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Preface

In the past three decades, the field of stochastic thermodynamics has been formulated
and highly developed. Stochastic thermodynamics extends the framework of ther-
modynamics, which is aimed to macroscopic objects, to small fluctuating systems
including Brownian particles in the laser trap andmolecularmotors in living systems.
Improvements in experiments enable us to control these small systems accurately,
which have pushed further developments of stochastic thermodynamics.

In conventional thermodynamics for macroscopic systems, the entropy is a key
quantity, which characterizes the irreversibility of processes. Several relations on
entropy and other related quantities are proved in the form of inequalities, such as
the second law of thermodynamics. In stochastic thermodynamics, we define entropy
production, which characterizes the irreversibility of processes in small systems.
Unlike conventional thermodynamics, entropy production satisfies not only inequal-
ities but also equalities in highly nonequilibrium conditions. Celebrated examples
are the fluctuation theorem and the Jarzynski equality, taking an impressive exponen-
tial forms. These equalities revealed a hidden symmetric structure of entropy, which
sheds new light on thermodynamic irreversibility.

Moreover, novel inequalities tighter bounds than the second law of thermody-
namics have also been discovered in stochastic thermodynamics. These inequalities
supply fresh views on thermodynamic irreversibility in that fundamental thermody-
namic constraints exist beyond the second law. In most inequalities, thermodynamic
irreversibility is connected to a kind of speed of processes, which is usually out of
the scope of conventional thermodynamics.

This textbook aims to provide a comprehensive view of stochastic thermody-
namics developed in the last three decades. Important research topics in stochastic
thermodynamics including the fluctuation theorem, information thermodynamics,
and the thermodynamic uncertainty relation are explained by devoting one or more
chapters. This textbook also covers a variety of important universal relations in
stochastic thermodynamics, ranging from the stochastic efficiency, waiting time
statistics, the Hatano-Sasa relation, the Harada-Sasa relation, to Brownian motors
and flashing ratchet, autonomous free energy transducers, efficiency at maximum
power, and speed limit inequalities.
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vi Preface

Readers are assumed to be familiar with conventional thermodynamics and basic
linear algebra, whereas other additional knowledge is not necessary. This textbook
is written in a self-contained manner, and we do not require any knowledge on
information theory and stochastic processes.
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Chapter 1
Background

1.1 Aims of Stochastic Thermodynamics

Stochastic thermodynamics is an extended form of thermodynamics to small fluctu-
ating systems such as Brownian particles, molecular motors in living systems, and
mesoscopic quantum dots. With this framework, novel relations, including the cele-
brated fluctuation theorem and related relations [1–6] have been discovered, which
reveal a hidden symmetric structure of thermodynamic irreversibility in nonequilib-
rium fluctuations. In the last two decades, stochastic thermodynamics has attracted
the interest of many physicists.

Besides them, one basic but important achievement of stochastic thermodynamics
is to establish how to define thermodynamic quantities (e.g., heat, work, and entropy)
in stochastic fluctuating systems and what relations (e.g., the first and the second law
of thermodynamics) hold among them. This is a highly nontrivial task from the
standpoint of conventional macroscopic thermodynamics and statistical mechanics.
In fact, not so long ago, some people even consider that small stochastic systemsmay
escape from the restriction of conventional macroscopic thermodynamics1, which
can also be seen in many proposals of the perpetual motion machines of the second
type. This skeptical view is refuted by the above development of formulations.

We here summarize the significant motivation of stochastic thermodynamics,
which is mainly divided into two roots.

The first is based on experimental observations of small fluctuating systems, from
biochemical systems toquantummesoscopic systems.Wehere takemolecularmotors
in biological systems as prominent examples. From the viewpoint of thermodynamics
and statisticalmechanics,molecularmotors can be regarded as engines converting the
chemical potential of resources such asATP tomechanical force.However,molecular
motors apparently differ from conventional heat engines in many aspects: Molecular
motors are so small that thermal fluctuation affects them, which sometimes disturbs

1 For example, Feyerabend [7] states that the Brownian particle can violate the second law of
thermodynamics.
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and sometimes helps their motion. This shows clear contrast to conventional heat
engines, which do not fluctuate. In addition, molecular motors work autonomously
under fluctuation, whereas conventional heat engines are operated externally and
deterministically. Interestingly, careful experiments have revealed high efficiency of
many molecular motors as F1-ATPase [8, 9], kinesins2 [11], and myosins [12] com-
pared to our power plants3. Therefore, why and how molecular motors achieve high
efficiency and what is the significant difference of molecular motors from conven-
tional heat engines are important questions in nonequilibrium statistical mechanics.

