig. 7.17	Die micrograph of the 16 nm FinFET IC with front-end	
	occupying a core area of about 0.15 mm ²	237
Fig. 7.18	Measurement setup of the 30 GHz bandwidth front-end	
	prototype	238
Fig. 7.19	Measured front-end small-signal performance for	
	different attenuation settings and six samples	240
Fig. 7.20	Measured one-tone output spectra for (a) 2.5 GHz and (b)	
	5 GHz input frequencies and (c) measured HD2/HD3 vs.	
	input frequency	241
Fig. 7.21	Measured two-tone spectra at 5 and 20 GHz for 0 dB (left)	
	and 11 dB (right) attenuation settings	242
Fig. 7.22	Measured two-tone IM3 for six samples vs. (a) carrier	
	frequency and (b) tone spacing	242
Fig. 7.23	Measured constellations and spectra at 5 GHz frequency	
	for (a) 1024-QAM and (b) 2048-QAM signals	243
Fig. 7.24	Measured EVM and ACLR vs. frequency for 1024-QAM	
	and 2048-QAM modulated signals	244

List of Tables

Table 2.1	Comparison between calculated and simulated SQNR for	
	different B	25
Table 2.2	Typical process parameters and comparison with kT	50
Table 3.1	Core supply voltage and simulated minimum capacitance	
	in four deep-scaled CMOS processes	65
Table 3.2	Bit partitioning for different aggregate resolutions in a	
	2,3,4,5-stage pipelined-SAR including 2×-OR between stages	93
Table 4.1	Summary of the TLFF, SAC, and DTC on the same test chip	146
Table 4.2	TLFF comparison with state-of-the-art comparators	146
Table 5.1	Performance summary and comparison with	
	state-of-the-art SAR ADCs	180
Table 6.1	RA gain variation with temperature (typical-typical corner)	202
Table 6.2	Performance summary and comparison with	
	state-of-the-art wideband TI RF ADCs	215
Table 7.1	Performance summary and comparison with	
	state-of-the-art ADC-based receiver front-ends	245

Chapter 1 Introduction

Real-world phenomena comprise to their vast majority analog quantities; that is continuous-time and continuous-amplitude signals able to take any value at any particular instant. However, manipulation and storage of data are mainly performed in the digital domain due to several benefits of digital signal processing, such as reduced sensitivity to noise and distortion, increased flexibility and reconfigurability, and continuous performance improvement with technology scaling. As a result, Analog-to-Digital (A/D) conversion performed by an Analog-to-Digital Converter (ADC) and Digital-to-Analog (D/A) conversion performed by a Digital-to-Analog Converter (DAC) are indispensable operations in almost all electronic systems.

This introductory chapter starts by briefly outlining the need and applicability of data converters in a digital era, in Sect. 1.1. Key high-performance ADC applications are briefly discussed. Section 1.2 introduces challenges in simultaneously improving the three main ADC performance parameters. These come on a circuit level, an architectural level, a system level, and a technology level, with the last one being particularly important as it affects the other three. The main scope of the research described in this book and its objectives are listed and briefly discussed in Sect. 1.3. Finally, Sect. 1.4 concludes this chapter with the structural organization of this book.

1.1 Data Converters in a Digital Era: Need and High-Performance Applications

Electronic devices undeniably play a crucial role in tremendously improving every aspect of our modern life: from massive communication and transportation infrastructure to personalized entertainment systems and healthcare. To a great extent, this level of accessibility to electronic devices and services owes to the expansion of Digital Signal Processing (DSP), leading to a progressively digital electronic world. The fundamental reason for the DSP advances finds its root

A. T. Ramkaj et al., Multi-Gigahertz Nyquist Analog-to-Digital Converters,

Analog Circuits and Signal Processing, https://doi.org/10.1007/978-3-031-22709-7_1

Fig. 1.1 Illustration of the data conversion as an indispensable bridging function between the real analog world and the digital signal processing world

in the down-scaling and integration advantages of Very Large Scale Integration (VLSI) technologies, offering a higher functionality per unit area for a reduced power and cost. Following Gordon E. Moore's law proposed in 1965 [1], the number of devices per chip doubles every roughly 2 years, with an even higher rate recently [2]. Further, digital circuits offer several advantages with respect to their analog equivalents, such as reduced susceptibility to distortion and noise, less dependency on process-voltage-temperature variations, increased flexibility and reconfigurability, and an unprecedented ability to perform complex computations on-demand, making Systems-on-a-Chip (SoC)s the norm.

Yet, real-world phenomena comprise analog quantities, such as velocity, volume, weight, temperature, voltage, current, etc. Therefore, A/D conversion is a vital function in most electronic devices, to provide the translation interface between the physical and electronic worlds, as illustrated in Fig. 1.1. Similarly, D/A conversion enables the interaction of the device with the environment and the humans, who perceive and process data in the form of analog quantities. Even without the human in the loop, the information exchange between two devices still requires conversion of the data from the digital domain to the analog domain and back. At the transmit side, the digital data is converted into the analog domain to travel through a certain medium. Equivalently, at the receive side, the signal comes either in an analog form or in a degraded by the medium digital form; therefore, it is processed as analog information before it is converted into the digital domain. This role of data converters as interfaces between the analog and digital domains puts them in a unique position in the signal processing chain but also poses considerable design challenges since they must deliver an equivalent or better performance than the corresponding digital systems. For the ADC in particular, which is the focus of this work, to maximally leverage the favorable properties of DSP, its function should be

Fig. 1.2 Popular ADC applications and architectures covering them

performed as early as possible in the chain. However, to account for additional and unpredictable signal corruption by the medium, one or more analog conditioning blocks usually precede the converter, whose design is added on the existing set of challenges.

