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Infinite Order Differential Operators )
with a Glimpse to Applications to oo
Superoscillations

Takashi Aoki, Yasunori Okada, Irene Sabadini, and Daniele C. Struppa

Abstract In this paper we will consider operators that can be formally written as

d o d”
P — ) = E n
(Z’ dz) o (2) dz"

n=0

where the functions a,, are entire functions on the complex plane (possibly satisfying
suitable growth conditions), and we will study their action on suitable spaces of
entire functions as well. After an introductory section, whose content is well known,
that describes infinite order differential operators from the point of view of the
theory of hyperfunctions, we will describe as well convolutors arising from analytic
functionals, and how they can be represented by infinite series of derivatives. The
next section is dedicated to the way in which the study of longevity phenomena
for superoscillations has led to a renewed interest for the theory of infinite order
differential operators, and will present some recent results on the continuity of such
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operators. Finally, we will show how the idea of infinite order differential operators
extends fruitfully to the hypercomplex setting.

Keywords Infinite order differential operators - Entire functions with growth
conditions - Entire hyperholomorphic functions

1 Introduction: Infinite Order Differential Operators and
Convolution Operators

The theory of infinite order differential operators has a long and distinguished
history, even though the term itself has been used with different meanings in
different settings. In this paper we will consider operators that can be written as

d > dr
Plz,— ) :=
<z dz) gan(z) e

where the functions a, are entire functions on the complex plane satisfying suitable
growth conditions, and we will study their action on spaces of entire functions as
well. As it is well known, the term differential operator only loosely applies to
such operators, since unless some restrictions are imposed, they actually behave
like convolution operators. The simplest example of such a situation is the operator

d 1 an

Pl— ) := _—,

dz n!'dz"
n=0

which is such that for any entire function f(z) one has

d
P <d_> f@=f@+1.
z

In order to clarify this situation we will begin with considering the space Hjg)
of germs of one-variable holomorphic functions at the origin. This space can be
endowed with the inductive limit topology that derives from defining

Hioy == ll_I)n'H(U)

over a decreasing family of open sets whose intersection is the origin. Its dual HEO}
is isomorphic to the space of one-variable hyperfunctions supported by the origin,
and as such is isomorphic to the quotient

g _ HC\(O)
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By using the Fourier-Borel transform, one can further see that this space is
isomorphic to the space Exp,(C) of entire functions of infraexponential type, also
called of exponential type zero, namely the space of entire functions that satisfy the
following growth condition

for anye > 0, there exists Ac > Osuch that|F(z)| < Ace.

Any differential operator

such that

o0
P(z) =) ap"
n=0

is a function of infraexponential type will be said to be an infinite order differential
operator and acts as a sheaf homomorphism on the sheaf of germs of holomorphic
functions. We therefore see that we have several objects that, while looking different,
are essentially the same: the dual of germs of holomorphic functions in the origin,
the space of hyperfunctions with support in the origin, the space of entire functions
of infraexponential type, and the space of infinite order differential operators
with constant coefficients. There are several questions of interest that these few
considerations inspire. To begin with, one would like to see what the growth
condition on the function P(z) means in terms of the coefficients a,. This question
is very well understood and we know that the infinite order differential operator

d S i
P(=) = £

acts continuously on the space of entire functions on C if
lim Yk!|ax| = 0.
k—00

A second interesting questions is to inquire as to what happens when the coefficients
ay are not constant but, say, holomorphic functions a, (z). This question is also well
understood, and we still have infinite order differential operators (that is objects
that act on the sheaf of holomorphic functions), as long as the same kind of growth
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conditions are imposed on the variable coefficients. More precisely, the infinite order
differential operator

d > a"
Plz,—):= ) —
(z, dz) ;a”@dz"

acts continuously on the space of entire functions on C if for every compact set K
in C (see e.g. [29, Lemma 1.8.1])

lim 4/sup k!lag(z)] = 0.
k=001 ;eK

The results hold more in general in n complex variables, but in this introduction we
limit our discussion to the one variable case.

Before looking at more general growth (and therefore at operators that act
as convolutors, rather than as infinite order differential operators), we should
probably take a detour and mention another reason for the interest in infinite
order differential operators. To do so, we briefly recall the celebrated Ehrenpreis-
Palamodov Fundamental Principle, [27, 30]. In brief this theorem states that if
Py, ..., P. are polynomials in n complex variables, and if f is a generalized
function in a suitable space (for example the space of distributions or infinitely
differentiable functions on R", or entire functions on C") satisfying

