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Preface

The COVID-19 pandemic has marked our world indefinitely. Its devastating effects
on peoples’ lives and livelihoods are, unfortunately for many, incalculable. For the
academic and scientific world, it meant a sudden halt to in-person meetings, work-
shops and conferences, among many other consequences. People had to manage a
much greater hardship than having to discuss the latest in science and technology by
way of a digital screen, but while most stayed positive and made use of the online
opportunities, science, learning and teaching were not the same. After canceling the
Genetic Programming Theory and Practice (GPTP) workshop in 2020, we decided
to organize the 18th edition of GPTP as an online event in 2021, which allowed us
to gather our community and become an active group again. It was a success by any
measure, but we still hoped to avoid having to repeat that format again.

For the 19th edition of GPTP in 2022, a mix of hopefulness and nervousness
were part of the early organizing meetings, as many institutions around the world
were gradually returning, at least partially, to in-person activities. New strains of the
SARS-COV-2 virus kept appearing and affected the well-being of many. However, as
the first few months of 2022 passed, our hopefulness began to change into joy as we
began to realize that holding an in-person event was not impossible, and gradually
became a realistic scenario.

Our community was engaged, as people started accepting invitations to the work-
shop, and booking flights and hotel rooms. It was a strange feeling, since such gath-
erings are the lifeblood of scientific discourse and engagement. Finally, the time had
come to get back to normal, or at least as close to normal as possible: GPTP 2022
was held from June 2 to June 4 at Weiser Hall in the University of Michigan in Ann
Arbor, hosted by the Center for the Study of Complex Systems. When Prof. Carl
Simon graciously greeted us early on the first day of the event, he reminded us that
it was wonderful to host GPTP once again, especially since it was the first in-person
event held there in almost two years.While this sounded completely reasonable given
what transpired over the past two years, it was still shocking to think about such a
statement, and motivated us to make the event as productive and engaging as ever.
As Carl mentioned, GPTP is characterized by open discussions, thought-provoking
talks and a dynamic format, small in number but big in spirit.

v



vi Preface

Among the many highlights of GPTP over the years have been the amazing
keynote talks, and this year was no exception. The opening keynote was delivered
by Dr. Frank Crary from the University of Colorado, Boulder, giving the audience a
bird’s-eye view, or more appropriately a satellite’s-eye view, of how our solar system
has been, and is being, explored by robotic spacecraft, particularly by always capti-
vating NASA missions. He also provided a perspective on the role that software
systems play in such missions, discussing their unique constraints and stringent
requirements, along with the possible opportunities that may lie on the horizon as
cost of space travel continues to go down and as more countries reach the fron-
tiers of space, especially for those interested in taking machine learning and genetic
programming along for the ride.

On the second day, the keynote was given by Prof. Susan Stepney from the
University of York, providing a fresh new look at how life could, or should, be
studied, and how to get there by way of an engineering program. At the intersection
of biology, computing and physics, cyber-bio-physical systems, or Zoetic systems,
were succinctly presented by Susan, capturing the imagination of the audience and
discussing how Zoetic science could come to be, by thinking of life as a process,
and by taking inspiration of how thermodynamics developed from work in engi-
neering before becoming a full-fledged science. The breadth and scope of the talk
was inspiring, and the implications and opportunities for the genetic programming
community were discussed in a lively Q&A. These topics are explored in greater
detail in the chapter “Life as a Cyber-Bio-physical System” contributed by Susan
Stepney to the present collection.

On the final day, the keynote was delivered by Craig Reynolds, who talked about
some of his most recent work on the evolution of camouflage using genetic program-
ming and co-evolutionary dynamics. The presentation was extremely engaging, as he
showed us how his artificial evolutionary system was able to progressively discover
the ability to generate camouflage patterns to trick a learning neural net predator,
generating a variety of intriguing and aesthetic visual patterns. From conceptualiza-
tion to design and implementation,Craig’s systempresented a perfect example of how
researchers in our field continue to discover new and amazing ways to leverage the
adaptability of evolution in the systems we develop and study, taking care to provide
evolution with the necessary elements to construct the building blocks required to
solve a given task.

