4 ;;-f:_'. I'

i0S Architecture
Patterns

MVC, MVP, MVVM, VIPER, and
VIP in Swift

Raul Ferrer Garcia

ApPress’

iOS Architecture
Patterns

MVC, MVP, MVVM, VIPER,
and VIP in Swift

Ralil Ferrer Garcia

Apress’

i0S Architecture Patterns: MVC, MVP, MVVM, VIPER, and VIP in Swift

Radl Ferrer Garcia
Barcelona, Spain

ISBN-13 (pbk): 978-1-4842-9068-2 ISBN-13 (electronic): 978-1-4842-9069-9
https://doi.org/10.1007/978-1-4842-9069-9

Copyright © 2023 by Raul Ferrer Garcia

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/iOS-Architecture-
Patterns. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9069-9

We’re here to put a dent in the universe. Otherwise,
why else even be here?
—Steve Jobs

They didn’t know it was impossible, so they did it.
—Mark Twain

Table of Contents

About the AUthOrccscemmssmnmssnsmmsssnmmsssssssssssssssnsssssnsssssnnssssnnssssnnsns xi
About the Technical REVIEWETsscesssssmssssansssssnsssssnsssssnsssssasssssnnss xiii
Acknowledgments.......cccuuussssssssssnnmmmsssssssssnnsnnnssssssssssssnnsnnsnssssssssnnnnnns XV
INtroduction.........ccccmnemmmssnmmsssnnmssssnmsssnsssssnsssssnnssssnnssssnnssssnnnnssnnnnnns Xvii
Chapter 1: Introduction..........cccevnnemmnnnnsesnnnnsssnmmssssnnssss———————" 1
What Is Software ArchiteCture? ... 2
Architecture Patterns..........cooooreirerrrcrere e 3
Why Do We Need an Architecture Pattern for Our Applications?c..cccecvveruene. 3
Design from High Level 10 LOW LEVEL..........ccovcvreiernnernessresess e 5
DeSIgN PatterNSccoveerrerrrerersse s 6
SOLID PrinCiplEsScccvvererierirsires s se s s se s sss e s e s ssessssessesne s 10

How to Choose the Right Architectural Pattern.........cccocvcvvnevinvnnnienesnsnienens 11
Most Used Architecture Patterns...........cocovrnnnnnnnsssnsssese s 13

In Search of a “Clean ArchiteCture”covrriinsnnnsnssss s 14
Clean ArchiteCture LaYerS......cccveverrrvereresensessessessssesessessssessessessesssssssessenes 14

The Dependency RUIE.........coiirininne e 17
Advantages of Applying a Clean ArchiteCture.........c.ceoevverreresenserseresessensenens 17
MyToDos: A Simple App 10 Test ArchiteCtUresccveevreverrerrerrersresrere s resserenaens 18
Y8 T =TT S 18

App DeVelopmeNt ..o s 28
SUMMAIY..c..eitiii i e s s s s s b e e e e e p e e e aenrs 43

TABLE OF CONTENTS

Chapter 2: MVC: Model-View—-Controller...........cccsrussnnnnnssssnnnssssssnnnns 45
WRAL IS MVC? ...t snns 45
A Little HiSTOryccoeeiciricress s sn s s sss e s 45
Apple Model-View—Controllerccccvrrernreneresennerensesese s sesesesessenens 46
Components in MVC..........ccri e 47
MOGEL......ecee e 47
VIBW ...t enne e e R 48