a a a

0
Pi(—,...,—)f=...=P(—,...,—)f =0,
1(8x1 axn)f r(8x1 3xn)f

then f admits an integral representation of the form

t
f(x) =Z/V 3;(e™)dv;(2),
j=0""Vi

where the V; are subvarieties of the algebraic variety V = {z € C" : P1(z) = ... =
Pr(z) = 0}, the 9; are differential operators with polynomial coefficients, and the
dv; are measures supported on the varieties V;. In the case in which n = 1 this
theorem is obviously very well known and it is often referred to as the Euler theorem
for ordinary differential equations with constant coefficients. There is, however, a
way to remain in one variable and yet take advantage of the deep ideas underlying
the Fundamental Principle. In his book [27], Ehrenpreis suggests the consideration
of a sequence of polynomials in one or several variables P;, and their correspondent
linear constant coefficients operators D; (i.e. the differential operators whose
symbols were the polynomials P;), and then to consider series of solutions f; to the
equations D;(f;) = 0. Ehrenpreis provided some general ideas on the geometric
conditions that the varieties V; := {z € C" : P;(z) = 0} needed to satisfy, in order
for the series ) j fj to converge and have suitable integral representation. The study
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of infinite order differential operators, however, offers a somewhat more direct and
simple approach. Rather than considering a sequence of differential operators, one

may consider a series of the differential operators a; %j, and study the geometry

of the variety associated to the holomorphic function ) ja ij to see whether the
solution of the infinite order differential equation naturally associated can be given
an integral representation. That this was possible, at least under certain conditions,
and with the use of special summation methods, was shown first by Schwartz,
[31], whose work eventually led to the work of Berenstein and Taylor [16] that
showed that under appropriate conditions, and suitable summation procedures, the
solutions of infinite order differential equations, and more generally the solutions
of convolution equations (see below), could be given exponential representations in
terms of the associated varieties (this time the varieties are not algebraic anymore,
but rather analytic, something that creates a host of technical challenges). The reader
interested in learning more is referred to [17, 32, 33].

One can also become interested in the more general case in which we allow
symbols with faster growth, and to see what they imply in terms of the operators
that are associated. A well known case of this situation occurs when one considers
the space H(C) of entire functions, and its dual, the space of entire functionals.
This space, that obviously contains the space of analytic functionals supported at the
origin (or hyperfunctions supported at the origin), is itself isomorphic, by Fourier-
Borel transform, to the space of entire functions of exponential type, namely entire
functions F such that for some constants A, B > 0 their growth is controlled by

|F(z)| < AeBl. (1.1)

The operators associated to such functions are not infinite order differential
operators, though they can still be formally written as series of derivatives. A typical
example is the function

400

J

<

€Z=E TE
=07

this function clearly satisfies (1.1) and the operator naturally associated to it is the
operator that acts on a function f as

i
=/ dz
but it is easy to show that such function corresponds to f(z + 1), so that the

operator whose symbol is e® is not an infinite order differential operator, but rather
the simplest of convolution operators, the translation by 1.
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Functions F satisfying (1.1) form a space denoted by A (C), see Sect. 2, and the
notion can be further generalized to consider functions satisfying the bound

|F(z)| < AeBFI"

and which will belong to the space A,(C). The (strong) dual of A,(C) is related,
via Fourier-Borel transform, to another important type of space denoted by A, o(C).
The topology in these type of spaces is given via inductive or projective limits but
to compute explicit estimates it is useful to have a more direct description, that we
shall provide in Sect. 2.

While infinite order differential operators, in their various forms, are of great
intrinsic interest, the reason for this article is to discuss in some more detail how
their properties are of importance in the study of superoscillatory phenomena, see
Sect. 3, as they provide a tool to establish the longevity of superoscillations. As
we mentioned, most of the results hold in several complex variables, and we refer
the interested reader to the very recent works on this topic [3, 4, 22, 25]. In this
paper, however, we consider another higher dimensional case, the one given by the
hypercomplex setting, in which we have successfully extended the basics of the
theory of infinite order differential operators.

Here is a description of our paper. After this introductory section, whose content
is well known, we will devote an entire section to the study of spaces of entire
functions with growth conditions, their topologies, and their duals. In Sect.3 we
will use these results and ideas to address the fundamental issue of longevity for
superoscillations, thus showing how infinite order differential operators, and more
generally convolution operators, play a crucial role in this area. In Sect. 4 we shall
present some new results on the continuity of such operators. Finally, we will
show how the idea of infinite order differential operators extends fruitfully to the
hypercomplex setting. This last section will include both some early results that the
authors obtained a few decades ago, as well as some newer results who became
available because of recent developments in the theory of hypercomplex functions.