Besides the keynotes, many invited speakers presented some of their most recent
findings and ideas concerning genetic programming, artificial evolution andmachine
learning, covering topics that included auto-machine learning, interpretable machine
learning, adversarial learning, symbolic regression and complexity. The book you
hold in your hands contains a collection of 12 chapters derived from all those
talks given at the workshop, each chapter having been authored, read, reviewed
and discussed at the 19th edition of GPTP in Ann Arbor, Michigan, by participants
of the workshop. We also had a fantastic in-person gathering at Bill Worzel’s home,
hosted by one of the founders of GPTP and his amazing spouse; it was easy to see
where the gracious, generous and affable spirit of the event comes from, thanks, Bill!



Preface vii

We are very honored and grateful that we could once again organize another GPTP
workshop in person, and the accompanying book, after two years of uncertainty. It
is our intention that GPTP continues to be a core event for genetic programming
research, bringing together academics, practitioners and theorists from diverse fields
of science that intersect in our community, providing for a constructive, thoughtful,
inspired and open interchange of ideas, and to do so, whenever possible, in-person,
with a coffee during breaks or a beer at dinner.
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Symbolic Regression in Materials
Science: Discovering Interatomic
Potentials from Data

Bogdan Burlacu, Michael Kommenda, Gabriel Kronberger,
Stephan M. Winkler, and Michael Affenzeller

Abstract Particle-based modeling of materials at atomic scale plays an important
role in the development of new materials and the understanding of their proper-
ties. The accuracy of particle simulations is determined by interatomic potentials,
which allow calculating the potential energy of an atomic system as a function of
atomic coordinates and potentially other properties. First-principles-based ab ini-
tio potentials can reach arbitrary levels of accuracy, however, their applicability
is limited by their high computational cost. Machine learning (ML) has recently
emerged as an effective way to offset the high computational costs of ab initio
atomic potentials by replacing expensive models with highly efficient surrogates
trained on electronic structure data. Among a plethora of current methods, sym-
bolic regression (SR) is gaining traction as a powerful “white-box” approach for
discovering functional forms of interatomic potentials. This contribution discusses
the role of symbolic regression in Materials Science (MS) and offers a compre-
hensive overview of current methodological challenges and state-of-the-art results.
A genetic programming-based approach for modeling atomic potentials from raw
data (consisting of snapshots of atomic positions and associated potential energy) is
presented and empirically validated on ab initio electronic structure data.
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1 Introduction

Materials Science (MS) is a highly interdisciplinary field incorporating elements
of physics, chemistry, engineering and more recently, machine learning , in order
to design and discover new materials. The rapid increase in processing power over
the last decades has made computational modeling and simulation the main tool for
studying newmaterials and determining their properties and behavior. Computational
approaches can deliver accurate quantitative results without the need to set up and
execute highly complex and costly physical experiments.

Potential energy surfaces (PES), describing the relationship between an atomic
system’s potential energy and the geometry of its atoms, are a central concept in
computational chemistry and play a pivotal role in particle simulations. An example
PES for the water molecule is shown in Fig. 1. The mathematical function used to
calculate the potential energy of a system of atoms with given positions in space
and generate the PES is called an interatomic potential function. The form of this
function, it’s physical fidelity as well as its complexity and efficiency are critical
components in simulations used to predict material properties.

The ability to simulate large particle systems over long time scales depends crit-
ically on the accuracy and computational efficiency of the interatomic potential.
Broadly speaking, the more accurate the method, the lower its computational effi-
ciency and the more limited its applicability. For example, first-principles model-
ing methods such as density functional theory (DFT) [33] provide highly accurate
results by considering quantum-chemical effects but are not efficient enough to sim-
ulate large systems containing thousands of atoms over long time scales of nanosec-
onds [44].