The second is motivated by a theoretical interest to understand what structures or
fundamental relations exist. One of the central problems in nonequilibrium statisti-
cal mechanics is the foundation of thermodynamic irreversibility from amicroscopic
viewpoint. Theproblemof how the arrowof time appears frommicroscopic reversible
dynamics4 has been debated since Boltzmann. Aside from this, several relations in
nonequilibrium statistical mechanics rely on both thermodynamics and microscopic
dynamics. For example, the fluctuation-dissipation relation was first derived by using
the consistency with the second law of thermodynamics [13] and later derived from
microscopic dynamics [14, 15]. The original derivation of the Onsager reciprocity
theorem [16] employed the combination of thermodynamic phenomenology and
reversibility of microscopic dynamics. Although all of these relations are well estab-
lished, it is a fruitful task to clarify what aspects of thermodynamics and nonequi-
librium statistical mechanics are reflected in these relations, which will also help us
unveil novel relations. Discovering universal relations in nonequilibriums systems is
also important. Unlike equilibrium and near-equilibrium systems, few relations are
known in nonequilibrium systems. If we succeed in clarifying universal relations,
they might offer clues for the comprehensive characterization of nonequilibrium
dynamics, which is an ultimate goal of nonequilibrium statistical physics.

Stochastic thermodynamics has answered these two questions, at least partially.
Regarding the first set of questions, stochastic thermodynamics and stochastic

energetics are formulated as a thermodynamic framework for small stochastic sys-
tems, ensuring thatmolecularmotors are not different from conventional heat engines
from this aspect. In addition, many ratchet models [17] confirm that the unidirec-
tional motion of molecular motors in a stochastic environment is not a surprising
phenomenon.

Some researchers, including biophysicists, argued that the specialty of molecular
motors is seen in the use of information [18]. Molecular motors consist of several
subsystems, and experimental observations [18] suggest that one of the subsystems
behaves as if it measures another subsystem and changes its motion depending on
the measurement outcome, which is a kind of information processes5. This interpre-

2 We, however, note that some recent experiments on kinesins reported that the efficiency of kinesins
is not so high [10].
3 The efficiencies of some molecular motors are around 0.7–0.9, whereas those of power plants are
usually less than 0.5.
4 Both Hamilton dynamics and unitary evolution are reversible.
5 In the case of F1-ATPase, the α3β3 unit surrounds the γ shaft. The α3β3 unit has three main
stable states, playing as three different potential landscapes of the γ shaft. The experiment [18]
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tation meets the intuitive picture that molecular motors work by harnessing thermal
fluctuation. Information thermodynamics serves as a stage to analyze the connection
between information and thermodynamic quantities.

Autonomy is also the characteristic ofmolecularmotors,which shows a sharp con-
trast to conventional externally-controlled engines. Since quasistatic controls cannot
be realized in autonomous conditions, the achievability of the Carnot efficiency is
nontrivial. Recent studies have revealed the conditions for autonomous systems to
achieve the Carnot efficiency.

In addition, recent progress in stochastic thermodynamics elucidate several trade-
offs between entropy production and some quantities, including the speed of oper-
ations and current fluctuations. These inequalities enable us to define a novel type
of efficiency, which may serve as guiding principles of molecular motors in their
history of evolution.

Regarding the second set of questions, various universal relations have been
derived. In particular, the fluctuation theorem provides a clear understanding of ther-
modynamic irreversibility. It sheds new light on the importance of time-reversal sym-
metry and microscopic reversibility. Various relations on entropy production in fact
rephrase this symmetry. In addition, known macroscopic laws in thermodynamics
and nonequilibrium statistical mechanics, including the second law of thermody-
namics, the fluctuation-dissipation theorem, and the Onsager reciprocity theorem,
are reproduced by the fluctuation theorem.

It is well known that the second law of thermodynamics and other thermodynamic
relations are violated if a process accompanies information processing, which is
called the Maxwell’s demon problem. Information thermodynamics establishes how
to construct a thermodynamic framework for a single subsystem with information
processes by introducing the mutual information. From a more abstract viewpoint,
information thermodynamics pushes the idea of additive decomposition of entropy
production, where we decompose the total entropy production into each small com-
ponent which individually satisfies thermodynamic relations.

