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Plants, during their life, encounter various challenges, and one of the main threats for their 
normal development is abiotic stress. The major abiotic stresses possessing threat to plants 
are water scarcity, salinity, extreme temperatures, heavy metals, and pesticides. All these 
abiotic factors can cause phytotoxicity, either directly or indirectly, resulting in interruption 
to plant’s growth and development which eventually decrease plant yield. Researchers all 
over the world have already specified abiotic stresses as the main danger for agrarian sys-
tems. However, plant’s internal defense system tries to counterattack the negative impacts 
of abiotic stresses by regulating their biological processes. But, above a threshold level of a 
particular stress, even plant’s internal antioxidative defense system is unable to entirely 
protect plants from the deleterious effects of abiotic stress. So, plants need some external 
stimulus or support to boost the level of defense system to survive under challenging envi-
ronments. Exogenous application of plant hormones is one of the best and eco-friendly 
approaches to trigger the defense system of stressed plants.

In the recent past, a lot of investigations have been focused on studying the mechanisms 
of plant hormone-mediated regulation of plant growth and development under abiotic 
stress conditions. Salicylic acid is an important plant hormone which acts a multifunc-
tional molecule and regulates key physiological and biochemical processes in plants. This 
hormone also provides resistance to plants against abiotic stresses by regulating key cell 
signaling pathways. Exogenous application of SA helps in convalescing the growth and 
development of stressed plants by reducing the oxidative stress accompanied by enhanced 
performance of antioxidative defense machinery. At present, scientists all over the world 
are very keen to study the deep mechanisms of SA-modulated abiotic stress responses by 
using various advanced molecular techniques. These advancements in research approach 
can be beneficial in exploring some important genetic pathways which can be applied to 
develop abiotic stress-tolerant plant varieties. So, recently, many studies have been carried 
out to find the deep molecular mechanisms explaining SA-mediated regulation of plant 
growth under abiotic stress. So, our purpose is to compile all the latest developments 
described in the arena of SA-mediated regulation of abiotic stress.

The first chapter explains the general roles of salicylic acid in plant biology. Chapter 2 
discusses the role of salicylic acid in plants during stressful conditions in relation to omics 
approaches. Chapter 3 focuses on describing the possible role of salicylic acid in regulation 
of primary metabolisms like respiration and photosynthesis in plants growing under chal-
lenging conditions. The next chapter discusses salicylic acid-mediated secondary metabolism 
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in plants under abiotic stress. Further chapters explore the role of salicylic acid in stressed 
plants by important aspects like mineral nutrition, seed germination to fruit maturation. 
Chapter 7 brings the updated knowledge about the role of salicylic acid in the postharvest 
technology. The next chapters focus on exploring salicylic acid-mediated physiological and 
molecular mechanism in plants under stresses like metal(loid), heat, chilling, and drought. 
Chapter 14 describes in detail the regulation of photosynthesis by salicylic acid under opti-
mal and suboptimal conditions. Further chapters focus on describing the roles of salicylic 
acid in mediating stress conditions in plants at genetic levels including the phytohormonal 
cross talk and post-transnational modifications.

This book is a collection of recent developments in the field of salicylic acid biology in 
relation to challenging environment conditions. To the academic and industry sectors, the  
book provides useful hints for the development of eco-friendly stress-mediating approaches 
as well as helps to understand the future importance and involvement of salicylic acid in 
safe food production. Therefore, we believe that this book will be a vital source of informa-
tion for scientists and academics working in the field of abiotic stress tolerance.