Fig. 1 PES for water molecule: the energy minimum corresponding to optimized molecular struc-
ture for water-O-H bond length of 0.0958nm and H-O-H bond angle of 104.5◦. Image from
Wikipedia c©AimNature
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Molecular dynamics (MD) simulations treat materials as systems consisting of
manymicroscopic particles (atoms) which interact with each according to the laws of
statistical thermodynamics . These interactions aremodeled by interatomic potentials
depending mainly on particle positions. Macroscopic properties of materials are
obtained as time and/or ensemble averages of processes emerging at the microscopic
scale [27].

Empirical and semi-empirical methods treat atomic interactions in a more coarse-
grained manner via parameterized analytic functional forms and trade-off accuracy
for execution speed in order to enable simulations at a larger scale. Although they
are computationally undemanding, they are only able to provide a qualitatively rea-
sonable description of chemical interactions [53].

Machine learning (ML) interatomic potentials aim to bridge the gap between
quantum and empirical methods in order to deliver the best of both worlds: functional
forms that are as efficient as empirical potentials and as accurate as quantum-chemical
approaches.

1.1 Materials Informatics and Data-Driven Potentials

Building upon the three established paradigms of science that have led to many
technological advances over time, experimental, theoretical and simulation-based, a
fourth “data-driven” paradigm of science is emerging today using machine learning
and the large amounts of experimental and simulation data available [1]. “Big-data”
science unifies the first three paradigms and opens up new avenues in materials
science under the umbrella term ofmaterials informatics. The field of material infor-
matics is very new, and many unsolved questions still remain open and wait for
proper answers [26].

Machine learning interaction models are generated on the basis of quantum-
chemical reference data consisting of a series of snapshots of atomic coordinates,
associated potential energy of the system and optionally other properties.

In molecular dynamics simulations, the system’s potential energy is typically
decomposed into a set of independent m-body interactions that are a function of
each particle’s position, r. For a two-body or pair potential, it is assumed that the
energy contributions from each pair of interacting particles are independent of other
pairs and therefore:

E =
∑

〈i, j〉
g(ri , r j ) (1)

For a three-body potential, triplets of atoms are also considered:

E =
∑

〈i, j〉
g(ri , r j ) +

∑

〈i, j,k〉
h(ri , r j , rk) (2)
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Traditionally, the functions g and h are represented by all kinds of empirical or
semi-empirical analytic functions. With the advent of machine learning and data-
based modeling, it becomes possible to automatically search for these functional
forms with the help of ab initio training data. Substantial effort has already been
put into this direction, and many machine learning models have been successful in
discovering interatomic potentials for a variety of chemical configurations [42].

1.2 Current Challenges

Despite their success in representing atomic interactions,MLmethods are notwithout
their ownchallenges.Derivinghighly accurate and tractable analytic functional forms
for high-dimensional PESs is a very active field of research. The most important
requirements for ML-based PESs are

• general applicability and absence of ad-hoc approximations (transferability);
• accuracy close to first-principles methods (including high-order many-body
effects);

• very high efficiency to enable large simulations;
• the ability to describe chemical reactions and arbitrary atomic configurations;
• the ability to be automatically constructed and systematically improved.

Currently available potentials are far from satisfying all the needs [6], mainly due
to the following difficulties and shortcomings.

Physical plausibility
Closed physical systems are governed by various conservation laws that describe
invariant properties. These fundamental principles of nature provide strong con-
straints that can be used to guide the search toward physically plausible ML
models [53]. In molecular systems, each conserved quantity is associated with a
differentiable symmetry of the action of a physical system. Typical conserved quan-
tities include temporal and roto-translational invariance (i.e. total energy, linear and
angular momentum). Forces must be the negative gradient of the potential energy E
with respect to atomic positions ri :

Fi = −∇ri E

When atoms move, they always acquire the same amount of kinetic energy as they
lose in potential energy, and vice versa—the total energy is conserved. The potential
energy of a molecule only depends on the relative positions of atoms and does not
change with rigid rotations or translations.