Recently, a number of inequalities, not equalities, have been proposed in stochas-
tic thermodynamics. These inequalities suggest that entropy production also plays
the role of the fundamental limitation of the speed of operations in systems. The
notion of speed is not fully captured in conventional thermodynamics. The mod-
ern framework of stochastic thermodynamics connects two important concepts, the
speed of dynamics and the thermodynamic irreversibility.

1.2 Overview of This Textbook

This textbook consists of four parts. Part I is devoted tomathematical foundations and
definitions of basic quantities in stochastic thermodynamics.We introduce stochastic

reports that the α3β3 unit changes its state as if it measured the state of the γ shaft and performs
feedback control depending on the measurement outcome.
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processes both on discrete states and in continuous space (Langevin systems). In
addition to this, we describe how to define thermodynamic quantities (heat, work,
and entropy) in small stochastic systems.

In Part II, we present various equalities in stochastic thermodynamics. The most
important one is the fluctuation theorem, which unveils an unexpected symmetry
in nonequilibrium fluctuations. In fact, most of the equalities shown in stochas-
tic thermodynamic can be regarded as variants of the fluctuation theorem. Another
important achievement is information thermodynamics, which combines informa-
tion theory and stochastic thermodynamics. With this framework, we can analyze
the role of information in thermodynamic processes with measurement and feed-
back operations. In particular, we solve the problem of Maxwell’s demon with this
framework.

Part III is an exceptional part, where wemainly treat concrete toy models, not uni-
versal relations. One-directional transports by external operations and autonomous
free energy transducers are two main subjects in this part. We first present numer-
ous toy models showing interesting behaviors, and then seek the general principles
behind them.

In Part IV, we present various inequalities in stochastic thermodynamics. One
important inequality shown in this part is the thermodynamic uncertainty relation,
which connects entropy production and fluctuation around nonequilibrium station-
ary states. Other inequalities mainly concern the relationship between the entropy
production and the speed of dynamics, which elucidates a novel aspect of thermo-
dynamic irreversibility.

1.2.1 Overview of Part I

In Part I, we prepare mathematical tools and explain the basic framework of stochas-
tic thermodynamics. Readers who are familiar with Markov processes, the local
detailed-balance condition, and definitions of quantities in stochastic thermodynam-
ics can start from Part II without reading this part.

In Chap. 2, we introduce Markov processes and Markov jump processes on dis-
crete states. In stochastic systems, our main interest is in the probability distribution
p on microscopic discrete states, which evolves according to master equation.

d

dt
p(t) = R p(t),

where R is the transition matrix. With some reasonable assumptions on R, the sta-
tionary distribution pss satisfying d

dt p
ss = R pss = 0 uniquely exists, and any initial

distribution converges to this stationary distribution. We shall prove these results in
Sect. 2.3.

We then review the framework of stochastic thermodynamics on discrete states
in Chap. 3. We first introduce the Shannon entropy and the stochastic entropy (sur-
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prisal) in Sect. 3.1, and then define the heat, work, and entropy production in stochas-
tic systems. The entropy production σ is the most important quantity in stochastic
thermodynamics, which quantifies the degree of thermodynamic irreversibility of
processes. At the same time, we introduce key ideas; the time-reversal symmetry in
equilibrium states and the (local) detailed-balance condition, which are employed
in the characterization of heat. At the end of this chapter (Sect. 3.4), we clarify the
differences between conventional thermodynamics and stochastic thermodynamics.

In Chap. 4, we treat stochastic processes and stochastic thermodynamics in con-
tinuous space. Note that this textbook mainly treats discrete systems and continuous
systems appear only in Chap. 11, Sects. 12.1, 17.4.1, and 18.2. Therefore, readers
who do not plan to read these sections can skip this chapter.

