Guoyuan Li Houxiang Zhang Jianwei Zhang

Bio-Inspired Locomotion Control of Limbless Robots

Bio-Inspired Locomotion Control of Limbless Robots

Bio-Inspired Locomotion Control of Limbless Robots

Guoyuan Li Department of Ocean Operations and Civil Engineering, Faculty of Engineering Norwegian University of Science and Technology Ålesund, Norway

Jianwei Zhang Department Informatics, Faculty of Mathematics, Informatics and Natural Science University of Hamburg Hamburg, Germany Houxiang Zhang Department of Ocean Operations and Civil Engineering, Faculty of Engineering Norwegian University of Science and Technology Ålesund, Norway

ISBN 978-981-19-8383-2 ISBN 978-981-19-8384-9 (eBook) https://doi.org/10.1007/978-981-19-8384-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Contents

1	Intr	oductio)n	1
	1.1	Limbl	ess Locomotion in Nature	1
	1.2	Limbl	ess Locomotion in Robots	3
	1.3	Scope	and Goals	6
	Refe	erences		7
2	Ove	rview o	of Limbless Robots	9
	2.1	State of	of the Art	9
		2.1.1	Active Cord Mechanism	9
		2.1.2	CMU's Snake Robots	11
		2.1.3	AmphiBot	12
		2.1.4	OmniTread	13
		2.1.5	Others	14
	2.2	How I	Limbless Robots Move	14
		2.2.1	Lateral Undulation with Passive Wheels	15
		2.2.2	Self-propulsion with Active Wheels	15
		2.2.3	Self-propulsion with Active Treads	16
		2.2.4	Pure Body Undulation	17
		2.2.5	Rectilinear with Body Expansion and Contraction	18
	2.3	Limbl	ess Locomotion Control	19
		2.3.1	Gait Control Table	20
		2.3.2	Analytical Method	21
		2.3.3	Sine-Based Method	22
		2.3.4	CPG-Based Method	24
	2.4	Summ	nary	26
	Refe	erences		26
3	Sinu	isoidal	Generator—An Attempt to Limbless Locomotion	31
	3.1	Analy	sis and Design of Asymmetric Oscillation	
		for Ca	terpillar-Like Locomotion	31
		3.1.1	Inspiration from Caterpillars	32
		3.1.2	Caterpillar-Like Locomotion Analysis	34

		3.1.3	Design of Asymmetric Oscillator	42
		3.1.4	Simulation and Experiments	45
		3.1.5	Caterpillar-Like Locomotion Summary	51
	3.2	Develo	opment of a Vision-Based Target Exploration System	
		for Sn	ake-Like Robots	51
		3.2.1	Snake-Like Robot System Overview	52
		3.2.2	Vision-Based Navigation	56
		3.2.3	Experiments	60
		3.2.4	Summary of the Target Exploration System	65
	Refe	erences		66
4	Desi	gn of a	Lamprey Spinal Generator	69
	4.1	CPG (Overview	69
		4.1.1	Ijspeert's Model	70
		4.1.2	Matsuoka's Model	71
		4.1.3	Ekeberg's Model	73
		4.1.4	Herrero-Carrón's Model	74
		4.1.5	Comparison	76
	4.2	Design	n Goals	77
	4.3	Single	Oscillator Design	79
	4.4	Chaine	ed Inhibitory CPG Circuit	84
		4.4.1	CPG Circuit Construction	84
		4.4.2	Parameters Adjustment	87
	4.5	Cyclic	: Inhibitory CPG Circuit	94
		4.5.1	Synchronization Activity	96
		4.5.2	Maintenance Activity	99
	4.6	Summ	hary	100
	Refe	erences		100
5	Desi	ign of L	imbless Locomotion	103
	5.1	Introd	uction	103
	5.2	3D Ga	it Implementation	104
		5.2.1	Sidewinding Gait	104
		5.2.2	Rolling Gait	109
		5.2.3	Turning Gait	113
		5.2.4	Flapping Gait	118
		5.2.5	Designed Gaits Summary	121
	5.3	On-Sit	te Experiment	122
	5.4	Summ	ary	123
	Refe	erences		124
6	Desi	ign of S	ensory Reflex Mechanism	125
	6.1	Introd	uction	125
	6.2	Sensor	ry Reflex Mechanism	127
		6.2.1	Reflex Arc	127
		6.2.2	Sensory Neuron Integration	129