Another aspect of invariance is permutational invariance resulting from the fact
that from the perspective of the electrons, atoms with the same nuclear charge appear
identical to each other and can thus be exchanged without affecting the energy or the
forces. To ensure physically meaningful predictions , ML-based models must exhibit
the same invariant behavior as the true potential energy surface.
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Accuracy
Accuracy is one of the most important requirements of ML potentials. The pre-
dicted energies and forces should be as close as possible to the underlying ab initio
data. Numerical accuracy of the ML models is restricted by the intrinsic limitations
of their functional form and descriptors (input variables) used. For example, con-
ceptual problems related to incorporating rotational, translational and permutational
invariance into descriptors are of primary relevance [6, 21, 46, 47] as well as their
optimal design [20].

Transferability
Ideally, potentials should be generally applicable and should not be restricted to
specific types of atomic configurations.Due to theirmathematical unbiased form,ML
methods are promising candidates to reach this goal. However in practice, developed
potentials often perform verywell in applications they have been designed for, but are
too system-specific and thus cannot be easily transferred from one system to another.
The issues of extensibility, generality and transferability of the ML potentials need
to be explicitly addressed [6].

Complexity and data requirements
Another issue worth mentioning here is the mathematical complexity of ML poten-
tials. For example, themost popularMLmethods used to represent many-body PESs,
ANNs, require complex architectures with many adjustable parameters (weights of
neural synapses andneuronbiases) to yield sufficientlyflexible and invariant PES rep-
resentations . For this, large amounts of training data (often dozens or even hundreds
of thousands of points) are needed. On the other hand, the number of training data
should be kept as low as possible since they are calculated via demanding quantum-
chemical methods. It means that as simple as possible analytic representations of
PESs are needed.

Integration of physical knowledge and interpretability
Related to the mathematical complexity issue, it is also important to note that most
of the ML methods (e.g. ANN and SVM) are of a “black-box” nature, and may be
less amenable to including physical information in the functional forms, relying at
least partially on physics-inspired features considered in atomic descriptors. This
often leads to the increased mathematical and computational complexity of resulting
interaction models. One of the main directions of the current development in ML-
based computational MS is the shift from “black-box” methods toward “white-box”
methods which often offer better interpretability.

2 State of the Art

A plethora of machine learning approaches have recently emerged as a powerful
alternative for finding a functional relation between an atomic configuration and cor-
responding energy [6, 17, 23]. SeveralML techniques such as polynomial fitting [10],
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Gaussian processes [5], spectral neighbor analysis [52], modified Shepard interpola-
tion [29],moment tensor potentials [47], interpolatingmoving least squares [32], sup-
port vector machines [4], random forests [31], artificial neural networks (ANNs) [15,
25, 46, 55] or symbolic regression (SR) [40] have been successfully employed for a
variety of systems.

More detailed reviews of current ML potentials can be found for example in [23,
37, 42] or [53]. Particularly, ANNs have received considerable attention and are
probably the most popular form of ML potentials used in MS [55]. However, meth-
ods based on symbolic regression are gaining in popularity due to the advantages
they bring in solving aspects of physical knowledge integration, efficiency and inter-
pretability [7, 8, 11, 12, 24, 38, 41, 45, 48]. In the following, we refer to symbolic
regression in its canonical incarnation that employs genetic programming to perform
a search over the space ofmathematical expressions. Symbolic regression approaches
have succeeded in rediscovering simple forms of potentials that deliver qualitatively
good results in a series of specific applications, some of which are described below.

2.1 Directed Search

The goal of the directed search is to improve search efficiency by limiting the hypoth-
esis space to a functional form known to deliver qualitatively good results, instead
of searching for a brand new potential.

Makarov and Metiu [38] use the Morse potential as a functional template for
modeling diatomic molecules (see Sect. 5, Eq. 17). They rewrite it in the form:

M
(
D(r), R(r)

) = D(r)
(
1 − exp

(
R(r)
))2

(3)

and use genetic programming to find the best D(r) and R(r).
The directed search approach is augmented with an error metric that better reflects

the physical characteristics of the problem. A standard error metric such as the MSE
has the disadvantage of overemphasizing high-energy points which are rarely used
during simulation. For this reason, the authors found it advantageous to introduce a
scaling factor:

F(a) =
∑

i

(
E(ri ) − f (ri ; a)

)2

E2(ri ) + δ2
(4)

where the constant δ is added to prevent division by zero.
For each function fα in the population of individuals, the fitness function is then

defined as
pα = exp

(− βFα

)
(5)
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where parameter β controls how discriminating the function is and is adaptively
updated during the run. The search starts with a small value for β which is gradually
increased as the search improves.