2 Spaces of Entire Functions

As we shall see in the next sections, our results in the framework of superoscillations
and in the hypercomplex setting make use of some suitable spaces of functions
satisfying growth conditions depending on a plurisubharmonic function which is
used as a weight, see [17, 27, 32, 34]. For our purposes we do not need this
generality, indeed to define the spaces of functions that we need, it is enough to
select weights of the form w(z) = |z|?, p > 0, where for z = (z1,...,2,) € C"
we set |z| = /lz1 > + ... + |zl
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Definition 2.1 Let p be a positive real number, and let 7 (C") be the space of entire
functions in C". The space A, (C") is defined as

Ap(CY ={feHC") : 3A>0, B>0: |F(2)| < Aexp(Blz|")}

and it is called the space of entire functions of order less or equal to p and of finite
type.
Definition 2.2 Let p be a positive real number. The space A, o(C") is defined as

Apo(C") :={f e H(C") : Ve > 0,34, > 0 : |f(2)| < Asexp(elz|?)},

and it is called the space of entire functions of order less or equal p and of minimal
type.

Remark 2.3 For the sake of simplicity, from now on we shall write H, A, Ap o
instead of H(C"), A,(C"), Ap o(C").

Remark 2.4 Note that if p = 1, then the space A; is isomorphic, via Fourier-
Borel transform, to the space H’ of analytic functionals. Moreover, the space Aj
is the space of the so-called functions of infraexponential type, or of order one
and type zero, and as we remarked in the introduction is isomorphic, via Fourier-
Borel transform, to the space of analytic functionals carried by the origin (which
in turn coincides with the space of hyperfunctions supported at the origin). This
identification is a crucial fact in the theory of infinite order differential operators.

To describe the topology in these spaces, we consider T > 0 and we introduce
the set A, ; of entire functions f such that

[ £llp == sup | f(2)]exp(—7lz|") < oo.

zeCn

We call || f| p,c the (p, T)-norm of f. The space A ; equipped with this norm is a
Banach space. We also note that when 7 < 7’ there is an inclusion map A, ; —
Ap o (which is also a compact operator). We have that A, and A, o are the inductive
and projective limit, respectively, of these spaces. In symbols:

Ap =lim Ay -, Apo=1mAp,
>0 >0

and they turn out to be a DFS (Dual Fréchet-Schwartz space) or an FS space
(Fréchet-Schwartz space), respectively. It should be noted that the above topologies
are independent of the choice of a sequence {t,} of positive numbers 7,,. Moreover,
to say that a sequence { f;} is convergent to f in A, means that there exists T > 0
such that f;, f € Ap ¢, forall j,and || f; — fllp, — Ofor j — oo.

These function spaces are well known in the literature, however, for our scope,
it is necessary to make precise the notion of continuity of linear operators, since
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in some proofs it is required to perform careful estimates, see [3, 12—14]. For this
reason we provide the explicit proofs of the next two theorems.

Theorem 2.5 Let F': A, — A, be a linear operator. Then F is continuous if and
only if the following condition holds:
For any t > 0, there exist C > 0 and t' > 0 for which F(Ap ) C A, o and

IEfllpe < Cllifllpe forany f e Apy. 2.1)

Proof Forany T > 0, A, ; is a subspace of A, and the natural inclusion mapping
Ap: — Aj is continuous. By the definition of the topology on A,, a map F :
A, — A is continuous if and only if its restriction Fla,, @ Apr <> Apis
continuous for every T > 0. Since F is a linear operator, applying [28] [Chap. 4,
Part 1, 5, Corollary 1] to F|4, . for each T > 0, we know that there exists T’ > 0
such that

p.T

F|Ap,r : A[,’f — Ap’r/

is a continuous operator. Hence it is a bounded operator and we have (2.1) for some
C > 0. Conversely, if (2.1) holds, then F : A, — A, C Aj is clearly a
continuous operator.

O

Theorem 2.6 Let F : A, o — Ap o be a linear operator. Then F is continuous if
and only if the following condition holds:
For any © > 0, there exist C > 0 and t' > 0 for which

IEflpe = Clfllpe forany f € Apo. (2.2)

Proof The space A, o has a system of semi-norms || - || 5, (t > 0). Set

Use ={f €Apolllflpr<e}
Then {U; .} (¢ > 0, T > 0) is a fundamental system of neighborhoods of the origin

in A, o. Condition (2.2) implies that for any ¢ > 0, 7 > 0, there exist§ > 0,7 > 0
for which

F(Ué,r’) C Us,r-
Indeed we can take 6 = ¢/C. Hence F is a continuous mapping.
To show the converse, we assume that F is a continuous mapping and we take a

countable fundamental system

(Ui} kteN
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of neighborhoods of the origin in A, o. Hence the continuity of a linear operator
F : A,o — Apo can be characterized by using the limits of sequences: F is
continuous if and only if

F(fy) >0 forany fy— 0in App. (2.3)

Here fy — 0 means that for any ¢ > 0, t > 0, there exists N € N such thatk > N
implies fx € Ug ¢.