		6.2.3 Response Behaviors	131
	6.3	Ball Hitting Experiment	132
		6.3.1 Simulation	133
		6.3.2 On-Site Experiment	136
	6.4	Corridor Passing Experiment	137
		6.4.1 Simulation	138
		6.4.2 On-Site Experiment	140
	6.5	Summary	142
	Refe	erences	143
7	Dov	alanment of Adaptive Locomotion Based on a Feedback	
'	Con	when CDC Model	145
	C 00		145
	/.1	Introduction	145
	7.2	Adaptive Control System	149
		7.2.1 Robot Construction	149
		7.2.2 Control Architecture	150
	7.3	Sensor Processor	152
	7.4	Reaction Maker	153
	7.5	Parameter Modulator	156
	7.6	Motion Optimization	158
	7.7	Simulation and Experiment	160
		7.7.1 Simulation	160
		7.7.2 On-Site Experiment	163
	7.8	Summary	166
	Refe	erences	169
8	Con	clusions	171

List of Figures

Fig. 1.1	The fully functional integration of the limbless robots	7
Fig. 2.1	The ACM family in Hirose-Fukushima Robotics lab	10
Fig. 2.2	Gait control table for the caterpillar gait. Adopted	
	and modified from (Yim et al. 2001)	20
Fig. 2.3	Serpenoid curve. Adopted and modified from (Hirose	
	and Yamada 2009)	21
Fig. 2.4	Sinusoidal generators. Adopted and modified	
	from (Gonzalez-Gomez et al. 2007)	23
Fig. 2.5	Limit cycle behavior. Adopted and modified from (Crespi	
	et al. 2005)	25
Fig. 3.1	Caterpillar locomotion. Adopted and modified	
	from (Brackenbury 1999)	33
Fig. 3.2	Morphological mapping from the caterpillar to the modular	
	robot to the skeleton model	34
Fig. 3.3	Discrete body shape analysis. a Two types of body	
	shape in the half wave as well as their angle variation	
	over discrete time; b an example of half wave generation	
	and propagation with respect to discrete time sequence	35
Fig. 3.4	Hypothesis of continuous angle variation in the swing phase	35
Fig. 3.5	Continuous body shape analysis. a Joint analysis; b	
	vertical displacement analysis; and c collision analysis	37
Fig. 3.6	The vertical displacement with respect to the amplitude	
	and the phase difference	41
Fig. 3.7	Horizontal displacement analysis. a The body arcs	
	with respect to a series of phase differences; b horizontal	
	displacement per step cycle with respect to the amplitude	
	and the phase difference	42
Fig. 3.8	The sine-based control architecture	42
Fig. 3.9	The detailed oscillator model	43
Fig. 3.10	The detailed oscillator model	45
Fig. 3.11	Simulation of caterpillar-like locomotion in one step cycle	46