The authors note the importance of including the derivative of the energy in the
training data:

F ′(a) =
∑

i

|∇E(ri ) − ∇ f (ri ; a)|2
|∇E(ri )|2 + δ′2 (6)

leading to an expanded fitness function pα:

pα = exp
(−β(F + F ′)

)
(7)

The recombination pool is filled using a proportional selection scheme. An addi-
tional “natural selection” operator employs a “badness list” bα = exp(βFα) whose
elements are the inverse of the fitness. Old individuals are replaced with a probability
proportional to badness.

Results
The directed search approach is shown to perform better than an undirected search
over the search space, on training data generated using the Lippincott potential
(Sect. 5, Eq. 19). A population size of 500 individuals is evolved over 150 generations
(75,000 evaluations) using the primitive set P = {+,−,÷,×, exp}. Furthermore,
a search directed by a Lennard-Jones potential gives accuracy comparable to that
directed by a Morse function, suggesting that restricting the hypothesis space with
an appropriate functional template is a powerful and general approach in the search
for interatomic potentials. In the case of the Lennard-Jones potential (Sect. 5, Eq. 18),
the functional template was defined as

f (r) = 4D(r)

[
1

4
+
( 1

R(r)

)12 −
( 1

R(r)

)6]
(8)

The authors additionally note that some of the returnedmodels, although accurate,
exhibited unphysical behavior and did not extrapolate well. For example, one of the
returnedmodels based on the Lennard-Jones functional form had very good accuracy
but contained a singularity at r = 12 Å, a point outside the interpolation range. The
authors address overfitting by fitting the parameters of both the energy function
and its derivative in the local search phase. This reduces the chance of obtaining
pathological curves in the model extrapolation response.

Finally, Makarov and Metiu also model the potential of a triatomic molecule on
ab initio data consisting of 60 nuclear configurations, showing that directed search
maintains high levels of accuracy and scales favorably with dimensionality.
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2.2 Directed Search with Parallel Multilevel Genetic Program

Belluci and Coker [7, 8] employ symbolic regression to discover empirical valence
bond (EVB) models using directed search augmented with a multilevel genetic pro-
gramming approach: the lower level (LLGP) optimizes co-evolving populations of
models, while the higher level (HLGP) optimizes genetic operator probabilities of the
lower level populations. The approach entitled Parallel Multilevel Genetic Program
(PMLGP) found accurate EVB models for proton transfer in 3-hydroxy-gramma-
pyrone (3-HGP) in the gas phase and protic solvent as well as ultrafast enolketo
isomerization in the lowest singlet excited state of 3-hydroxyflavone (3-HF).

At the lower level (LLGP), the authors use the same error metric and fitness as
in [38], namely Eqs. 4 and 5. LLGP individuals represent the R(r) functional part
of the Morse potential (see Eq. 3). Remarkably, PMLGP does not use crossover but
instead uses six different mutation operators:

• Point mutation randomly replaces a subtree with a randomly generated one.
• Branch mutation replaces a binary operator with one of its arguments at random.
• Leaf mutation replaces a leaf node with another randomly selected leaf.
• New tree mutation replaces an entire tree with a newly generated tree.
• Parameter change replaces each parameter value ai with ai + (R − 0.5)γ , where

R is a uniform random number on the unit interval and γ is a scaling constant.
• Parameter scaling replaces each parameter value ai with ai Rγ , where R is a
uniform random number on the unit interval and γ is a scaling constant.

Of the last two types of mutation, parameter change is designed to make small local
moves in parameter space, while parameter scaling is designed to make large moves
in parameter space to escape the basins of attraction of local optima. Selection is
performed using stochastic universal sampling [3].