Suppose now that (2.2) does not hold. Then there exists T > 0 such that for any
C > 0and 7’ > 0, thereis an f € A, o satisfying

IEflpe > Clflip,e- (2.4)

For every k € N, we can find f; € A o for which

Efillp,e > kll fill p1yk-
If we set

S

gk = —o,
VN fell 1y

then we have | gkl p,1/k = 1/\@. The norm || - || 1/« is increasing with respect to
k. Hence, for any T > 0, there exists N € N such that k > N implies || fl,: <
I fllp,1/x (f € Ap,o). Therefore we have gx — 0. On the other hand, we have that

”ka”p,r

_IERT o k- oo,
VN fell 1y

I Fgkllp.r =

and so F is not continuous. This is in contradiction with our hypothesis and this
concludes the proof. O

In [13, Lemma 2.2] we proved the following result which contains a useful
characterization of the Taylor coefficients of a function in A p:

Proposition 2.7 The function
0 .
f =Y fz
=0

belongs to A, if and only if there exist Cy > 0 and b > 0 such that

J
fil < Cp—r—.
T rd
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Remark 2.8 The proof in [13] is based on an estimate on the norms of f € A,.
More precisely, one needs to estimate the derivatives

il
D(zy = L &d i =0,1
Fr@ 27i J, (w —z)JH! W J T

where the path of integration y is the circle |[w — z| = s|z[, s is a positive real
number and z # 0. Since f € A, isequivalentto f € A ; for some T > 0, we can
set Cy = max, || f1p,z. This fact shows that f — 0in A if and only if Cy — 0
which is crucial in various results later on.

The spaces we have just introduced satisfy an interesting duality property.
Consider p(z) = |z|” and g(z) = |z|? where p > 1, > 1 are real numbers
such that + + 1 = 1. Let us denote by A;) the strong dual of A, namely the space
of continuous linear functional on A, endowed with the strong topology. Define the
Fourier-Borel transform of u € A;? as the entire function

f(w) = p(exp(—z - w)), zeCm.

The duality between H oy and A1 o, as well as the duality between H and A; can be
generalized to this new setting:

Theorem 2.9 Let p,q € R, p > 1, g > 1 be such that

—+—-=1.
P q
The following isomorphisms
AL =Aq0
and
A;’O = Ay,

are algebraic and topological as well.

3 Infinite Order Differential Operators and Superoscillations

In this section we show how infinite order differential operators can naturally arise
in the study of superoscillations.

Superoscillatory functions were introduced in physics, see e.g. [1] and the more
recent [7], and from a mathematical point of view, they can be described as a
superposition of small Fourier components with a bounded Fourier spectrum, in
modulus less than 1, that can nevertheless result in a shift by an arbitrarily large a.
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They can also be thought of as an approximation of €/**, |a| > 1, in terms of a
sequence of the form

n
{Fa(x, )}, Fu(x,a) =) Cj(n; a)e’ti ™"
j=0

with |k;(n)| < 1. The prototypical example is the sequence of functions:

n 1 . 1 — . n
F,(x,a) = (cos (%) +iasin (%)) = (%elx/n + Tae—lx/n> (3.1)

where a € R, a > 1. By performing a binomial expansion, this sequence can be
written as

n
Z Cj(l’l; a)ei(172j/n)x

j=0

for suitable coefficients Cj(n; a). However, in the limit F;, (x, a) — €'9*  that is, it
displays a wavelength much larger than one.

An important question that was posed originally by both Aharonov and Berry
is whether the superoscillating behavior persists after evolving a superoscillatory
function according to some differential equations, for example the Schrodinger
equation. To answer the question, one may use a method in two steps. First, one
uses Fourier analysis, to solve the Cauchy problem associated to the Schrodinger
equation. Second, one complexifies the setting, and demonstrates the permanence of
the superoscillatory behavior as a consequence of a continuity theorem for suitable
(convolution) operators with nonconstant coefficient of the form:

u( ) me(tz)—

For brevity we will from now on write 9, instead of aa_z In the sequel, we shall
consider a subclass of this class of operators. In order to prove our main results we
need some more notations and definitions:

Definition 3.1 Let p > 1. We denote by D,, ¢ the set of operators of the form
o0
P(z,0) =) an(2)!
n=0

satisfying the properties:

(i) the functions a,(z) (n =0, 1,2, ...) are entire;
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(i1) there exists a constant B > 0 such that for every ¢ > 0 one can take a constant
C, > 0 for which

n

£
b4
an (@] = Ce oy exp(BIzI”),
holds, where
1 1
- + - = 11
P 49

and 1/g = 0 when p = 1.