Unlike the case with discrete states, stochastic processes in continuous space
require various careful treatments.A continuous stochastic variable x̂ evolves accord-
ing to the following form of a stochastic differential equation (a general form of
Langevin equations):

dx̂

dt
= a(x̂(t), t) + b(x̂(t), t)ξ̂ (t),

where ξ̂ (t) is the white Gaussian noise satisfying 〈ξ̂ (t)〉 = 0 and 〈ξ̂ (t)ξ̂ (t ′)〉 =
δ(t − t ′). The problem lies in the rule of the product of b(x̂(t), t) and ξ̂ (t). In
Sect. 4.1.2, we introduce two important rules of products, the Itô product and the
Stratonovich product, and explain how the rule of products affects stochastic dynam-
ics. We also introduce the corresponding Fokker-Planck equation, which describes
the time evolution of the probability distribution P(x, t). The problem of the rule of
products appears in the definition of heat in Langevin systems. As shown in Sect. 4.3,
the definition of heat must employ the Stratonovich product to satisfy the first law of
thermodynamics. In Sect. 4.6, we demonstrate how to discretize stochastic processes
in continuous space into those on discrete states, which allows us to reproduce the
results in discrete systems to continuous systems.

1.2.2 Overview of Part II

In Part II, we present various equalities in stochastic thermodynamics. Two impor-
tant achievements, the fluctuation theorem and the information thermodynamics, are
presented in this part.

We introduce and prove the fluctuation theorem and the Jarzynski equality in
Chap. 5. The integral fluctuation theorem (IFT) is expressed as

〈
e−σ̂

〉
= 1,
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where σ̂ is the entropy production and 〈·〉 represents the ensemble average. Notably,
this equality holds in general nonequilibrium processes far from equilibrium. One
big advantage of the fluctuation theorem is that it can reproduce known relations
in nonequilibrium statistical mechanics. We derive the second law of thermody-
namics (Sect. 6.1), the fluctuation-dissipation theorem (Sect. 6.2), and the Onsager
reciprocity theorem (Sect. 6.3) from the fluctuation theorem. Not only reproducing
existing relations, the fluctuation theorem also produces novel relations. We derive
a higher-order fluctuation-dissipation theorem in Sect. 6.2.3. We note that the con-
nection between the IFT and the fluctuation-dissipation theorem can be extended
to IFT-type equalities. We present some extensions of the fluctuation-dissipation
theorem to nonequilibrium stationary states in Sect. 10.1.

The form of the IFT now becomes a standard form to manifest the existence
of a thermodynamic structure because we can withdraw various thermodynamic
relations from IFT-type equalities, as mentioned above. We present some important
IFT-type equalities in Chap. 7. In Sect. 7.1, we explain a generalized form of the
fluctuation theorem, the Hatano-Sasa relation, which serves as a pioneering work for
steady state thermodynamics. In Sect. 7.2, we treat systems with coarse-graining of
quick variables. While the entropy production is preserved through coarse-graining
in equilibrium cases, it generally decreases in nonequilibrium cases. This decrease
is characterized by an IFT-type equality.

The fluctuation theorem reflects a hidden symmetric property of entropy produc-
tion. This symmetric property takes various forms and appears in various situations
besides the IFT, which is the subject of Chap. 8. In Sect. 8.2, we see this symmetry
in the cumulant generating function. In Sect. 8.3, we consider waiting time statis-
tics of entropy production. In particular, we show that the stochastic variable e−σ̂ is
a martingale in stationary systems. In Sect. 8.3, we introduce stochastic efficiency
and show that the least probable stochastic efficiency is the Carnot efficiency. This
fact is shown by combining a geometric interpretation of stochastic entropy and the
fluctuation theorem.

Chapter 9 is devoted to another important achievement in stochastic thermody-
namics, the information thermodynamics. We start from the problem of Maxwell’s
demon.We review the arguments ofMaxwell, Szilard, Brillouin, Landauer, and Ben-
nett in Sect. 9.1. Although some papers and books state that the memory erasure is
crucial to understanding Maxwell’s demon, we show that this argument is some-
what secondary (which is discussed in Sect. 9.2.3). To clarify this point, we need to
formulate the information thermodynamics. We introduce the Sagawa-Ueda relation
(Sect. 9.3) 〈

e−σ̂+� Î
〉
= 1,

where � Î is the change in the mutual information between the system of interest
and another system (e.g., a memory). Accordingly, we obtain the generalized second
law: σ ≥ �I . The Sagawa-Ueda relation reveals that if the exchange in mutual
information exists between the system and another system, thermodynamic relations
must be modified.
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The information thermodynamics is expected to capture the informational aspect
of biological systems, including molecular motors. However, the Sagawa-Ueda rela-
tion applies only systems with external controls, and autonomous systems such as
biological ones are out of the scope. To overcome this problem,we present two exten-
sions of the information thermodynamics to cover general information processes. In
Sect. 9.5, we introduce the partial entropy production which is a decomposition of
entropy production σ̂ into each possible transition. Notably, the partial entropy pro-
duction also satisfies an IFT-type equality. Applying this idea to composite systems,
we find a generalization of the Sagawa-Ueda relation for general information pro-
cesses. In Sect. 9.6, we present another type of generalization; relations on causal
networks. We introduce the transfer entropy, which is a kind of conditional mutual
information, and using this, we show the Ito-Sagawa relation.

