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Preface
The seeds for this book were sown in sessions on Big Data
Analytics, held at the 2016 Fall Meeting of the American
Geophysical Union. At the time, Earth Science data were
projected to rise by orders of magnitude in the coming
decade, and the community was investigating a variety of
emergent technologies and techniques to make the best
use of the coming deluge. The chapters of this book are a
representative, but by no means exhaustive, collection of
those and similar investigations.
Big Earth Data Analytics can be defined as the application
of increasingly sophisticated tools for data analysis and
display to the rapidly increasing volume of Earth science
data to obtain information, and eventually insight. This
combines two concepts: Big Earth Data and Data Analytics.
Big Earth Data refers both to the volume of data sets and
the combination of data from a variety of sources, in a
variety of formats, and from a variety of disciplines. To get
a sense of the volume, NOAA generates tens of terabytes of
data a day from satellites, radars, ships, weather models,
and other sources. The National Aeronautics and Space
Administration (NASA) Earth Observation archives were
growing by more than 30 TB per day in 2020 with daily
growth expected to increase to 130 TB/day by 2024 as new
satellites launch; and the European Centre for Medium‐
Range Weather Forecasts (ECMWF) meteorological data
archive adds 200 terabytes of new data daily. However, the
data are "big" not only in their volume but in their varied
formats, disciplines, structures, and formats. As such, they
are disruptors to traditional analysis methods, and to the
kinds of questions that can be asked by researchers. Data
analytics are increasingly driven by the availability of high‐



volume and heterogeneous data sets. Data size and
complexity affect all aspects of data management and
usage, requiring new approaches and tools. Despite the
challenges to acquire, use, and analyze Big Earth Data,
they are already being utilized extensively in climate,
oceanographic, and biology related works. Easily available
data lead to the ability to analyze longer scale records and
patterns over large spatial domains.
Analyses of these data borrow both from traditional
scientific analyses and from tools developed for business
applications. These types of data analytics are developed by
university and other research teams. They are increasingly
becoming an area of interest to cloud providers and
analytics companies. From Google's Earth Engine for
analyzing Earth science data at scale, to the National
Oceanic and Atmospheric Administration's (NOAA's) Big
Data Program, big data about the Earth and their analysis
are increasingly common. Amazon's Elastic MapReduce
and SageMaker are common building blocks for cloud‐
based analysis and Galileo (a.k.a. Service Workbench) is
Amazon's latest Web application for interactive analysis.
Microsoft Azure ML Studio is another popular cloud‐based
data analysis solution. Big Earth Data analyses increasingly
rely on cloud‐based storage and processing capabilities as
the volume of the data and the computing resources
needed go beyond local resources.
This book is organized into three parts. It starts with the
big picture, covering Big Data Analytics Architecture. This
part begins with a chapter addressing the geospatial aspect
of Big Earth Data from a variety of perspectives. This is
followed by a chapter discussing the data management
challenges posed by data at scale, particularly in the
context of making them available for analysis. This is
complemented by a chapter discussing the challenges of
scaling up the analysis itself. The following chapters cover



large‐scale projects such as NASA's Earth Exchange, which
enables large scale data analysis in a supercomputing
environment and the NOAA Big Data Project, which makes
data sets available to end users via several cloud providers.
Part I also includes chapters on architectures and fully
realized systems, such as Data Cube, NEXUS and the
Apache Science Data Analytics Platform, and a NoSQL
based platform for exploring and analyzing in situ data.
The second part of the book, Analysis Methods for Big
Earth Data, addresses some specific techniques to derive
information and/or insight from big data, emphasizing the
unique aspects of Earth Observations. Part II begins with
two chapters on the use of geospatial statistics for analysis,
followed by a chapter melding machine learning with
geophysical constraints, and finally a chapter
benchmarking different analytical methods for
spatiotemporal analysis.
The third part of the book, Big Earth Data Applications,
describes a few specific applications of big analysis
techniques and platforms: weather and climate model
analysis, atmospheric river patterns, Antarctic land surface
temperatures extremes, satellite in situ match‐ups of
oceanographic data, and vessel tracking. This is clearly a
small sample of existing applications; rather, the sample
shows how some very different analysis methods can find
diverse applications in the Earth sciences.
While the application of big Earth data analytics covers a
range of applications, a number of common themes in the
chapters of this book include (1) the role of the cloud,
especially with ever increasing data sizes; (2) limitations
and costs of using the cloud, including the unpredictability
of costs and the high cost of data egress from the cloud; (3)
techniques to maintain data integrity during file transfers;
(4) efficiencies via partial reads from Web object storage;