Remark 3.2 Note that in [14], a wider class D, of operators is introduced. It is
proved that the class includes D, ¢ as a proper subset and that any linear continuous
operator acting on A, is represented by an operator in D .

We now repeat the statement of [13, Theorem 2.4] and its proof. In fact it is
useful, for further reference, to make the constants appearing in the proof more
explicit.

Theorem 3.3 Let P(z,0;) € Dy and let f € A, Then P(z,0,)f € Ap and
P(z, 0;) is continuous on A, that is P(z,9,) f — Oas f — 0.

Proof The computations in [13] show that if we apply the operator P(z, d;) to f €
A we obtain

0o 0 X |
P@ @) = 33 (@) frr ok,
n=0 k=0
Then we have
o0 o0 |
PE DI =YY lan @ el Ll
n=0 k=0

Since f € A, means that f € A, ; for some T > 0, then using the assumptions on
ay and f;, we get

btk (k +n)!
PG, a)f(z>|<cfchZ ,)l/q exp(Blz|”) CED e,

n0i=o ¢ F<%+1) k!

where Cy is as in Remark 2.8. Since

(Y2 0(5 1) and kot < 2
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we get

[P (z,3:) f(2)] =

prtk Dkt

< cfcgzz |zI* exp(Blz|”)
nOkoF( +1) F("T”‘Jrl) k!
bn+k
< CsC, ZZ 2K+ 011z 1F exp(B|z|?)

=0 k= 0F< ) F(%-l-l)

1 n!
CrCe 2b)* (2eb)" kexp(B|z|P).
<Cy ZZ( )k (2eb) () F<m+1)|z| exp(B|z/”)

n=0 k=0 7 »

(3.2)
Using

Cla+DI'd+1) -
Fa+b+2) ~

we deduce

(22 )= r(d s ez )

We can now rewrite (3.2) in the form

|P(z,9;) f ()| < CfCaZ%
k=0 F(; + 7)

s " n!
L )

Reasoning as in [13], we consider

|z|* exp(B|z]”)

o0 n'
> @eby 1 ‘
n n
n=0 F(;—Fj)r(a-l-l)
and observe that
! "(2eb)"
2eb)" i S S

F(% + %)F(g + 1) (%)"/1’ (g>n/q
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Since ¢ is arbitrary small the series converges, i.e.

e n!
;O(zeb)" F(% " %)F(g " 1) =C.

Using the properties of the Mittag-Leffler function, we have

00 k
2b
S C < Clexp(B I,

%)

and from this with some more computations we conclude that there exists B” > 0
such that

|P(z,3;) f(2)] < C'CrCeexp(B”|z|")

which means that P(z,d;) f(z) € Ap. As we observed in Remark 2.8, Cy — 0
if and only if f — O and so the same estimate proves the continuity, i.e.
|P(z,9;)f(z)| > 0 when f — 0. O

The importance of these results can be shown by going back to the fundamental
question of longevity of superoscillations, and analyzing a bit more in detail how
that question can be answered.

To begin with, Aharonov posed the following problem. Consider the solution of
the Cauchy problem

; 0¥
ot

Un(x,0) = Fy(x,a)

= H(n)

where H is the Hamiltonian of a given physical system, and F,(x,a) is the
prototypical superoscillating sequence. Can we prove that the sequence of the
solutions 1, is still superoscillatory? In a series of papers, we have shown that the
answer to this question is positive, at least for a very large class of Hamiltonians.
While we have not been able yet to give a general theorem that allows us to
determine whether the answer is positive for a given Hamiltonian, current results
(some obtained by the authors, others by colleagues and collaborators) include the
case of the free particle [5], the quantum harmonic oscillator [19], the uniform
magnetic field [20], the centrifugal potential [21], the step potential [8], where an
interest phenomenon tied to tunneling emerges, the Klein Gordon field [9], where a
two boundaries value problem has to be solved, the radial harmonic oscillator [11],
the uniform electric field [6], the Dirac § and &8’ potentials [2, 15], the Dirac field
[26], to mention a few. What is remarkable, however, is the fact that the strategy for
each of these situations is essentially the same, though the technical challenges are
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very different from case to case. We will describe here the general approach in the
simplest of cases, and that will clarify why the study of the spaces A, is so relevant
to our interests.