0] 1) TS 49
Advantages and Disadvantages of MVC.........c.cccovrerrnnnnnennnnnesssesessesessesesennes 49
Advantages of the MVC Pattern............ccccvvevnrennenesssesnsssesssesssesessesessenens 49
Disadvantages of the MVC Pattern...........ccuoeervnrinsmsnnesesnssesssesessesessssesennes 50
LT LaY o0 o LT OSSN 51
MVC LYEIS......ccererreerreerrsessssessssssessssessssesssssssssssesssssssssesssssssssssessssessssesessnnes 51
MyToDos Application SCIrEENSccvcvveriernrnseriere s e saes 64
TESHING ..cvieeereire e 89
SUMMAIY.c..eitetrerere s serse e s s e s s e e s s sae e e e s e e s sae e s e saesae e e e nannnens 105
Chapter 3: MVP: Model-View—-Presentercuusseeessnmesssssssssnsnssnnnnas 107
WRAL IS MUP? ... s snas 107
A Little HISTOrYcocevcerceecerercersre e se s s s s ss e sae e saens 107
HOW [EWOTKS ...t 107
CompPONEnts iN MVUPcovvrirerererrerere e sss e s ssesassessesaesnes 108
Advantages and Disadvantages of the MVPccccvvrvvninininvnnnieninnns 111
MVP APPLICALION ...ccueeveieircrer e e 112
MVUP LAYEIS.......ceerieresireresre s sss s s ss e s sns s s sre s e sssssssesnesnens 112
MyToDos Application SCIEENSccccccverrrerinrerererere s sesseens 116
MVP-MyTODOS TESTING ...covevveirircre st snens 139
SUMMANY....eeeerercreree e se e e e e re e e e e 144

TABLE OF CONTENTS

Chapter 4: MVVM: Model-View-ViewModelcesseenrrssssnnnssssanns 145
What IS MUVM? ...t ss s e s sssssssssssssssasnnns 145
A Little HIiStOryccccvienesirere e sss s s s snssessesnens 145
HOW [EWOTKS ... s 145
Components in MVVIM..........ccorirnrnierne e sesse e seenes 146
Advantages and Disadvantages of MVWVM.............cccccevvinininnnnnsnnenensnsenenns 148
AdVANTAQES......c o 149
Disadvantages ... 149
MVVM ApPLICALIONc..oveirerercirce e s 150
MVUVM LAYEIS......ccvrreerreeressesessssessssesesssssssssssssssssssssssssnsssssssssssnssssnsssnssssnssnnns 151
MyToDos Data Binding..........cceeeereserensesessnesnsesessesesssessssessssessssssssesssssssenens 155
MyToDos Application SCIEENSccccviererninine s sesnens 164
MVVM-MyTODOS TESHING ...ceevrreerrreressesesree s sessesesss e sesse e s e sensesessenens 198
MVVM-C: Model-View-ViewModel-Coordinator...........ccccvrrermrnnernsesenenerennes 206
What IS @ Coordinator?ccvveeerenernsesnesesese s s sens 206
Using MVVM-C in MyTODOS.......cccourrererrmnmrenensssasessssesssssssssssessssssessesssssnessnnes 208
SUMMAIY.c.ueitiirerere st e s e s s a e e s s sbe st e e s e e aesae e s e s aesae e e e nannaees 224
Chapter 5: VIPER: View-Interactor-Presenter—Entity—Router 225
WRHAL IS VIPER?c.ciieiieeesssss s s s ssssssssssssssssssssasanas 225
A Little HiSTOrYcocerceriere st sae s saeans 225
HOW [EWOTKS ...t 226
Components iNVIPER ..o s ssssessessesssssssessesnes 226
Advantages and Disadvantages of VIPERcccccvvnvnnnininnnnenieninnns 228
VIPER ApPlICAEION ..ot 230
Communication Between COmMpoNentscccccceveevniereriesernsesensesessesenenns 230
VIPER LAYEIS......cccerereriesire e s s ss e sse st e s snsssssssnesnens 234