Fig. 3.12	Body shape variation with respect to the amplitude and the phase difference	47
Fig. 3.13	Onsite experiment	47
Fig. 3.14	The horizontal displacement comparison. a Real caterpillar data. Adopted from (Casey 1991); b on-site experimental data	18
Fig. 3.15	Velocity in the x-plane and displacement in the y-plane versus time. a Data for A3 of real caterpillar. Adopted from (van Griethuijsen and Trimmer 2009); b data for module 4 of the robot	40
Fig. 3.16	Measured data, a the step length $\Delta\lambda$; b the energy consumption: c efficiency of caterpillar-like locomotion	50
Fig. 3.17	Mechanical design of a head part, b upper part, c bottom part, and d assembly for the snake-like robot	53
Fig. 3.18	Example gaits for a forward, b turning, c CW rotating, and d right sidewinding	55
Fig 3 19	Control flow diagram	56
Fig. 3.20	Virtual sensors on the snake-like robot	57
Fig. 3.20	Examples of planning results using a RRT and h RRT*	58
Fig. 3.21	Gait selection for the snake-like robot	59
Fig. 3.22	Dead end recognition in a maze	60
Fig. 3.23	Experiment setup for target exploration in a maze	61
Fig. 3.21	Screenshots of the path tracking experiment	62
Fig. 3.26	Gait changes of the snake-like robot in the path tracking experiment	62
Fig. 3.27	Screenshots of the dead and search experiment	63
Fig. 3.28	The results of a gait changes of the snake-like robot, and b captured images from the head camera in the dead end	05
Fig. 4.1	search experiment Ijspeert's CPG model. Adopted from (Ijspeert and Crespi	64
Fig. 4.2	2007) Kimura's extended CPG model. Adopted and modified	70
	from (Fukuoka and Kimura 2003)	72
Fig. 4.3	Ekeberg's CPG model. Adopted and modified from (Ekeberg 1993)	73
Fig. 4.4	Herrero-Carrón's CPG model. Adopted and modified from (Herrero-Carrón et al. 2011)	75
Fig. 4.5	A hierarchical control architecture	78
Fig. 4.6	The oscillator model. The circuit consists of the motor control center and the oscillator. The role of the motor	70
	control center is neuromodulation. It transfers motor	
	commands from the large-scale level and adjusts related	
	control parameters for desired modulation. The role	
	of the oscillator is producing rhythmic activity through	
	the interaction between these interneurons	80
	the interaction between these internetions	00

Fig. 4.7	The output of a single oscillator. The oscillator succeeds to oscillate by using the synaptic weights in Table 4.2	
	and the initial values in Table 4.5, with parameters $\tau = 0.2$, $A = 20$ and $\beta = 0$.	83
Fig 18	t = 0.2, A = 20 and $p = 0$	65
11g. 4.0	and their simplification. Both the FINs in the first	
	oscillator emit inhibitory synapses to the insilateral	
	I INs in the second oscillator. The simplified version	
	of oscillators uses the 'L' and the 'R' to represent	
	the corresponding interneurons and connection	85
Fig 49	The chained topology of oscillators When oscillators	05
1 15. 4.7	are unidirectional connected with the same inhibitory	
	synaptic weights a phase difference between them	
	develops By altering the weight of additional synapses	
	of the command oscillator, the other oscillators can be	
	modulated to maintain the desired phase difference	
	Parameters α and ν , with a range of (0, 1), are used	
	to modulate the phase difference	85
Fig. 4.10	The variation of phase difference between oscillators	00
	with respect to parameters α and ν , where other control	
	parameters are fixed as $\tau = 0.4$, $A = 20$ and $\beta = 0$, α	
	and γ have the same functionality that both of them can	
	shift the phase difference between oscillators monotonously	86
Fig. 4.11	Phase difference modulation with respect to parameter α ,	
0	where $\gamma = 0.2$. The phase difference can be modulated	
	in the range from 45° to 145°	87
Fig. 4.12	Relationship between tuning parameters and oscillatory	
C	characteristics of the chained inhibitory CPG circuit.	
	a – c Show the variations of the amplitude, the period	
	and the phase difference with respect to A, τ and α	88
Fig. 4.13	Decouple the influence of amplitude with α . a The	
	variation of amplitude with respect to A and α . b The gain	
	of A with respect to the desired amplitude and α . The	
	desired amplitude will be maintained if the gain is applied	
	on <i>A</i>	90
Fig. 4.14	Decouple the influence of period with α . a The variation	
	of period with respect to A and α . b The gain of τ	
	with respect to the desired period and α . The desired	
	period will be maintained if the gain is applied on τ	92
Fig. 4.15	The variation of relative offset with respect to A and τ .	
	Altering A will not affect the relative offset. The relative	
	offset is only affected by β in a linear fashion	93