So, let us consider the case in which the Hamiltonian is simply H = —(,fx—z,
namely the case of the free particle, which is historically the first case to which we
applied our approach. Because the theory of infinite order differential operators is
better suited to the holomorphic case, we will rewrite the problem replacing the real
variable x with a complex variable z. Note that the initial value is a finite sum of
exponentials, and thus it is a real analytic function that extends to an entire function
of the variable z. In this case, it is then easy to verify (purely by substitution) that
the solution for the Cauchy problem is given by

n
s 1 k2
Ya(z,t) = Z Cj (n; a)e’ZkJ’"e ttkm’

j=0

where we write k; , = 1 — 1nstead of k;(n). This step, immediate in the case of
the free particle, ends up belng very comphcated in many of the cases we mentioned
above. It usually entails finding the Green function associated to the Hamiltonian,
and then working with it to obtain a manageable formula for the solution of the
Cauchy system; the reader should not be misled by the apparent ease with which
this result can be obtained in the free particle case. At this point, the next step
consists in manipulating the solution of the Cauchy system in such a way as to
rewrite it as the result of the action of an operator of infinite order (usually, in fact,
a convolution operator) on the original superoscillatory function. In this particular
case, this second step is also fairly simple, since one can use the fact that

o0 (.12 \m
e—ltkin _ Z ( ltkj,n)
m!
m=0
to rewrite the solution as

V(e ) =Y Cins ae'™in 3 (kG D™

j=0 m=0

+o00 n
_lt)m izkjpg2m _
Z ZC (n; a)e kj,n -

too . n 2m
(i)™ d X
= E o E Cj(n;a)ﬁe”/
m=0 j=0

Z (zt)m d*F,(z; a)
- 2m '
m=0
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We have therefore proved that the solution to the Cauchy problem for the free
particle with superoscillatory initial data can be obtained by applying to the initial
data F,(z; a) the variable coefficients convolution operator

d +0o0 N d2m
U (t, _> = Z (l ) e
dz = m! dz?m

Note that the symbol of this operator is the entire function

+00 iy 2m )
f@t,0) = Z (I)T'; = i1t

m=0

which is not of exponential type but rather belongs to the space A;. For this reason,
even though U formally looks like an infinite order differential operator, it actually
acts as a convolution operator and we will use this terminology from now on.

Remark 3.4 We have therefore shown that if we denote by Ty the operator that
associates to an entire function F the solution to the Cauchy problem with initial
data F, and given Hamiltonian H, this operator is in fact a variable coefficients
convolution operator Uy . How this operator can be constructed depends, of course,
on the specific Hamiltonian being used, but our results show the existence of a fairly
general correspondence between Hamiltonians and convolution operators (we do
not have a general proof of this fact, but we have shown it in a very large number
of cases as we indicated before). Equally important is to note that the symbol fy of
the operator Uy is an entire function that belongs to a space A, where the weight
p depends on the Hamiltonian itself. If, for example, the Hamiltonian were H =
—;—mm, then the symbol of the associated operator would be an entire function in
Ay, In more general cases, we actually have to look at weights p(z) that are more
general than the powers |z|?, but we will not get into this detail at this point. Suffice
to say that the step that transforms the solution, obtained via Green function, into a

differential operator is in general highly more complex than the one indicated here.

We can now use this transformation to answer the original question. We have
shown that the solution ¥, (z, t) to the original (complexified) Cauchy problem is
given by

Yn(z,t) =U (t, i) (Fn(z; @),
dz

for the convolution operator described above, Since this operator has symbol in
A», it acts continuously on the space A o and therefore certainly as a continuous
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operator from Aj to Az o, and so we can conclude that

n——+00 n——+00

d .
v (i) (i o) =

Ut i (eiaz) :eiaze—ia2
" dz

. . . P P2 .
We can now restrict the equality limy,_ o0 ¥y (z,1) = €'%e™ %! to the real axis,
thus showing that the superoscillatory behavior is being preserved through the
evolution via the Schroédinger equation.

lim ¥,(z,t) = lim U <t, i) (Fu(z;a)) =
dz

t

4 Hypercomplex Case: Cauchy-Fueter and Monogenic Case

In this section, we move to infinite order differential operators acting on spaces of
entire hyperholomorphic functions. More precisely, we shall consider two classes of
such functions, both extending the class of holomorphic functions of one complex
variable: the slice monogenic and the monogenic functions. In both cases, the
functions have values in R,, the real Clifford algebra over n imaginary units
e1,...,e, and are defined on open spaces of the n + 1 Euclidean space R"*!.
The element (xg, x1,...,X,) € R"t! are identified with elements in the Clifford
algebra, namely the so-called paravectors, via:

n
(X0, X1y ...  Xp) > X =xo+)_c=xo+2xgeg.
=1
IfU € R*t!isan open set, a function f : U C R"+! — R, can thus be interpreted

as a function of the paravector x. The real part x( of x will also be denoted by Re(x).
An element in R,, is called a Clifford number, and can be written as