Dr. Anket Sharma
Dr. Renu Bhardwaj

Dr. Vinod Kumar
Prof. Bingsong Zheng

Dr. Durgesh Kumar Tripathi
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1

Introduction

In plants, the phytohormones act as endogenous signals, both spatially and temporally, 
regulating a number of physiological functions. The cross talk between various phytohor-
mones helps the plant to withstand biotic and abiotic stresses. This cross talk of plant hor-
mones has evolved into a complex network within the plants, thus helping the plants 
having a balanced reaction to developmental and environmental stimuli (Sharma 
et al. 2018, 2019a; Koo et al. 2020). Salicylic acid (SA) or ortho-hydroxybenzoic acid is a 
member of the group of plant phenolics with a seven-carbon (C) skeleton. A study of repro-
ductive structures and leaves of 34 plant species confirmed that SA is ubiquitously distrib-
uted in plant kingdom (Raskin et al. 1990). The name SA is from Salix (Latin word) as it 
was found to be an active constituent of willow tree bark (Salix sp.) which was used exten-
sively to cure fever and aches (Khan et al. 2015).

The biosynthesis of SA in plants involves the isochorismate synthase (ICS) pathway and 
phenylalanine ammonia-lyase (PAL) pathway (Janda et al. 2014). The ICS pathway was 
first discovered in Pseudomonas species and the PmsCEAB gene cluster was found to play 
the key role in the synthesis of SA. The conversion of chorismate to isochorismate (IC) is 
catalyzed by PmsC gene and then isochorismate pyruvatelyase encoded by the PmsB gene 
converts IC to SA making SA synthesis from chorismate a two-step process (Mercado-
Blanco et al. 2001; Lefevere et al. 2020). In the PAL pathway, the key enzyme is chorismate 
mutase (CM) which catalyzes the process of converting CM to prephenate. Prephenate gets 
converted to phenylalanine (Phe), which in turn is converted to trans-cinnamic acid (tCA) 
by the enzyme PAL. The next step involves the catalyzing of the conversion of tCA to ben-
zoic acid (BA) by abnormal inflorescence meristem1 (AIM1), which is a multifunctional 
protein (MFP) family member (Rylott et al. 2006; Arent et al. 2010). The last step in the PAL 
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pathway is the conversion of BA to SA which is presumed to be catalyzed by benzoic acid 
hydroxylase (Lefevere et al. 2020).

The ICS as well as PAL pathways to synthesize SA start from chorismate, and the impor-
tance of both ICS and PAL varies in different species of plants, as not all enzymes which 
catalyze various reactions in these pathways have been found in all plants. The ICS path-
way plays an important role in SA biosynthesis in Arabidopsis, and PAL has been found to 
be more important in rice, while in soybeans, both pathways contribute equally (Silverman 
et al. 1995; Duan et al. 2014).

In plants, SA plays a significant part in the growth, development, and in the protection 
from biotic and abiotic stresses (Khan et  al.  2015; Sharma et  al.  2019b,  2020; Prakash 
et al. 2021) (Figure 1.1). The role of SA in defense mechanisms of plant was established 
during the last 30 years and before that it was recognized as an unimportant secondary 
plant metabolite. Since 1979, when White (1979) reported the role of SA in tobacco plants’ 
disease resistance, numerous findings showed the role of SA as an important regulatory 
substance in plants (Chen et al. 2009). Studies have shown that in plants, SA plays a vital 
part in disease resistance, DNA damage/repair, seed germination, fruit yield, and thermo-
genesis (Dempsey and Klessig 2017). Increased levels of SA are seen in the presence of an 
infection, and if supplied exogenously, SA strengthens the plant defense system (Lefevere 
et al. 2020). In this review, we have focused on the role of SA in plants as a regulator of 
growth and development and providing resistance against various stresses.
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Stimulation of protective
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Figure 1.1  Schematization of the role of salicylic acid in plants. Source: Based on Khan et al. 2015; 
Sharma et al. 2019b, Sharma et al. 2020; Prakash et al. 2021.
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Salicylic Acid and Plant Growth