vii

TABLE OF CONTENTS

MyToDos ApPliCation SCIEENScvvvrverrerrererrereressesessessessesessessessessssessessens 236
VIPER-MYTODO0S TESTINGcccerverieeriririerree s senses e ssessee e s sesssssnessessenns 275
31111117 O 282
Chapter 6: VIP: View-Interactor—Presenter.........cccccussemnrrssssnnnsnsssnnns 285
WRAL IS VIP? ...t s 285
A Little HISTOrYcccoeeeeeeee e 285
HOW [EWOTKS ... 285
Components iNVIP........co e 286
Advantages and Disadvantages Of VIP..........ccocorrenrnenerescrnscnenese e 293
Lo I R 294
MyToDos Application SCIEENScccccvveriernininese e ennens 296
VIP-MyTODOS TESHINGcoveerercereeree e 351
SUMMANY....ceiieerereresese e se s sr s s e nenssnenns 364
Chapter 7: Other Architecture Patternscccocccinnsssennnnnsssannnnsssnnns 365
INEFOAUCTION.....cvieeeccece e s 365
RIBs: Router, Interactor, and BUilder............cocovviinnnnnsssssrsssesesesesssenes 366
A LItte HIiSTOrY ...ccceverevierercere s sere v ses e sse e sss s ssesss e se s snesessessesnens 366
HOW [EWOTKS ...t 367

0] 111010 T R 368
Advantages and DiSadvantagesccevvvrreriernnnnensesnesessessessese s sessensens 370
The EIM ArchiteCUIE........ccceerieerrciree e 37
A Little HiSTOrYooerceree st ss s s se s sne s saens 371
HOW [EWOTKS ...t s 372

0] 111010 =T R 373
Advantages and Disadvantagesc..ccccvvrirvnninneninsnnsen e 373

viii

TABLE OF CONTENTS

3T o TN 374
A Little HiSTOrYooercereece st ss e s s e s sae e saeans 374

HOW [EWOTKS ...t s 375

0] 111010 =T R 375
Advantages and Disadvantages.........c.ccocuvrvrinnnnnniennsnse e 377
AdVANTAQES. ... e 377
Disadvantages........cccvvrninninn s 378

TCA: The Composable Architecture ... 378
A Little HISTOrYccoeeeeeeeeereeresee e 378

HOW [EWOTKS ... 379
COMPONENLS ..ot e e 381
Advantages and Disadvantagesccuourererrerersseressesesesessssesessesesesesessesesseens 382
L L LT T L S 383
DiSAUVANTAGESveveerreerereserre s 383
SUMMANY....ceiviierinerirese e r e e e e e nrn e 384
Chapter 8: CONCIUSION........ccuismmmmmnsssnnnmmsssssnnsmsssssnssssssssnnsesssssnnnssssnnns 385
The Importance of Clean ArchiteCture.........oovvvcrivnsnrnc e 385
MOVING FOrWArdccoieriirieenerrir s s 386
INA@X.ueeiiienrnien s s s ————— 389

ix

About the Author

Raiil Ferrer Garcia holds a doctorate in
chemistry, but he has always had a great
interest in the world of computer science
and software development, where he began
his foray programming with a ZX Spectrum
at the age of 14. For just over ten years, and
in a self-taught way, he has entered the
world of mobile development, first as an iOS
Developer and then as Mobile Tech Lead at
Editorial Vicens Vives, and he has dedicated

himself completely to the development and
management of mobile applications. He also maintains a blog in which
he tries to explain everything he’s learned and studied about the world of
mobile development.

About the Technical Reviewer

Massimo Nardone has more than 25 years

of experience in security, web and mobile
development, cloud, and IT architecture. His
true IT passions are security and Android. He
has been programming and teaching how to
program with Android, Perl, PHP, Java, VB,
Python, C/C++, and MySQL for more than 20
years. He holds a Master of Science degree

in Computing Science from the University of

Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT executive,
project manager, software engineer, research engineer, chief security
architect, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect for many years. His technical skills include security, Android,
cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile development,
MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,
Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto
University). He holds four international patents (PKI, SIP, SAML, and Proxy
areas). He is currently working for Cognizant as head of cybersecurity
and CISO to help both internally and externally with clients in areas of
information and cybersecurity, like strategy, planning, processes, policies,
procedures, governance, awareness, and so forth. In June 2017, he became
a permanent member of the ISACA Finland Board.

xiii

ABOUT THE TECHNICAL REVIEWER

Massimo has reviewed more than 45 IT books for different publishing
companies and is the co-author of Pro Spring Security: Securing Spring
Framework 5 and Boot 2-based Java Applications (Apress, 2019), Beginning
EJB in Java EE 8 (Apress, 2018), Pro JPA 2 in Java EE 8 (Apress, 2018), and
Pro Android Games (Apress, 2015).