At the higher level (HLGP), a real vector encoding is used to represent genetic
operator probabilities. The population is initialized with k random vectors Pk =(
p(k)
1 , ..., p(k)

6

)
, with

∑
i p

(k)
i = 1, where k ranges from 1 to the total number Np of

processors, such that each vector corresponds to one of the LLGP populations whose
operator probabilities it dynamically adapts.

The fitness of each vector Pk is evaluated based on the maximum fitness delta in
the corresponding LLGP population over a specified time interval �t :

FHLGP
k = �FLLGP

max

�t
(9)

This is based on the idea that the larger the magnitude of FHLGP
k , the more successful

the set of probabilities Pk at improving the fitness of the population.
Two genetic operators are used to modify the probability vectors Pk :

• Mutation changes each component of the vector by a random amount with the
constraint that all components sum up to one. This operator kicks in when the
fitness of a vector Pk drops below a given threshold.
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• Adaptation attempts to improve the probability distribution given by Pk by using
feedback from the LLGP. Each LLGP builds a histogram of the number of times
each mutation produced the most fit member of the population. Then the success
frequency of the mutation operator is given by

si = wimi

n
, wi = 1

pi
, n =

∑

i

mi

Here, wi is a weight,mi is the number of successful mutations for the i th operator
(component of Pk) and n is the total number of successful mutations (for all
operators). Based on the success frequencies, adaptation shifts a random amount
of probability from the least successful operator to the most successful operator.

The number of LLGP populations (and HLGP individuals, respectively) is set to
the number of available processors. Initially, all LLGP populations are identical but
diverge during evolution as each corresponding fitness function is parameterizedwith
a different value of β evenly sampled over a specified range. In effect, this applies
different selection pressures on each LLGP population. Migrations are performed
after the last adaptation step in HLGP. At this point, copies of the fittest individual in
each LLGP population are sent to all the other populations, where they replace the
least fit individual.

Results
Training data for five different diatomic molecules (CO, H2, HCl, N2 and O2) was
generated using differently parameterized Morse functions, Gaussian functions and
double well functions. The corresponding directed search spaces are given by

FM = D
(
1 − exp(−R(r; a))

)2 + c Morse
(10)

FG = A exp
(
R(r; a)2

)
Gaussian

(11)

FD = D1
(
1 − exp(−R1(r; a))

)2 + D2
(
1 − exp(−R2(r; a))

)2
Double well

(12)

Parameters D, c, A, D1 and D2 are optimized by including themas leaves in the trees.
The PMLGP approach was compared against a standard parallel genetic pro-

gramming implementation (SPGP). In both cases, populations of 500 individu-
als were evolved in parallel on 8 processors for 20,000 generations. The func-
tion set F = {+,−,×,÷, exp} was used for internal nodes and the terminal set
T = {r, a1, ..., a10} was used for the leaf nodes.

PMLGP was shown to converge faster and achieve higher accuracy than SPGP.
The obtained model of the EVB surface accurately reproduced global features of the
ab initio data. The approach provides a basis for high-quality many-body potentials
for studying gas and solution phase photon reactions.
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2.3 Parallel Tempering

Slepoy et al. [48] use a hybrid approach consisting of genetic programming, Monte
Carlo sampling and parallel tempering to discover the functional formof theLennard-
Jones pair potential.

Parallel tempering is an approach for parallel genetic programming where sev-
eral islands (or replicas) evolve at a different effective temperature. High effective
temperatures favor exploration by accepting new trees even if their fitness is poor,
and low effective temperatures favor exploitation by being sensitive to small changes
in fitness. By using replicas at different temperatures, the approach simultaneously
performs both exploitation and exploration.

The remarkable aspect of this approach is that it marks the first large-scale appli-
cation of genetic programming in materials science with interesting extensions to
the canonical Koza-style algorithm and without restrictions of the hypothesis space.

The training data used consists of 10 nuclear configurations of 10 particles placed
in 3D space. The Lennard-Jones potential describes the interactions between pairs of
particles, therefore a nuclear configuration’s energy is given by the sum of pairwise
potentials:

Econf =
∑

<i, j>

VLJ(ri j ) (13)

where ri j = ‖ri , r j‖ is the distance between particles i and j . Fitness is defined as
the negative mean squared error.