Fig. 4.16	Modulation examples for chained inhibitory CPG circuit.	
	a Amplitude modulation: alter the parameter A from 60	
	to 30. b Period modulation: double the parameter τ	
	at the 4000th time step. c Phase difference modulation:	
	alter the parameter α to shift the phase difference from 72°	
	to 90°. d Offset modulation: set the parameter $\beta = \pm 1$	
	to both the MNs at the 4000th time step, and set β to zero	
	at the 6000th time step to recover	94
Fig. 4.17	The mutually inhibitory connection between two	
0	oscillators and its simplified form. The two oscillators	
	both emit a pair of inhibitory synapses to each other.	
	from EINs in itself to the insilateral LINs in the other	
	oscillator. For concise reason, the mutually inhibitory	
	synapses are further simplified as a line with solid circle	
	on each end	95
Fig. 4.18	The cyclic inhibitory circuit. The insilateral side	10
1 igo	of oscillators forms an inhibitory loop. Altering	
	the synaptic weight among the oscillators will cause	
	synchronization or maintenance activity	96
Fig 4 19	Relationship between tuning parameters and characteristics	70
116. 4.17	of synchronized oscillation in the cyclic inhibitory	
	CPG circuit a -c Show the variations of the amplitude	
	the period and the offset with respect to A_{τ} and β_{τ}	97
Fig = 4.20	Modulation examples for synchronization activity in cyclic	91
1 1g. 4.20	inhibitory CPG circuit a Amplitude modulation: A is	
	modified from 60 to 30 at the 1500th time step b Period	
	modulation: τ is doubled from 0.3 to 0.6 at the 4000th	
	time step c Offset modulation: $\beta = \pm 1$ is assigned	
	to both the MNs at the 1500th time step.	08
Fig = 4.21	Modulation examples for maintenance activity in evaluation	90
1 1g. 4.21	inhibitory CPG circuit. The mointenance activity in cyclic	
	at the 1500th time step by modifying () from 0.1 to 1	
	at the 1500th time step by modifying ω_c from -0.1 to -1 and A from 60 to 20. Modulation with negative output	
	and A from 60 to 20. Modulation with negative output $A = 20$ and value	
	occurs at the 2500th time step, with $A = 50$ and value	00
Eig 51	The simulated limbless robot	104
Fig. 5.1	Sidewinding singuit Two sheined inhibitory CPC singuits	104
Fig. 3.2	side winding clicult. Two channed limbitory CPG clicults	
	with a synaptic weight of -1.0 among them form	105
E'. 5.2	a sidewinding circuit	105
Fig. 5.3	The simulation of the sidewinding gait	100
F1g. 5.4	I ne trajectory of the sidewinding gait	107
F1g. 5.5	Sidewinding speed variation with respect to A and τ ,	100
D ' C (where $\alpha = 0.8$	108
F1g. 5.6	Sidewinding speed variation with respect to τ and α ,	100
	where $A = 20$	108

Fig. 5.7	Sidewinding speed variation with respect to A and α , where $\tau = 0.4$	109
Fig. 5.8	Rolling circuit. Two cyclic inhibitory CPG circuits	107
1.8.010	with two groups of additional exitatory and inhibitory	
	synapses form a rolling circuit	110
Fig 59	The simulation of the rolling gait	111
Fig. 5.10	The trajectory of the rolling gait	111
Fig. 5.10	Rolling speed variation with respect to A and τ	112
Fig. 5.12	Turning circuit A chained and a cyclic inhibitory CPG	
119.0.12	circuits with no synapses among them form a turning circuit	113
Fig 5 13	The geometry of the turning radius	114
Fig. 5.12	The simulation of the turning gait	115
Fig. 5.15	The trajectory of the turning gait	115
Fig. 5.16	Turning speed variation with respect to A and τ	115
115. 5.10	where $\alpha = 0.18$	116
Fig 5 17	Turning speed variation with respect to τ and α	110
115. 5.17	where $A = 20$	117
Fig 5.18	Turning speed variation with respect to A and α	117
115. 5.10	where $\tau = 0.4$	117
Fig 5 19	Flanning circuit. The pitch and yaw groups together	117
115. 5.17	comprise a cyclic inhibitory CPG circuit forming	
	a flapping circuit	110
Fig 5 20	The simulation of the flanning gait	119
Fig. 5.20	The trajectory of the flapping gait	120
Fig. 5.21	Flapping speed variation with respect to A and β	120
Fig. 5.22	On-site gait experiment Four limbless gaits are	121
1 15. 5.25	implemented using 5 nitch-yaw connected modules	123
Fig 61	Reflex arc. It is a particular pathway followed by nerve	125
115.0.1	impulses to produce a reflex action. It consists of a recentor	
	a sensory neuron a reflex center (spinal cord) a motor	
	neuron and an effector	128
Fig 6.2	Knee jerk reflex. It is a reflex contraction of the quadricens	120
1 lg. 0.2	muscle resulting from striking below the knee, which	
	gives rise to a sudden extension of the leg. There is	
	no interneuron in the spinal cord involved in the pathway	128
Fig 63	Border reflex integration. The "interneurons"	120
11g. 0.5	of the oscillator indicates the CIN_LIN and FIN	
	for simplicity. Two additional SNs are employed on each	
	side of the oscillator. An SN together with an insilatoral	
	MN forms a monosupantic reflex are Border oscillators	
	in the CPC aircuit are equipped with this type of reflex	120
Eig 64	Body reflex integration. The monosympatic reflex are	129
1 ⁻¹ g. 0.4	southing on SN and an MN on the controlatoral side. The	
	body rafley is applied to the internal assillators in the CPC	
	origination of the second of t	120
	ciicuit	100