Xiv

Acknowledgments

First of all, I would like to thank my family for their support, their words of
encouragement, their inspiration... during the preparation and writing of
this book and, in general, ever since. This book is dedicated to them.

Second, I would like to thank the entire Apress team for the
opportunity to write this book, starting with Aaron Black who contacted
me and raised the possibility of writing a book on iOS development, and
not forgetting Jessica Vakili and Nirmal Selvaraj for their great work in
managing and editing this book.

Learning is a journey that never ends, so I would also like to thank
the work of all those who in one way or another teach us something new
every day.

Finally, thanks to you, reader. I hope that once you have read this book
you consider it a wise decision and that, to a greater or lesser extent, it has
helped you in your evolution as a developer.

Introduction

As we will see throughout the book, various architectural patterns have
been developed to apply in the development of our applications - some
well known (and older), such as MVC or MVVM, and others more
innovative, such as VIPER or VIP.

If you are just starting to develop applications or have been at it
for some time, you have surely searched for information on how an
application is built and what architecture pattern is the best to apply.

But possibly you have also reached the same conclusion as me: from a
global point of view, there is no perfect architecture pattern, they all have
advantages and disadvantages, and it almost always depends on how we
apply said pattern that our code is readable, testable, and scalable.

In addition, you will also have noticed that an architecture pattern
comes to mark some kind of application rules, but that later many
developers adapt or modify it looking to improve its features or solve some
of its possible drawbacks.

Who Is This Book For?

This book is aimed both at those developers who are starting now and
who want to know what architecture patterns they can apply to their
applications, as well as those developers who have been developing
applications for some time but who want to know other possible
architectures to apply.

xvii

INTRODUCTION

Therefore, this book is for you if what you want is

e Learn to develop applications following some of the
architecture patterns explained

e Understand the advantages and disadvantages of each
of the architecture patterns explained and choose the
one that suits you best

e Understand the advantages of developing a readable,
testable, and scalable code

In this book I have not sought to delve into the use of each of the
architectures explained, but rather to serve as a point of introduction to
their use, to understand why they are important, and from here on you will
be able to choose one or those that suit you best, know how to delve into
them, apply them, and evolve in your career as a developer.

How to Use This Book?

Apart from a theoretical introduction to each of the architectural patterns
presented (there are numerous articles for each of the architectures
that we will cover that talk about their features, advantages, and
disadvantages), this book is eminently practical. In Chapters 2-6 (MVC,
MVP, MVVM, VIPER, and VIP architecture patterns), the development of
an application (MyToDos) following each of these patterns is presented.
For the sake of simplicity, although the main parts of the code are
presented (depending on the concept explained), you will be able to

[

observe omitted parts of the code (marked with “.”). However, you can

find the full code for each of the projects in this book’s repository.
Therefore, I am going to assume that you have some knowledge of both

Swift and Xcode that should allow you to follow the course of the book

without problems.

xviii

CHAPTER 1

Introduction

Assume the following situation: you and your team have received a new
project to develop a mobile application. A project, whether it originates
from our idea or is commissioned by a client, will present a series of
specifications, functionalities, behaviors, etc.

Continuing with our assumption, we are going to consider that all
these specifications and functionalities have already been studied and
transformed into user stories (i.e., how a functionality would be described
from the point of view of a user: for example, “As a user, [want to login
in the application”) and that we could already start developing the
application by writing the first lines of code.

It has happened to all of us that when we have a new project, we want
to start writing code. However, if we work in this way, without proposing a
project structure or taking into account the type of application, we can end
up developing an application that works, but whose code is later difficult to
maintain.

To avoid this situation, before starting to write code we have to
determine what structure we are going to give it, what the Software
Architecture is going to be, and what architecture pattern is the most
suitable for our project.