a=ayg+ae+...+aye, +appeier+...+aixzeierez+...+ain. pe1€2. ..y,

ora = ZA ajses, where A belongs to the power set P(1,...,n), and if A =
{i1...i,} weseteg = ¢;, ...e;, and ey = 1. Note that, using the relations eiz =1,
eiej +eje; =0,1,je{l,...,n},i # j, the indices can be put in increasing order
i1 < ... < ir. The norm of an element y € R, is defined as its Euclidean norm

ly|> = N |yal?, and in particular the norm of the paravector x € R s |x|? =
xg +x12 +...+ x,%. We define the conjugate of x as X = x9 —x = xp — ZZ:] Xeey.
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We denote by S the set
S={x=ex;1+...+enxp |x12+...+x,%=1};

whose elements j are such that j> = —1. Given a nonreal element x = xo+x € R"*!
we put j, = x/|x| if x # 0, and given an element x € R"**!, the set

(x]:={y e R""! : y =xo+jlx|, j€ S}

is an (n — 1)-dimensional sphere in R"+1. The vector space R+jR, j € S, is denoted
by Cj and an element belonging to C; will be indicated by u + jv, for u, v € R. We
say that U C R"*! is axially symmetric if [x] C U for any x € U.

Definition 4.1 (Slice Hyperholomorphic Functions with Values in R, (or Slice
Monogenic Functions)) Let U € R"*! be an axially symmetric open set and let
U ={u,v) € R : u+Sv C U}. A function f : U — R, is called a left slice
function, if it is of the form

@) = fow,v) +jfi(u,v) forg=u+jveU

where the two functions fy, f1 : U — R, satisfy the compatibility conditions

folu, —v) = fo(u, v), Siu, —v) = — fi(u, v). “4.1)

If in addition fj and f; satisfy the Cauchy-Riemann-equations
0 0
——Jo(u, v) — — fi(u,v) =0 (4.2)
ou av

0 0
™ Jou,v) + — fi(u,v) =0, 4.3)
v ou

then f is called left slice hyperholomorphic (or left slice monogenic). Similar
definitions can be given for f(q) = fo(u, v) + f1(u, v)j giving rise to the theory of
right slice functions, or slice hyperholomorphic (slice monogenic) functions.

In both cases, when U = R"*! we say that f is entire.

If f is aleft (or right) slice function such that f and f; are real-valued, then f is
called intrinsic. We denote the sets of left or right slice hyperholomorphic functions
on U by SMp(U) and SMg(U), respectively. When we do not distinguish
between left of right we simply write SM(U).

Definition4.2 Let f : U € R"™! — R,,letx = u + jv € U and f; be the
restriction of f to the complex plane C;. If x is not real, then we say that f* admits
left slice derivative in x if

ds f(x) := , lim (p =) (fi(p) — £i(x)) (4.4)

—x, peC;
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exists and is finite. If x is real, then we say that f admits left slice derivative in x
if (4.4) exists for any j € S. Similarly, we say that f admits right slice derivative in
anonreal pointx =u + jv € U if

95/ ()=l (fip) = fo)(p =) (4.5)

exists and is finite, and we say that f admits right slice derivative in a real point
x € U if (4.5) exists and is finite, for any j € S.

‘We define

Mﬁc (r) = |max |f(2)], forr=>0

and

Mg(r) = ‘mlax |f(x)], for r>0.
x|=r

Definition 4.3 Let f be an entire slice monogenic function. Then we say that f is
of finite order if there exists k > 0 such that

My(r) < e

for sufficiently large r. The greatest lower bound p of such numbers « is called order
of f.Equivalently:

. Inln M ¢ (r)
p = limsup ————.

r—>00 Inr

Let f € SM(R"T!) be of order p and let A > 0 be such that for sufficiently large
values of r we have

Mg(r) < e

We say that f of order p is of type o if o is the greatest lower bound of such
numbers and
In Mg (r)

o = limsup
r—00 r

Definition 4.4 Let p > 1. We denote by SM? the space of entire slice monogenic
functions with either order lower than p or order equal to p and finite type. It
consists of those functions f : Rt R,,, for which there exist constants
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B, C > 0 such that
()] < CePM7 v e RMT (4.6)

Let (fu)men, fo € SMP.Then f,, — foin SMP if there exists some B > 0 such
that

dim sup | (fu(@) = fo@))e P = 0. 4.7)

—00 xeRn+!

The following results, which extend the analogous results in the complex
holomorphic case, are proved in [10]. We state them in the case of left slice
monogenic functions but they are valid also in the right case, with obvious changes.

Proposition 4.5 Let p > 1. A function
oo
f) =) xfa
k=0

belongs to S/\/lz if and only if there exist constants Cy, by > 0 such that

k

bf

—
F(; +1)

log| < Cy (4.8)

Furthermore, let f,, be a sequence in SMY; then f,, — 0 for m — +o0 if and
only if we can take constants C, and by, m € N such that the sequence {by, };neN
is bounded and C s,y — 0 as m — +o0.