SA plays an important role in plant growth, along with other phytohormones, and its effects 
on growth, when applied exogenously, is affected by the species of the plant and its stage of 
development as well as its concentration (Vicente and Plasencia 2011). It has been reported 
that more than 1 mM of SA is considered a high concentration and has negative effects (Koo 
et al. 2020). Barley and maize seeds did not show any germination when imbibed in >3 mM 
of SA (Guan and Scandalios 1995; Xie et al. 2007). On the contrary, when maize seeds were 
imbibed in ~0.3 mM– ~0.9 mM of SA, an increased germination speed and enhanced shoot 
length were recorded (Sallam and Ibrahim 2015). SA (aqueous solution), when applied to 
soybean shoots in the form of spray, increased the shoot and root growth significantly. 
Although, photosynthetic rate was not found to have any significant effect with this treat-
ment (Gutiérrez-Coronado et al. 1998). In soybean, wheat, maize, and chamomile, SA has 
been found to stimulate growth. An increased growth of ~20 and 45% in the shoots and 
roots, respectively, was observed in soybean plants when treated with 10 nM, 100 μM, and up 
to 10 mM of SA. In wheat seedlings, development of larger ears and enhancement of cell 
division was observed in the shoot apical meristems, with a treatment of 50 μM SA. In cham-
omile plants, 50 μM SA stimulated the growth and an opposite effect was observed at a con-
centration of 250 μM SA (Gutiérrez-Coronado et  al.  1998; Shakirova et  al.  2003; Gunes 
et al. 2007; Kováčik et al. 2009). In apple, strawberry, and mango plants, fruit setting was 
enhanced with SA treatment (Shaaban et al. 2011; Kazemi 2013; Ngullie et al. 2014).

The relationship between SA, reactive oxygen species (ROS), and mitogen-activated pro-
tein kinase (MAPK) cascades has been found to be very important in regulating plant 
growth. Zhang and Klessig (1997) found that Arabidopsis MPK6 is an orthologue of tobacco 
SA-induced protein kinase (SIPK), and has been suggested to have an important role in 
growth and development (Bush and Krysan  2007; Wang et  al.  2007,  2008). It has been 
reported that in regulation of cell growth, MAPK cascades act as mediators between phyto-
hormones, SA, and ROS signaling (Foreman et al. 2003; Potocký et al. 2007).

SA also plays an important role in regulating flowering. Lee and Skoog (1965) indicated 
its flower-inducing effects for the first time. 4 μM SA was reported to promote flower bud 
formation from callus of tobacco. Then, Cleland and Ajami (1974) reported the isolation 
and identification of SA in aphid honeydew as the substantial factor for flower induction in 
short-day plant Xanthium strumarum. Later, SA’s role in Impatiens balsamina, Oncidium 
(orchid species), Pisita stratiotes L., and Arabidopsis thaliana as a stimulatory factor on 
flowering was demonstrated. In thermogenic plants, the inflorescences were found to have 
high levels of endogenous SA (Raskin et al. 1990), while in non-thermogenic plants, SA 
levels were found to increase twofold in tobacco and fivefold in Arabidopsis leaves at the 
time of initiation or transition toward flowering (Yalpani et al. 1993; Abreu and Munné-
Bosch 2009). Similarly, Arabidopsis plants, which were SA deficient (NahG, sid1/eds5, and 
sid2) exhibited a phenotype having late flowering (Martínez et al. 2004). In sunflower, it 
was discovered that the transcription factor HAHB10 (belonging to HD-Zip II family) plays 
a role in responding to biotic stress and inducing flowering and it was observed that treat-
ment with SA induces the HAHB10 expression (Dezar et al. 2011).

However, the possibility of endogenous regulation by SA alone in case of flowering was 
weakened as there was not much difference in the levels of SA in aphid honeydew from 
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flowering as well as vegetative plant parts. Thus, it was established that SA promotes and 
regulates flowering in conjugation with other plant growth regulators (Raskin 1992).