Before starting to see the most used architecture patterns in the
development of iOS applications, we are going to make an introduction to
what Software Architecture is, what architecture patterns are, why their use
is necessary, and how to choose the most suitable one for our projects.

© Raul Ferrer Garcia 2023
R. Ferrer Garcia, iOS Architecture Patterns, https://doi.org/10.1007/978-1-4842-9069-9_1

https://doi.org/10.1007/978-1-4842-9069-9_1

CHAPTER 1 INTRODUCTION

What Is Software Architecture?

The Software Architecture defines how the software structure is, what
are the components that form it, how they are joined, and how they
communicate with each other.

All these points that intervene in the definition of the Software
Architecture can be represented according to different models or
views, the following three being the main ones (and an example of their
application is one of the architectures that we will study later, the MVVM
or Model-View-ViewModel):

o Static view: It indicates which components make up
the structure. In MVVM, these components would be
View, Model, and ViewModel.

e Dynamic view: It establishes the behavior of the
different components and the communication between
them over time.

o Functional view: It shows us what each component
does. For example, in the example we are seeing,
each of the components would have the following
functionalities:

e Model: It contains the classes and structures
responsible for storing and transferring an
application’s data. It also includes business logic.

e View: It represents the interface with the elements
that form it, the interaction with the user, and how
itis updated to show the user the information
received.

CHAPTER 1 INTRODUCTION

o ViewModel: It acts as an intermediary between
the View and the Model; it usually includes
presentation logic, that is, those methods that allow
the data received from the Model to be transformed
to be presented in the View.

Architecture Patterns

We have just seen that Software Architecture helps us to give structure

to our project. However, not all projects are the same or have the same
purpose, so, logically, the architectures used are different and appropriate
to each project.

Developers have been finding different solutions when facing their
projects. The fact that the requirements and functionalities of a project, its
components, or the way of communicating between them vary from one
project to another has given rise to different architectural solutions and
architecture patterns.

Keep in mind that an architecture pattern is like a template that
offers us some rules or guidelines on how to develop and structure the
different components of the application. Each architectural pattern has its
advantages and disadvantages, as we will see later.

Why Do We Need an Architecture Pattern
for Our Applications?

The selection and use of an architecture pattern when developing our
applications will allow us to avoid a series of problems that applications
that have been developed without using these patterns can present.

CHAPTER 1 INTRODUCTION

Some of these problems are as follows:

o These are applications that are difficult to maintain.
This problem increases if new developers are involved,
as it is more costly for them to understand the software
they are working on.

e Ttusually increases the development time and,
therefore, increases its cost.

e Asitisnota structured code, it is more complicated to
add new features or scale it.

o They are very likely to have duplicate, unused, and
messy code. All this makes it more prone to errors.

Therefore, the use of a good architecture pattern will allow us to reduce
these problems:

e We will work with a code that is simpler, more
organized, and easier to understand (and following
good development practices, such as the SOLID
principles) for all developers since they will act
according to the same rules.

e The written code will be easily testable and less prone
to errors.

e A correct distribution of the components and their
responsibilities will lead to a structure that is easy to
maintain, modify, and extend.

o All of this will result in reduced development time and,
by extension, reduced costs.

CHAPTER 1 INTRODUCTION

Design from High Level to Low Level

In this book, we are going to study and apply different architectural
patterns in iOS applications, so we will also see the code with which we
implement them and the best way to implement it.

As we have seen, an architecture pattern gives us guidelines to build an
application that is efficient, scalable, and easy to maintain, among other
advantages.

But we can think of an architecture pattern as the high-level design of
the application, and then we have to go down to the code (Figure 1-1).

This is where the design patterns and their implementation through
the programming language come in, trying to follow some principles
(SOLID), which will make the code flexible, stable, maintainable, and
reusable.

High-Level

v

Programming Language Low-Level

Figure 1-1. Levels of design and implementation in an application

Let’s see briefly what design patterns are (some of which we will apply)
and how to work following the SOLID principles.

CHAPTER 1 INTRODUCTION

Design Patterns

In the same way that an architecture pattern is a generic solution to a
certain problem when it comes to the structure of our software (i.e., it will
affect the entire project), design patterns give us solutions to recurring
problems that affect a project component.