In Chap. 10, we investigate relations on response functions around nonequilib-
rium stationary states. From vast literature seeking the extension of the fluctuation-
response relation to nonequilibrium stationary states, we pick up results around
nonequilibrium stalling states. In Sect. 10.1, we show that the fluctuation-response
relation holds around nonequilibrium stalling states in the same form as the conven-
tional one. As another topic, in Sect. 10.2, we derive some equalities and inequalities
on the response of the stationary distribution.

Chapter 11 is an exceptional chapter, where we treat overdamped Langevin sys-
tems, notMarkov jump processes on discrete states. Thanks to theGaussian property,
we can compute the path probability of overdampedLangevin systems P(	) in a sim-
ple form, which is called the Onsager-Machlup functional (Sect. 11.1.1). Using this
expression, in Sect. 11.1.3 we derive the Harada-Sasa relation, which claims that
the violation of the fluctuation response relation in the nonequilibrium stationary
state is directly related to the stationary heat dissipation. The Harada-Sasa relation
is useful in experiments since the stationary heat dissipation is not easy to observe
experimentally whereas both the fluctuation and response are measurable. We also
present explicit forms of the stationary distribution, the diffusion coefficient, and
the mobility in one-dimensional overdamped Langevin systems by employing the
techniques of the cumulant generating function (Sect. 11.2).

1.2.3 Overview of Part III

Part. III is an intermission, where we introduce various interesting models. Unlike
other parts,most of the arguments in this part (except Sect. 14.4) aremodel-dependent
and not universal.

The subject of Chap. 12 is one-directional transport by external driving. The Curie
principle states that if the driving is symmetric, we cannot induce asymmetric, one-
directional transport. However, the converse is not always true: some asymmetric
driving cannot induce one-directional transport. We first introduce a flashing ratchet,
which is a simple model of one-directional transport by switching potential. We
then examine the possibility of reversible one-directional transport. One stimulat-
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ing model, the hidden pump model, realizes (apparently) reversible one-directional
transport with finite speed.

In Chap. 13, we see the fact that deciding the direction of transport is not an easy
task.Wefirst consider a simplemodel of Brownianmotors in Sect. 13.1.We construct
a composite system by rigidly connecting a rectangle object and a wedge-shaped
object in baths with different temperatures. This composite object moves steadily
in one direction, accompanying heat flow from hot to cold. This model reproduces
the adiabatic piston as its limiting case. We present a heuristic and qualitative (par-
tially semi-quantitative) argument to determine the direction of the movement of the
composite object. In addition, in Sect. 13.2, a strange composite system called Par-
rondo’s game is analyzed. In this game (system), two subsystems realize transport in
the same direction, whereas their composite system realizes transport in the opposite
direction.

The subject of Chap. 14 is the behavior of autonomous free energy transducer
(stationary cross-transport) from the aspect of maximum efficiency with finite tem-
perature difference (or finite chemical potential difference). We first examine two
famous models, Feynman’s ratchet and the Büttiker-Landauer model, which convert
heat flow to work (Sect. 14.1). Although these models are sometimes claimed to
achieve the Carnot efficiency in the quasistatic limits, we show that these models in
fact fail to achieve theCarnot efficiency even in the quasistatic limit. The difficulty for
autonomous systems to achieve the Carnot efficiency lies in the fact that all variables
in autonomous engines inevitably fluctuate, which may cause undesired heat leakage
leading and the suppression of efficiency. The attainability of the Carnot efficiency
is not expected of all autonomous engines, and in fact we reveal that autonomous
engines attain the Carnot efficiency only by satisfying severe conditions. In Sect. 14.2
we briefly review some small autonomous models which attain the Carnot efficiency.
In Sect. 14.3 we introduce a model of a macroscopic autonomous engine converting
chemical potential difference into mechanical work, whose efficiency is less than the
Carnot efficiency in moderate setups, but reaches the Carnot efficiency with singular
transition rates. In Sect. 14.4,we derive a general necessary condition for autonomous
engines to attain the Carnot efficiency. We show that a certain type of singularity is
inevitable to attain the Carnot efficiency, as suggested in the previous section. We
then clarify the difference between autonomous engines with finite size and that in
the thermodynamic limit by introducing the viewpoint of nonlinear tight-coupling
window.