Fig. 6.5	Reflex model. The reflex model deals with raw sensor data	
	and generates a response function via the reflex arc	131
Fig. 6.6	Reflex behavior. The two types of reflexes could generate	
	two opposite reflex behaviors after external stimuli are	
	afferent to the robot	132
Fig. 6.7	The simulated limbless robot with touch sensors	
	on both sides	133
Fig. 6.8	Variation of pitch joints. By using an empirical timer	
	of 100 ms, the real angles are found to be able to follow	
	the desired angles	134
Fig. 6.9	Ball hitting simulation. a A ball is hitting the robot	
	in forward motion. b The force on the touch sensor	
	over a threshold activates the afferent stimulus and makes	
	the robot respond quickly. Note that the force is	
	proportional to the maximum bending angle according	
	to the Eq. 6.2. c The robot recovers since there is no further	
	afferent stimulus. d The force on the touch sensor	
	and the response angle of the corresponding joint	135
Fig. 6.10	On-site ball-hitting experiment. a-d Scenes	
	of the experiment. e The state of touch switch on the right	
	side of the head and the response of the first yaw joint	137
Fig. 6.11	Border reflexes in the corridor passing simulation. a	
	Overview of the corridor. b–e Different head turning	
	reactions based on the border reflex. f The angle variation	
	of the first yaw joint and the force detected by its	
	corresponding touch sensors on the head	139
Fig. 6.12	Body reflexes in the corridor passing simulation. a	
	Overview of the corridor. b , c Different body turning	
	reactions based on the body reflex. d The angle variation	
	of the second yaw joint and the force detected by its	
	corresponding touch sensors	140
Fig. 6.13	Border reflexes in on-site corridor passing experiment.	
C .	a – d Scenes of the experiment. e Head reflex. f Tail reflex	141
Fig. 7.1	The simulated pitch-pitch connected limbless robot	149
Fig. 7.2	Adaptive control architecture	150
Fig. 7.3	During the caterpillar-like robot moving towards the slope,	
C .	internal torques make the third and fourth modules lose	
	contact with the substrate. Correspondingly, their module	
	states change from "periodic touch" to "hanging in the air"	152
Fig. 7.4	Sensor data processing. a Raw data of touch sensors	
0	are gathered during the robot is climbing a slope. b	
	Module states are produced by filtering the raw data	
	and accumulating the touch state over more than one	
	period of time	154
	•	