Salicylic Acid and Photosynthesis

In plants, photosynthesis is considered to be a very delicate physiological process. Heat 
stress can harm the photosynthetic apparatus, and plants have developed protective mecha-
nisms like dissipating the excess excitation energy, utilizing heat shock proteins and plant 
growth regulators. SA has been reported to play a significant part during abiotic stresses to 
plants (Wang et al. 2010; Kohli et al. 2017, 2018). SA application enhanced the photosyn-
thetic capacity in barley and spring wheat plants which were exposed to salt and drought 
stress (El-Tayeb 2005; Arfan et al. 2007). In tobacco and Arabidopsis, when SA was applied 
exogenously, it improved the heat tolerance (Dat et  al.  1998a,  1998b; Lopez-Delgado 
et al. 1998; Senaratna et al. 2003; Clarke et al. 2004). In heat-stressed young grape leaves, the 
thiobarbituric acid reactive substances were decreased upon spraying with SA (0.1 mM solu-
tion) which indicates that SA helped in tolerance of intrinsic heat stress (Wang and Li 2006).

In a study conducted by Fariduddin et al. (2003), foliar application of SA (aqueous solu-
tion) to 60  days old Brassioca juncea plants showed higher net photosynthetic rate and 
increased pod count and seed yield as compared with the control. Studies have suggested 
that SA plays a significant role in photosynthesis as it affects the structure of chloroplast 
and leaf (Uzunova and Popova 2000), contents of carotenoid and chlorophyll, and closure 
of stomata. It has also been reported to affect the carbonic anhydrase as well as RuBisCO 
(ribulose-1,5-bisphosphate carboxylase/oxygenase) enzymes (Vicente and Plasencia 2011). 
Haroun et al. (1998) reported that SA application promotes photosynthetic pigments in the 
leaves of lupine (Lupinus termis Forssk.). Further, a study conducted on Egyptian Lupine 
confirmed that foliar application of SA (25, 50, and 75 ppm) resulted in a rise in chlorophyll 
a,b and carotenoids in leaves (Gomaa et al. 2015).

The closing of stomata in plants is controlled by different phytohormones, and is consid-
ered to undertake a vital role in photosynthesis (Acharya and Assmann 2009). Studies have 
shown a significant role of SA in the functioning of guard cells, which is in turn essential 
for the closure of stomata (Melotto et al. 2006). Mateo et al. (2004) reported that stomatal 
gas exchange was reduced fourfold within two hours after treating Arabidopsis with 
0.4 mM SA.

Salicylic Acid and Respiration

SA plays a significant role in regulating the alternative oxidase pathway (AOX) via induction 
of its gene expression (Kapulnik et al. 1992; Rhoads and McIntosh 1992). AOX, for maintain-
ing the growth rate homeostasis, leads a controlled synthesis of ATP as non-proton-driven 
carrier (Moore et al. 2002). AOX is further reported to decrease the production of ROS in 
mitochondria. Thus, SA targeting AOX plays a significant role for regulation of plant growth. 
Studies have also emphasized on the role of SA in controlling the oxidative phosphorylation 
and electron transport in plant mitochondria (Xie and Chen 1999; Norman et al. 2004).
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Adding 2–20 μM SA in a cell suspension culture of tobacco resulted in increased cyanide-
resistant O2 uptake. Calorimetric measurements showed an increase of 60% in the rate of 
evolution of heat from the cells (Kapulnik et al. 1992). SA has been reported to exert a dual 
action on mitochondrial respiration, depending on concentration, in plant and animal 
mitochondria. At a lower concentration (0.1–1.0 mM), on the oxidative phosphorylation, it 
exerts mainly an uncoupling reaction, helping in increasing the substrate oxidation rate. At 
a high concentration (more than 1 mM), SA significantly suppressed State 3 respiration 
(Howell et al. 2004; Nulton-Persson et al. 2004; de Souza et al. 2011). In a study conducted 
in the mitochondria of sugarbeet (Beta vulgaris L.), taproots, and lupine (Lupinus luteus L.) 
cotyledons, to understand the effect of SA on generation of membrane potential (Δψ) at 
malate oxidation, it was observed that the Δψ dissipation was a result of the uncoupling 
and inhibitory action of SA on respiration. It was concluded that in a plant cell under 
stress, increased concentration of SA has a direct and strong effect on the basic mitochon-
drial functions, viz., ATP synthesis, oxidation of respiratory substrates, ROS production, 
and membrane potential generation and the degree of the extent of these effects not only 
depends on the amount of time the organelle was exposed to SA but also on its concentra-
tion and the mitochondrial structure and function in different plants and animals (Shugaev 
et al. 2014).