Following [10], we now introduce a class of infinite order differential operators
acting on spaces of entire slice monogenic functions. These operators are designed
to preserve the slice monogenicity and in fact they involve the so-called x-product,
a special notion of multiplication of functions designed to preserve the slice
monogenicity, see [23, 24]. Since R,, is non-commutative for n > 2 (while Ry = C)
we need a product preserving slice monogenicity on the left, denoted by 7 and one
on the right, denoted by . We refer the reader to [23] for details. These operators
are a generalization to the hypercomplex setting of the class of operators denoted by
D, in [14].

Definition 4.6 Let (i) men, : R"+! — R, be entire functions in SM (resp.
SMpg) and p > 1. Assume that for every ¢ > 0 there exist B, > 0, C; > 0 for
which

m

lim (X)] < Co——— exp(Be|x|?), forall m e N, (4.9)
(mh)1/d
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where 1/p +1/q = 1 and 1/g = 0 when p = 1. For (#;y)men, in SM_ entire
functions as above, D;,o denotes the set of formal operators defined by

UL(x, 80) f () 1= ) st (x) %L O f (x),

m=0

and acting on entire functions in SMp,.
One of the main results in [10] is the following:

Theorem 4.7 Let p > 1 and let DIL),O be the sets of formal operators as in
Definition 4.6. Let Up (x, dy,) € D;,O andlet f € SMY, then UL (x, 8y, f € S/\/l,'j
and the operator Uy (x, dy,) acts continuously on SMY, i.e., if (fn) C SM{ and
fin = 0in SMY then UL (x, dx,) fn — 0 in SMY.

A similar characterization can be given in the case of right slice monogenic
functions. The proof of these results mimics that one in the complex case, adapted
with the »-multiplication. In particular, it makes use of the the function

k

> X
Ea,ﬂ(x) = Z m,

k=0

called Mittag-Leffler function, is an entire slice monogenic function of order 1/«
(and of type 1) for « > 0 and Re(8) > 0.

Another class of functions generalizing holomorphic functions to the hypercom-
plex case is that of monogenic functions.

Definition 4.8 Let U € R"t! be an open subset. A function f : U — R, of class
C', is called left monogenic if

3 S
Df=— —f=0.
! axof+;el o
A function g : U — R, of class C!, is called right monogenic if
9 S
D=— —fe; =0.
f 8)60 f + ; 3)(,' fel

The set of left monogenic functions (resp. right monogenic functions) will be
denoted by My (U) (resp. Mg(U)); if U = R"*! we simply denote it by M
(resp. M) and the functions are called entire monogenic.

The class of monogenic functions has been widely studied in the literature for a
longtime. These functions are, in particular, harmonic in n + 1 variables, while slice
monogenic functions are not (they are harmonic but in two variables). On the other
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hand, monomials x¥ in the paravector variable x are not monogenic but it is possible
to construct some special homogeneous polynomials, called Fueter polynomials,
which are monogenic. We recall them below and we refer the reader to [18] for
more information.

Letk = (k1. ..., k,) where k; are integers, be a multi-index. Let [k| = Y _/_, k;
and k! = [];_, k;!. We define the homogeneous polynomials Py (x) as follows: for
0=(0,...,0) we set

Po(x) = 1.

For a multi-index k with |k| > 0 and the integers k; nonnegative, we define Py (x)
as follows: for each k consider the sequence of indices ji, jo, ..., jix be given
such that 1 appears in the sequence k| times, 2 appears k, times, and so on, and
let n appears k, times. We define z; = x; — xge; foranyi = 1,...,n and z =
(21, -+, 2n). We set

ko . . ,
T I= 252y - Ly
and
k k k
[zI* = lza[™ -+ fzal™
these products contains z; exactly ki-times, 75 exactly ky-times etc. We define
1 I 1
Pr(x) = W Z o(z") = |k_|' Z Loy Ze@ ** * Lok
" oeperm(k) " oeperm(k)

where perm (k) is the permutation group with |k| elements.
We note that the Fueter polynomials Py (x) are both left and right monogenic.
We then define the polynomials:

k!
Vi(x) := k! Pr(x) = W Z Ljoy 2o ** * Lok

oeperm(k)
Remark 4.9 The following estimates holds
|Pe(o)] < 12|,

Since the monomials x¥ are not monogenic also the transcendental functions
exp(x), sin(x), cos(x), etc. are not monogenic. However, it makes sense to consider
exponential bounds and give the following:

Definition 4.10 Let f be an entire left monogenic function. Then we say that f is
of finite order if there exists k > 0 such that