There are 23 design patterns, which are described in the book Design
Patterns: Elements of Reusable Object-Oriented Software.' They described
the 23 design patterns and classified them into three groups: structural
patterns, creational patterns, and behavioral patterns.

Creational Patterns

Creational patterns are those that allow us to create objects. These patterns
encapsulate the procedure for creating an object and generally work
through interfaces.

Factory Method

It provides an interface that allows you to create objects in a superclass, but
delegates the implementation and alteration of objects to subclasses.

Abstract Factory

It provides an interface that allows groups of related objects to be
generated, but without specifying their specific classes or implementation.

! Design Patterns: Elements of Reusable Object-Oriented Software by E. Gamma,
R. Helm, E. Johnson, and J. Vlissides. Addison Wesley, 1st Ed, 1994.

CHAPTER 1 INTRODUCTION

Builder

It allows building complex objects step by step, separating the creation of
the object from its structure. In this way, we can use the same construction
process to obtain different types and representations of an object.

Singleton

This pattern ensures that a class has only one possible instance, which is
globally accessible.

Prototype

It allows you to copy or clone an object without requiring our code to
depend on its classes.

Structural Patterns

Structural patterns specify how objects and classes relate to each other to
form more complex structures so that they are flexible and efficient. They
rely on inheritance to define interfaces and obtain new functionality.

Adapter

It is a structural pattern that allows two objects with incompatible
interfaces to collaborate, through an intermediary with which they

communicate and interact.

Bridge

In this pattern, an abstraction is decoupled from its implementation, so it
can evolve independently.

CHAPTER 1 INTRODUCTION

Composite

It allows you to create objects with a tree-like structure and then work
with these structures as if they were individual objects. In this case, all the
elements of the structure use the same interface.

Decorator

This pattern allows you to add new features to an object (including this
object in a container that contains the new features) without changing the
behavior of objects of the same type.

Facade

It provides a simplified interface to a complex structure (such as a library
or set of classes).

Flyweight

It is a pattern that allows you to save RAM by having many objects share
common properties on the same object, instead of maintaining these
properties on every object.

Proxy

It is an object that acts as a simplified version of the original. A proxy
controls access to the original object, allowing it to perform some tasks
before or after accessing that object. This pattern is often used for Internet
connections, device file access, etc.

Behavioral Patterns

They are the most numerous, and they focus on communication between
objects and are responsible for managing algorithms, relationships, and
responsibilities between these objects.

CHAPTER 1 INTRODUCTION

Chain of Responsibility

It allows requests to be passed through a chain of handlers. Each of these
handlers can either process the request or pass it on to the next. In this
way, the transmitter and the final receiver are decoupled.

Command

It transforms a request into an object that encapsulates the action and
information you need to execute it.

Interpreter

It is a pattern that, given a language, defines a representation for its
grammar and the mechanism for evaluating it.

Ilterator

It allows to cycle through the elements of a collection without exposing its
representation (list, stack, tree...).

Mediator

It restricts direct communications between objects and forces
communication through a single object, which acts as a mediator.

Memento

It allows you to save and restore an object to a previous state without
revealing the details of its implementation.

Observe

It allows establishing a subscription mechanism to notify different objects
of the events that occur in the object that they observe.

CHAPTER 1 INTRODUCTION

State

It allows an object to change its behavior when its internal state changes.

Strategy

It allows defining that, from a family of algorithms, we can select one of
them at execution time to perform a certain action.

Template Method

This pattern defines the skeleton of an algorithm in a superclass but allows
subclasses to override some methods without changing their structure.

Visitor

It allows algorithms to be separated from the objects with which they
operate.

SOLID Principles

These are five principles that will allow us to create reusable components,
easy to maintain, and with higher quality code.

SOLID is an acronym that comes from the first letter of the five
principles.

Single-Responsibility Principle (SRP)

A class should have one reason, and one reason only, to change. That is, a
class should only have one responsibility.