1.2.4 Overview of Part IV

In Part IV, we present various inequalities in stochastic thermodynamics. Particularly
important results in this part are the thermodynamic uncertainty relation and some
inequalities manifesting the trade-off between the entropy production and the speed
of dynamics.
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Three chapters, Chaps. 15, 16, and 18, are devoted to investigating the relationship
between the entropy production (or related quantities) and the speed of processes
(or related quantities) from different perspectives. In Chap. 15, we consider the
efficiency atmaximumpower, which is known to be bounded by the half of theCarnot
efficiency in the linear response regime.We derive this result in three different setups,
endoreversible thermodynamics, linear irreversible thermodynamics for stationary
systems, and a linear expansion of velocity.

In Chap. 16, we prove the trade-off relation between power and efficiency. It is
plausible to expect that an engine with large power inevitably accompanies much
dissipation, which implies less efficiency. In particular, a heat engine at the Carnot
efficiency is expected to have zero power. However, conventional frameworks, ther-
modynamics and linear irreversible thermodynamics, do not formally prohibit the
coexistence of finite power and the Carnot efficiency. To resolve this controversy, we
employ the framework of stochastic thermodynamics. In Sect. 16.2, we first derive
a trade-off relation between heat current and entropy production |J q| ≤ √


σ̇ with
a coefficient 
, and applying it we obtain a trade-off inequality between power and
efficiency:

W

τ
≤ 
̄βLη(ηC − η),

where 
̄ is a coefficient (time-average of
), βL is the inverse temperature of the cold
bath, and ηC is the Carnot efficiency. This inequality clearly shows that an engine
with high efficiency has lower maximum power, and in particular an engine at the
Carnot efficiency has zero power.

In Chap. 17, we present an important inequality in stochastic thermodynamics,
the thermodynamic uncertainty relation. The thermodynamic uncertainty relation
claims that the entropy production in stationary systems is bounded by any relative
fluctuation of current as

Var(J d)

(J ss
d )2

σ ≥ 2,

where Jd is a cumulative current and Var(·) represents the variance. The thermo-
dynamic uncertainty relation is now understood as a special case of the generalized
Cramèr-rao inequality.We present its proof with this approach in Sect. 17.1.2. Exten-
sions of the thermodynamic uncertainty relation and its optimality are discussed in
Sect. 17.2.

We consider speed limit inequalities for classical stochastic systems in Chap. 18.
The speed limit inequality is a trade-off relation between the time length of the
process (i.e., the speed) and some quantity, which is regarded as the cost of quick
state transformation. In the case of both overdamped Langevin systems (Sect. 18.2)
and Markov jump processes on discrete states (Sect. 18.3), we find that the entropy
production bounds the speed of state transformation. The latter speed limit inequality
is expressed as

L( p(0), p(τ ))2

2σ Aτ

≤ τ,
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where L( p, p′) is a distance between two probability distributions, A is the activity
(average number of jumps), and τ is the time length of the state transformation. Both
this chapter and Chap. 16 show that the entropy production, which is a quantifier
of thermodynamic irreversibility, is also essential in the argument of the maximum
speed of dynamics.

In the final chapter (Chap. 19), we look at variational aspects of entropy produc-
tion. Variational relations play the role of both equality and inequality: A variational
relation is an inequality, and its equality is achievable. We show three variatinoal
aspects of entropy production.