The evolutionary search is organized as a three-stage process consisting of gener-
ation, mutation and testing. Offspring individuals are tested for acceptance into the
new population. A new tree is unconditionally accepted if its fitness exceeds the old
one at the same index. Otherwise, it is accepted with the Boltzmann probability:

Paccept = min

{
1, exp

(
Fnew − Fold

T

)}

where Fold and Fnew are the old and new fitness values, and T is the effective tem-
perature.

After each generation, each sub-population exchanges one tree with its left neigh-
bor in temperature space and one tree with its right neighbor. The trees to be swapped
are selected with equal probability from their respective populations. The tree swap
is accepted with a probability based on the relative Boltzmann weights of the two
trees:

Pacc = min

{
1, exp

[(
1

Ti
− 1

Ti+1

)(
Fi+1 − Fi

)]}

Results
A large-scale experiment was performed on a cluster made of 100 AMDOpteron 2.2
GHzprocessors. The treeswere restricted tominimumdepth 3 andmaximumdepth 4.
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200 replicas with temperatures distributed logarithmically from 0.1 to 10 were used.
The replica size was chosen to be either N = 10,000 or N = 50,000 individuals.
The primitive set consisted of elementary operations P = {+,−,×,÷, exp, | · |}.

The proposed approach successfully discovered the Lennard-Jones potential or
arithmetic equivalents within 100 generations. Interestingly, the expended effort was
estimated to be somewhere in the range of 109 evaluated trees, which represents only
a small fraction of the possible trees with depth 4 (around 2.9 × 1036) [48].

A number of ideas for improving the physical fidelity of the developed functional
forms and their generality and transferability are suggested:

• Inclusion of additional properties and forces on individual atoms in the training
set.

• Primitive set extension to include three-body interactions.
• Integration of physical knowledge (inclusion of symmetries, invariances).

2.4 Symbolically Regressed Table KMC

In order to increase the time scale of simulations, molecular dynamics can be com-
bined with kinetic (dynamic) Monte Carlo (KMC) techniques [9] that coarse-grain
the state space, for example via discretization (e.g. assign an atom to a lattice site).
The main assumption is that multiscale modeling requires only relevant information
at the appropriate length or time scale.

KMC constructs a lookup table consisting of an a priori list of events such as
atomic jumps or off-lattice jumps. This yields several orders of magnitude increases
in simulated time and allows to directly model many processes unapproachable by
MD alone. However, identifying barrier energies from a list of events is difficult and
restricts the applicability of the method.

Here, symbolic regression is proposed to identify the functional form of the poten-
tial energy surface at barrier energy points from a limited set of ab initio training data.
The method entitled Symbolically Regressed Table KMC (sr-KMC) [45] provides a
machine learning replacement for the lookup table in KMC, thus removing the need
for explicit calculation of all activation barriers.

Sastry [45] showed that symbolic regression allows atomic-scale information
(diffusion barriers on the potential energy surface) to be included in a long-time
kinetic simulationwithoutmaintaining a detailed description of all atomistic physics,
as done within molecular dynamics.

In this approach, fitness is computed as a weighted mean absolute error between
the predicted and calculated barriers, for N random configurations:

F = 1

N

N∑

i=1

wi

∣∣�Epred(xi ) − �Ecalc(xi )
∣∣ (14)
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Setting wi = |�Ecalc|−1 gives preference to predicting accurately lower energy
(most significant) events over higher energy events.

The algorithm uses the ramped-half-and-half tree creation method, tournament
selection andKoza-style subtree crossover, subtreemutation and pointmutation [34].

Results
sr-KMC is applied to the problem of vacancy-assisted migration on the surface of
phase-separating CuxCo1−x at a concentrated alloy composition (x = 0.5). Two
types of potentials (Morse and TB-SMA) are used to generate the training data
via molecular dynamics. The number of active configurations is limited knowing
that only atoms in the environment locally around vacancy and migrating atoms
significantly influence the barrier energies.