ADCs are employed in a vast and constantly growing number of applications incorporating DSP, either standalone or integrated on the same die or substrate with other blocks composing a larger complex system. More often than not, the performance of the ADC determines the overall performance of the system it is included in. The various applications span a wide range of needs and specifications, including healthcare (diagnostic imaging), consumer electronics (mobile phones, audio, video), automotive (RADAR, LIDAR), next-generation communications (wireline, wireless, optical), and high-end measurement/instrumentation (digital storage oscilloscopes). Some noteworthy applications with established as well as under development specifications are illustrated in Fig. 1.2. To try and meet the demands of such applications, different ADC architectures have been developed. The most widely used up to date are flash, pipeline, Successive Approximation Register (SAR), and sigma-delta ($\Sigma \Delta$). These topologies all have their merits and drawbacks in terms of different specifications, such as sample rate (speed), bandwidth, aggregate resolution, effective resolution (actual), noise, linearity, power consumption, complexity, scalability, etc., making them better tailored for some applications than others. However, as depicted in the conceptual illustration of Fig. 1.2, overlapping target areas exist, such that more than one application can be satisfied by several architectures. To extend the sample rate beyond that of a single converter, time-interleaving has been extensively applied to the above architectures. More recently, hybrid converters have emerged, combining the merits of different

Fig. 1.3 Wideband ADC-based heterodyne (top left) and zero-IF (top right) vs. direct RF sampling receiver (bottom)

architectures,¹ to extend the range of achievable performance and keep up with the rapidly advancing number/demands of future applications.

Undeniably, the field that has established data converters as a hot research topic in both industry and academia for several decades now is that of communications [3]. The constantly increasing demand for higher bandwidth and accuracy in wireline and wireless communication systems is majorly driving the advances in research and development of ADCs, as being key blocks in every receiver. The multiband requirements of fifth-generation (5G) and future sixth-generation (6G) cellular mobile networks [4] and data over cable networks [5] call for ADCs with high resolution (10–12 bits), multi-GS/s sample rates (5 GS/s or higher), and several GHz of signal bandwidth (half the sample rate or more) while ensuring high linearity (60–70 dB) and low power (preferably below 500 mW). Realizing such ADCs and integrating them with the digital processor in deep-scaled Complementary Metal-Oxide-Semiconductor (CMOS) empower the direct RF sampling receiver topology [6], depicted in Fig. 1.3. This is the closest hardware equivalent to the ideal Software-Defined Radio (SDR) [7]. By leveraging the advanced DSP capabilities in finer CMOS processes, this topology simplifies the analog signal chain and captures multiple bands with a reduced receiver count, lowering area and cost, with improved flexibility and efficiency.

On another high-speed communications front, the rapid emergence of cloud computing and the Internet-of-Things (IoT) has dramatically increased the demand for a higher bandwidth in data center infrastructures. Consequently, the data rates of the transceivers in these systems have reached numbers as high as 112 Gb/s, with future plans to extend to 224 Gb/s and beyond. With Pulse-Amplitude Modulation (PAM-4) currently the prevailing signaling method, for an ADC-based receiver,

¹ One of the proposed prototypes Integrated Circuit (IC)s in this book is a hybrid converter of such kind.

this translates to sample rate requirements of 56 GS/s (112 Gb/s) and a theoretical² 112 GS/s (224 Gb/s) with 6–8-bit resolution. To keep up with these sample rates, suitable ADCs are typically realized with a massive amount of time-interleaving (\geq 64, rarely \geq 36) [8, 9]. However, this significantly increases the power and area, on top of deteriorating the signal bandwidth due the large input loading. Further, time-interleaving results in offset, gain, timing, and bandwidth mismatches between the different sub-ADCs, which deteriorate accuracy and require complex calibration schemes, further increasing power and complexity. It is of great interest to develop speed-boosting techniques to increase the sub-ADC sample rate (beyond 1 GS/s), such that the aforementioned interleaving-associated drawbacks are reduced while ensuring negligible accuracy degradation as well as minimizing the power and complexity. Again, to maximally exploit the DSP benefits in advanced CMOS nodes, it is favorable to place the ADC on the same chip; therefore, scalable-friendly solutions are highly desirable.

The above applications require very-high-performance multi-GHz ADCs on multiple specifications and are key drivers for future performance advancements. It is important to note that these specifications are highly desirable to enable next-generation communications, but not entirely achievable.³ As such, they were used to motivate this work in extending the limits beyond what is realizable.

1.2 Challenges in Pushing Performance Boundaries

The previous section briefly discussed some common ADC specifications and requirements for key multi-GHz-range applications. Generally, many different metrics exist, with different importance depending on the target application. However, in a generalized manner, three main parameters encompass the overall ADC performance in a nutshell; these are accuracy, speed, and power. Under accuracy, we include metrics such as aggregate/effective resolution, dynamic range, noise, and linearity. With speed, we denote both sample rate and bandwidth, in the sense that if one increases, the other one must follow. These three main parameters, as illustrated in Fig. 1.4, are bound to each other and influenced by several factors on different levels, such as on a circuit level, an architectural level, a system level, and a technological/process level. These factors present considerable challenges in all the levels, making it non-trivial (even impossible) to simultaneously push all three parameters toward the desired directions, especially at multi-GHz sample rate and bandwidth.

 $^{^2}$ This is one of the potential future options under consideration with several others being investigated, such as PAM-6 or a different signaling method altogether.

³ At the time of this writing, these applications are undergoing research and prototyping phases to determine viability and long-term reliability.