1.2.5 How to Read This Textbook?

For readers interested only in Markov jump processes, a course with Chaps. 2 and
3 (basics), Chaps. 5 and 6 (fluctuation theorem), Sect. 7.1 (Hatano-Sasa relation),
Sects. 9.2 and 9.3 (basics of information thermodynamics; Sagawa-Ueda relation),
Sects. 16.2 and 16.3 (trade-off relationbetween efficiency andpower), Sects. 17.1 and
17.2 (thermodynamic uncertainty relation), Sect. 18.3 (classical speed limit inequal-
ity) will provide concise but sound learning. Advanced readers are invited to further
reading of Sect. 7.2 (entropy production under coarse-graining), Sect. 8.3 (waiting-
time statistics), Sect. 8.4 (stochastic efficiency), Sect. 9.5 (information thermodynam-
ics for general information processes), Sect. 9.6 (Ito-Sagawa relation), Sect. 10.1.1
(fluctuation-dissipation theorem at nonequilibrium stalling state), Sect. 13.1 (Brow-
nian motors), Chap. 15 (efficiency at maximum power), Sects. 19.1 and 19.2 (vari-
ational expression of entropy production rate and excess entropy production rate),
depending on their interests.

For readers interested in Langevin systems, a short course with Chap.4 (stochastic
processes and stochastic thermodynamics in continuous space), Chap. 11 (various
results in Langevin systems, which includes the fluctuation theorem), and Sect. 18.2
(a speed limit inequality for Langevin systems) will serve as a brief overview of
Langevin systems.

We here classify results in this textbook as with or without the local detailed-
balance condition: The following results are proven without requiring the local
detailed-balance condition:

• The fluctuation theorem (5.14).
• The Hatano-Sasa relation (7.10).
• The IFT-type equality for hidden entropy production6 (7.39).
• The Sagawa-Ueda relation (9.28).
• The IFT-type equality for partial entropy production (9.61).
• The trade-off inequality between efficiency and power (16.65).
• The classical speed limit inequality (18.34).

6 This relation, however, requires some assumptions weaker than the local detailed-balance
condition.
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• The variational expression of entropy production rate (19.1).
• The Kolchinsky-Wolpert relation (19.41).

Here, the numbers in the bracket represent equation numbers. These relations only
use the fact that a system attached to a heat bath relaxes to the equilibrium state (the
canonical distribution), and thus these relations have high universality.

In contrast, the following results are proven with requiring the local detailed-
balance condition. Although these relations also hold in various systems, the degree
of universality is less than the previous ones.

• The Speck-Seifert relation (7.17).
• The martingale property of entropy production (8.47).
• The least probable stochastic efficiency (8.61).
• The fluctuation-dissipation theorem for stalling state (10.5).
• The thermodynamic uncertainty relation (17.4)
• The variational expressions of excess and housekeeping entropy production
(19.22) and (19.25).

1.3 Notation, Terminologies and Remarks

Throughout this textbook, we frequently use the following notation, terminologies
and setups without any explicit explanation:

Quantities

• A bracket 〈·〉 represents an ensemble average of a stochastic quantity.
• A quantity with hat Â means that this quantity is a stochastic variable. A quantity
without hat means its ensemble average A := 〈 Â〉.

• Calligraphic symbols are reserved to represent time-integrated quantities (e.g.,
J := ∫ τ

0 dt J (t)).
• A derivative ∂ f

∂x is also expressed as ∂x f .

States

• We usually use the symbol w to represent a discrete state. The label of a state
appears in the subscript7 as wi . We frequently use a shorthand notation i to refer
to state wi .

• The probability distribution of state w at time t is denoted by P(w, t). In a vector
representation, we write pw(t). The probability distribution of state wi is also
denoted by pi (t)

• peqw represents the equilibrium distribution of statew. pssw represents the stationary
(steady state) distribution of state w.

7 Remark that in the systems in continuous space, we use the subscripts to represent the number of
steps.
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• When we represent a vector, we employ a bold font as p.
• w̄ represents the time-reversal state of state w, where parity-odd variables (e.g.,
momentum) are multiplied by −1.

Dynamics (on discrete states)

• We use the word “Markov jump processes” to refer to processes with continuous
time. We use the word “Markov chains” to refer to processes with discrete-time.
This textbook mainly treats continuous-time Markov jump processes on discrete
states otherwise explicitly noted.

• We refer to the matrix R in the master equation for Markov jump processes
(Eq. (2.10)) as “transition rate matrix”. We refer to the matrix T in the time evo-
lution equation of Markov chains (Eq. (2.4)) as “transition probability matrix”.

• In a Markov jump process, a transition rate from a state w to another state w′
at time t is written as Pw→w′;t . The corresponding transition matrix is written as
Rw′w. Since the former symbol is preferable in representing path probabilities, we
mainly use the former symbol Pw→w′;t in Part II8 and mainly use the latter symbol
Rw′w in Part IV.