The inline barrier function is represented from the primitive set P = F ∪ T ,
withF = {+,−,×,÷, pow, exp, sin} andT = {x,R}. Here, x represents the cur-
rently active configuration and R is an ephemeral random constant.

The results show that GP predicts all barriers within 0.1% error while using less
than 3% of the active configurations for training. This leads to a significant scale-up
in real simulation time and a significant reduction in the CPU time needed for KMC.
sr-KMC is also compared against the basic KMC approach (using a table look up)
where it was shown to perform orders of magnitude faster.

The authors note that standard basis-set regressionmethods are generally not com-
petitive to GP due to the inherent difficulty in choosing appropriate basis functions
and show that quadratic and cubic polynomials perform worse in terms of accuracy
(within 2.5% error) while requiring energies for ∼ 6% of the active configurations.

They also note that GP is robust to changes in the configuration set, the order in
which configurations are usedor the labeling schemeused to convert the configuration
into a vector of inputs.

2.5 Hierarchical Fair Competition

Brown, Thompson and Schultz [11, 12] are able to rediscover the functional forms of
known two- and three-body interatomic potentials using a parallel approach to genetic
programming with extensions toward better generalization . Their implementation
is based on Hierarchical Fair Competition (HFC) by Jianjun et al. [28].

The HFC framework [28] is designed toward maintaining a continuous supply of
fresh genetic diversity in the population and protecting intermediate individuals who
have not reached their evolutionary potential frombeing driven to extinction by unfair
competition. It implements these goals with the help of a hierarchical population
structure where individuals only compete with other individuals of similar fitness.

Brown et al. note that a correlation -based fitness measure would increase the effi-
ciency of the search and propose the following formula using the Pearson correlation
coefficient:
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F = N

N + 100 − 100

∣∣∣∣∣

N∑

i=1

(yi − ȳ)(ŷi − ¯̂y)
piσy · piσŷ

∣∣∣∣∣

(15)

Here, N is the number of configurations and pi is the number of terms in the sum-
mation over g (see Eq. 1). Ordinary least squares is then used to fit the prediction ŷ
to the data by introducing scale and intercept terms to the functions g and h:

E =
∑

〈i, j〉

(
a · g(ri , r j ) + b

)+
∑

〈i, j,k〉

(
c · h(ri , r j , rk) + d

)
(16)

The approach is implemented in pm- dreamer, an open-source software package
developed on top of theOpenBeagle library for evolutionary computation [19], using
its available genetic operators. These include several mutations (standard, shrink,
swap, constant), subtree-swapping crossover, tournament selection and elitism:

• Standard mutation replaces a node in the tree with a randomly generated subtree.
• Swap mutation swaps two nodes in the tree.
• Shrink mutation replaces a subtree with one of its arguments.
• Swap subtree mutation swaps a subtree’s arguments.
• Ephemeral mutation changes the value of a constant in the tree.

Additionally, pm- dreamer implements support for distributed evolution using
the MPI standard and introduces migration operators that exchange individuals
between sub-populations at fixed intervals.

Bloat reduction strategies are implemented to prevent the expression trees from
becoming increasingly large, a tendency observed especially in the case of three-body
modeling. Two strategies are tested:

• Using a simplification operator which replaces subtrees that evaluate to a constant
value with the constant value: this operator is applied generationally at a fixed
interval.

• Using penalty terms to the fitness function: in this case, the fitness is decreased
based on a threshold penalty size value sb and a maximum penalty size se, such
that trees with length < sb are not penalized at all, and trees with length > se are
penalized fully (fitness is set to zero).

Local search. Local search based on the derivative-free Nelder-Mead simplex algo-
rithm is employed with a set probability, optimizing either a single constant or all
the constants in the expression.

HFCExtension. Brown et al. implement HFC in a parallel manner by allowing popu-
lations with different fitness thresholds to evolve in parallel, with periodic migrations
between them. After migrations, populations that grow too large are “decimated” by
the removal of the least fit individuals, while populations that grow too small are
supplemented with new randomly generated individuals.