List of Figures

Fig. 7.5	Sensory neuron integration. The oscillator with its	
	interneurons simplified drawing, is the same to the one	
	in Fig. 4.6. Two additional sensory neurons with opposite	
	effects on motoneurons are employed on each side	
	of the oscillator for sensory feedback	157
Fig. 7.6	Effect of the sensory integration on the CPG output.	
	a Normal CPG output. b The sensory input generated	
	in oscillator 3 varies with the amount of afferent stimuli. c	
	The variation of the CPG output after sensory integration	
	over time	158
Fig. 7.7	The simulated scenario	160
Fig. 7.8	The fitness convergence over generations. The best	
	fitness value increases with the growth of the number	
	of neighboring module states	162
Fig. 7.9	Simulation for adaptive locomotion. a The overall	
	of the constructed environment. Slopes with different	
	angles (from 5° to 20°) and boxes are spliced together.	
	b – g . Adaptation of caterpillar-like locomotion. The	
	robot managed to climb over these slopes with the help	
	of sensory feedback	164
Fig. 7.10	On-site experiment. a-f Scene of the robot climbing	
	over slopes in the environment	165
Fig. 7.11	Tracked data of module 3 during the on-site experiment,	
	including the afferent stimuli over time (top); the sensory	
	input generated by the corresponding sensory neuron	
	(middle); and output (bottom)	166
Fig. 7.12	On-site experimental data of the limbless robot	
	from the head to the tail in the slope climbing experiment	167

List of Tables

Table 2.1	Parameters of the sinusoidal generators	23
Table 3.1	Parameters of the sinusoidal network	44
Table 3.2	Specification of the GZ-I module	47
Table 3.3	Components used for the snake-like robot	54
Table 3.4	Gait parameters	55
Table 4.1	Comparison between three levels of existing CPG models	76
Table 4.2	Synapse weights in the oscillator model	82
Table 4.3	Initial values in the oscillator	84
Table 4.4	Control parameters in the chained inhibitory CPG circuit	95
Table 5.1	Specification of simulated robot module	104
Table 5.2	Parameters for fast limbless locomotion	122
Table 5.3	Parameters for on-site gait generation	123
Table 6.1	Specification of the aluminum module	133
Table 7.1	Specification of simulated robot module	150
Table 7.2	Optimized parameters of CPG model	159
Table 7.3	GA operations and parameters	161
Table 7.4	Parameters in the simulation	162
Table 7.5	Performance of each GA procedure	163
Table 7.6	Evolved parameters	165

Chapter 1 Introduction

The movements of various animals in nature have evolved over thousands of years. These movements are usually related to where they live, how they obtain food and how they escape from predation. Survival pressures force animals to move from one place to another in an efficient manner. Their movements therefore require reasonable coordination of articulation, so that animals can overcome friction and gravity and push themselves forward. As a branch of animal locomotion classification, limbless locomotion exhibits its unique movement patterns and good performance in specific environments. In this chapter, we explore limbless locomotion in nature and their replica applied to limbless robotics for various applications, and present the necessary functional integration for achieving bio-inspired locomotion control of limbless robots.

1.1 Limbless Locomotion in Nature

There are thousands of animals that can move without limbs or with little help of limbs, such as snakes, worms, caterpillars and fishes. Surprisingly, they have exhibited a wide range of locomotive capabilities, including serpentine creeping, peristaltic crawling and anguilliform swimming. These limbless animals, due to lack of legs, use their bodies to generate movements. They propagate flexural waves along the length of their bodies, so that the force generated between them and the surrounding environment can propel them forward.

We can observer various limbless locomotion in the animal kingdom. For example, in the desert a snake uses sidewinding, a sideway type of locomotion, to avoid overheating when excessive contacting with the desert sand. During sidewinding, the snake moves diagonally, in which its head first lifts off and laterally sets down a short distance away, and then the body follows the head sequentially. In theory, the movement can be derived from superimposing of a vertical body wave on a lateral

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 G. Li et al., *Bio-Inspired Locomotion Control of Limbless Robots*, https://doi.org/10.1007/978-981-19-8384-9_1

undulation. Beside sidewinding, snakes can perform lateral undulation, concertina locomotion and rectilinear locomotion and their combinations to adapt to environmental changes (Jayne 1986).

Another example is caterpillar locomotion. Different from snake locomotion via pure body undulation, caterpillars utilize prolegs to grip the substrate and pull the legs forward sequentially to form locomotion (Van Griethuijsen and Trimmer 2014). Depending on the strategy of leg sequence, caterpillars can perform several types of locomotion, such as inching and crawling. The former is often seen in small caterpillars. They move the most posterior legs forward and use them as an anchor to form an Ω body shape, then release the front legs and stretch the body forward to complete the inching step. Crawling is more often seen in bigger caterpillars. Their legs will be lifted and anchor one step forward in sequence, resulting in a body wave propagating from rear to head. Special locomotion strategies exist when caterpillars get threatened. For example, they can launch and bend the body into a wheel, and take advantage of momentum to move backward to escape away from danger (Brackenbury 1997).