• The escape rate with a state w at time t is denoted by ew,t .
• The transition rate in the time-reversal system (i.e., if there exists a parity-odd
field such as a magnetic field in the original system, then we invert its sign in the
time-reversal system) is denoted by P†

w→w′;t .
• The transition rate with tilde as P̃w→w′;t represents the dual transition rate defined
in Eq. (7.2).

• For a transient process, we usually set its time interval as 0 ≤ t ≤ τ .
• A stochastic trajectory in aMarkov jump process is denoted by	. In this trajectory,
the number of jumps is written as N . The n-th jump occurs at t = tn , and the state
is changed from wn−1 to wn . The superscript represents the order of jumps. We
write t0 = 0 and t N+1 = τ for convenience.

Langevin systems (in continuous space)

• We usually use the symbol x to represent a state in continuous space.
• When we consider a discretized version of Langevin systems with respect to time,
the position (state) and the time at the n-th step are denoted by xn and tn , respec-
tively.

• The white Gaussian noise (see Sect. 4.1.1) is denoted by ξ̂ (t). Its discretization
with time interval �t is written as ξ̂�t (t).

• The rule of product in stochastic differential equation (see Sect. 4.1.2.1) is denoted
by α.

• The Itô, Stratonovich, and anti-Itô product (see Sects. 4.1.2.2 and 4.2.1) are rep-
resented by ·, ◦, and 
, respectively.

8 The exception is Chap. 10, where we use the symbol Rw′w . In this chapter, we treat response
functions in stationary systems with symbols.
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Others

• The number of particles is denoted by M . Each particle is labeled with m.
• The number of heat baths is denoted by k. Each bath is labeled with ν.
• The energy of state w is written as Ew.
• The heat current is positive for energy transfer from the system to a bath. Corre-
spondingly, the heat is positive when the heat releases into a bath.

• The entropy production is denoted by σ . The entropy production rate is denoted
by σ̇ .

• The inverse temperature is denoted by β.
• We normalize the Boltzmann constant kB to 1.
• The imaginary unit is denoted by i .
• The density matrix is denoted by ρ.
• The Onsager matrix is denoted by L .
• The work is denoted by W , which is positive when the work is extracted by an
external agent.

• The spatial dimension is denoted by D.

We also use the following abbreviations in this textbook:

• CE: Carnot efficiency
• CGACE: coarse-grained autonomous Carnot engine
• DFT: detailed fluctuation theorem
• EMP: efficiency at maximum power
• FDT: fluctuation-dissipation theorem
• FT: fluctuation theorem
• IFT: integral fluctuation theorem
• TUR: thermodynamic uncertainty relation



Part I
Basic Framework



Chapter 2
Stochastic Processes

In this chapter, we introduce a mathematical framework, stochastic processes, which
is used to describe small stochastic systems. Inmost part of this textbook,we consider
stochastic processeswith discrete states, and this chapter is devoted to such processes.
Mathematical foundations of stochastic processes in continuous space are presented
in Chap.4.

A stochastic process is a time evolution in a probabilistic manner. The dynamics
of a Brownian particle is a celebrated example of stochastic processes, where the
movement of the particle is given by the collision of enormous number of small
water molecules. Since we do not know the detailed positions and momentums of
water molecules, the dynamics of the Brownian particle can be predicted only in a
probabilistic form. Another famous toy model of stochastic processes is a random
walk on a one-dimensional lattice: A person on the lattice moves left or right by
one site with probability half (e.g., by flipping a coin). Various biophysical systems
including molecular motors and other elaborated proteins can also be described as
stochastic processes.

2.1 Markov Process and Discrete-Time Markov Chain

We here introduce an important class of stochastic processes, a Markov process.
Roughly speaking, a Markov process is a stochastic process whose dynamics is
determined only by its latest state. Although it can be defined in both discrete-
time and continuous-time, for simplicity we first explain the Markov property by
taking stochastic processes in discrete time steps. Consider a stochastic process in
N steps. Through this process, we obtain a stochastic sequence of N + 1 states,
(w0, w1, w2, . . . , wN ), where wi is the state at the i-th step.1 This sequence is
regarded as a trajectory of states. We call the transition from the state at the n − 1-th
step to that at the n-th step as the n-th transition or the transition at the n-th step.

1 We denote the initial state by w0 for convenience.
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