Open-Closed Principle (OCP)

We must be able to extend a class without changing its behavior. This is
achieved by abstraction.

10

CHAPTER 1 INTRODUCTION

Liskov Substitution Principle (LSP)

In a program, any class should be able to be replaced by one of its
subclasses without affecting its operation.

Interface Segregation Principle (ISP)

It is better to have different interfaces (protocols) that are specific to each
client than to have a general interface. Also, a client would not have to
implement methods that it does not use.

Dependency Inversion Principle (DIP)

High-level classes should not depend on low-level classes. Both should
depend on abstractions. Abstractions should not depend on details. The
details should depend on the abstractions. What is sought is to reduce
dependencies between modules and thus achieve less coupling between
classes.

How to Choose the Right
Architectural Pattern

We have just seen the advantages that our applications have a good
architecture offers us. But how do we choose the right architecture pattern
for our project?

In the first place, we have to know some information about our project
and the technology that we are going to use since we have seen that
some architecture patterns are better adapted to some projects and other
patterns to others.

11

CHAPTER 1 INTRODUCTION

Therefore, we must take into account, for example:
e The type of project
e The technologies used to develop it
e Support infrastructure (servers, clouds, databases...)
o Userinterface (usability, content, navigation...)
e Budget and development time

o Future scalability and the addition of new
functionalities

If we take into account everything seen so far, the choice of a good
architecture pattern (along with the use of design patterns and SOLID
principles) will allow us to have the following:

e Ascalable application: A good architecture pattern
should allow us to add new features and even change
some of the technologies used, without having to
modify the entire application.

o Separation of interests: Each component should
be independent of the code point of view. That is, to
function correctly, a component should only be aware
of those around it and nothing else. This will allow
us, for example, to reuse these components or simply
change them for others.

e A code easy to maintain: Well-written, structured
code without repetition makes it easier to understand,
review, or modify. Also, any new developer joining the
project will require less time to get hold of.

12

CHAPTER 1 INTRODUCTION

o Atestable code: The previous points result in the fact
that it is easier to test a code if the functionalities are
correctly separated than if they are not.

e Asolid, stable, reliable, and durable code over time.

Most Used Architecture Patterns

From a generic point of view of software development, there are
numerous architecture patterns, but we will focus on the most used for the
development of i0S applications:

e Model-View-Controller (MVC)

e Model-View-Presenter (MVP)

e Model-View-ViewModel (MVVM)

e View-Interactor-Presenter-Entity-Router (VIPER)
e View-Interactor-Presenter (VIP)

We will start with the best-known model and the one that every
developer usually starts working with, the MVC. From here we will work on
models that derive from it, such as the MVP and the MVVM, to end up with
much more elaborate models of higher complexity, such as the VIPER and
the VIP.

After these architectural patterns, we will see, in a more summarized
way, some more patterns, perhaps not so used or known, but that can give
us a better perspective of how to structure an application. Examples of
these types of patterns are RIBs (developed by Uber) and Redux (based on
an initial idea of Facebook for a one-way architecture).

13

CHAPTER 1 INTRODUCTION

In Search of a “Clean Architecture”

The “Clean Architecture” concept was introduced by Robert C. Martin
in 2012,% and it is not an architecture, but a series of rules that, together
with the SOLID principles, will allow us to develop software with
responsibilities separate, robust, easy to understand, and testable.

Clean Architecture Layers

According to this philosophy, for an architecture to be considered “clean”
it must have at least the following three layers: Domain Layer, Presentation
Layer, and Data Layer (Figure 1-2).

*https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html

14

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

CHAPTER 1 INTRODUCTION

Presentation Layer Domain Layer Data Layer

Depencency Rule E)> B> B

Figure 1-2. Scheme of the layer structure in Clean Architecture.
Dependency rule arrows show how the outermost layers depend on
the innermost ones and not the other way around

Domain Layer

It is the core of this architecture and contains the application logic and
business logic. In this layer we find the Use Cases or Interactors, the
Entities, and the Interfaces of the Repositories:

15