Fish is also able to generate movements via body undulation. This is achieved by contracting one side of body muscles while relaxing body muscles from the other side (Lauder 2015). The undulation movement passes on momentum to the water, and the reaction force in turn propel the fish forward. Although the way of propulsion is in principle not the same as that of snake motion, i.e., using friction force, both motions exhibit body wave propagation from head to tail. Fish movements have a general form of body wave, but differ in number of waves, wave speed and undulation amplitude among fish species. In addition to body undulation, fishes use fins for balance and steering during swimming.

In general, compared to other forms of locomotion on land (we omit fish locomotion here), limbless locomotion provides the following advantages in animals (Hopkins et al. 2009):

- Limbless animals have a linear structure with a compact cross-section that allows them to cross through thin holes and gaps.
- For limbless animal on land, they can climb trees, rocks, and any other vertical surface. This is achieved by lifting the front one-third of their bodies up while setting the lower two-thirds of their bodies as a base.
- Their locomotion gaits are very stable. Since they keep most of their bodies in contact with the terrain during locomotion, they have a low center of mass and a large contact area that prevent them from falling over.
- They can act as manipulators when they are clenching prey or twining around tree branches.

We see the limbless morphology brings significant advantages in complex environments; however, how is limbless locomotion produced and adapted to environmental changes? In fact, animals' morphological and physiological behaviors dominate their locomotion patterns (Dickinson et al. 2000). Animals move by stretching and contracting body muscles. However, how animals move, namely how they coordinate body muscles to generate locomotion has not been deeply investigated until the rapid development of modern neuroscience. The key challenge in the study of locomotion is to determine the structure-function relations between the muscular, skeletal and nervous systems. Although physiological phenomena of the generated movements can be analyzed based on electromyographic (EMG), it is still not yet fully understood the underlying mechanisms of the neural circuits in the nervous system.

At the beginning of the 20th century, it was found that locomotion patterns can be produced in spinal cord without any commands coming from the brain. Neurobiological studies of various vertebrates have shown that there is a type of neural circuits called central pattern generators (CPGs) in the spinal cord (Grillner 1985). One the one hand, CPGs can produce rhythmic signals that control muscular activity to generate rhythmic patterns, for example, to adjust the speed of locomotion or to change the length of a stride. On the other hand, CPGs are able to respond to sensory feedback to alter the pattern of locomotion, which help animals to adapt to their surroundings during locomotion.

1.2 Limbless Locomotion in Robots

Motivated by the advantages of limbless locomotion, researchers have been interested in developing limbless robots and applying these movements to their corresponding mechanical counterparts for centuries. The limbless design offers significant benefits for dealing with complex environments where traditional machines with appendages such as wheels or legs fail to traverse. More specifically, limbless robots have several potential advantages over wheeled and legged robots (Dowling 1997):

- **Stability**: Copied from the morphology of limbless animals, limbless robots naturally inherit their configuration features, including distributed body mass, low center of gravity and multiple contact points. Thus there is no need to worry about stability in this kind of robots. In contrast, stability is of great concern to wheeled and legged robots. They suffer an impact with the ground and will fall over if the center of mass moves out of the bounds of contact points.
- **Terrainability**: Wheeled and legged robots are sometimes limited in the type and scale of terrains. While limbless robots are supposed to be able to traverse a wide variety of terrains since they can learn diverse locomotion modes from nature. This feature enables the use of limbless robots in more strict terrains, such as passing through pipes, climbing up and over obstacles, passing terrains with soft grounds.
- **Redundancy**: Limbless robots have redundant designs that repeat simple actuators in sequence many times. The modular approach makes the robotic system somewhat robust that even if one of the actuators fails, the robots are still able to move.

Considering the characteristics of limbless robots, there would be several applications that limbless robots are suitable for, including exploration, inspection, search and rescue, medical treatment and reconnaissance.