Salicylic Acid and Abiotic and Biotic Stress

Agricultural productivity all over the world is affected by abiotic and biotic stresses to the 
plants (Handa et  al.  2018,  2019; Wang et  al.  2019; Arif et  al.  2019; Roychoudhury and 
Tripathi  2019; Kapoor et  al.  2019,  2020; Deshmukh et  al.  2020; Roychoudhury and 
Tripathi 2020; Dhiman et al. 2021). Plant growth regulators are well known to be involved 
in the plant-responses to stress (Yadav et al. 2018; Singh et al. 2020). SA has been found to 
induce stress resistance in plants having biotic stress (Kumar 2014) and also to increase 
tolerance to abiotic stresses such as heat, salinity, drought, and metal (Khan and Khan 2013; 
Fayez and Bazaid 2014; Khan et al. 2014; Zhang et al. 2015; Prakash et al. 2021). An appli-
cation of SA exogenously to Oryza sativa, Zea mays, and Phaseolus vulgaris plants exposed 
to lead, cadmium, and copper metal stresses were found to have improved photosynthetic 
traits as well as enhanced growth. It also modulated the antioxidant defense system of the 
plants (Krantev et al. 2008; Zengin 2014; Arif et al. 2016). The exogenous application of SA 
increased endogenous SA content by enhancing OsWRKY45 gene expression, which in 
turn lowered the H2O2 content and thus prevented membrane damage in Oryza sativa 
plants exposed to cadmium metal stress (Chao et al. 2010). Similarly, Belkadhi et al. (2015) 
also reported that SA regulated the H2O2 accumulation and thus resulted in an enhanced 
tolerance to Cd in Linum usitatissimum. Chlorosis caused by Fe deficiency has also been 
reported to be inhibited by SA (Kong et al. 2014).

In crops like Vicia faba, Brassica juncea, Medicago sativa, and Vicia radiata, SA has been 
found to strengthen the stress mechanism against salinity stress (Azooz  2009; Nazar 
et al. 2011, 2015; Palma et al. 2013; Khan et al. 2014). In case of Triticum aestivum, exogenous 
application of SA (0.5 mM) resulted in an improvement of salt stress tolerance via increase in 
the enzyme activity of ascorbate-GSH pathway and enhancement in the level of GPX1, 
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GPX2, DHAR, GR, GST1, GST2, MDHAR, and GS antioxidant genes (Li et al. 2013). Similarly, 
in case of Ozone stress to plants, SA promotes molecular and physiological changes as it 
works as a signal molecule (Tamaoki 2008). It has also been suggested that SA plays a role in 
the signaling network which integrates phytohormones like JA, ethylene in ozone-stressed 
plants (Rao et al. 2002). The modulation of antioxidative enzymes, detoxification of superox-
ide radicals, prevention of oxidative damage, and protection of metabolic enzymes and mem-
branes have been reported following exogenous SA application in plants which are UV-B 
radiation stressed (Mohammed and Tarpley 2009). A decrease in chromosome aberration 
level caused by UV-B in the meristematic root tip cells of Crepis capillaris was reported with 
the application of SA (Rančelienė and Vyšniauskienė 2012). Li et al. (2014) reported signifi-
cant improvement in photosynthetic function, when SA was applied exogenously to plants 
exposed to UV-B.

There are studies on the significant part of SA in plants having temperature stress. 
Modulation of antioxidant enzymes in temperature-stressed (2 °C) Z. mays has been 
reported by Janda et al. (1999). Under chilling stress, SA was found to protect ultrastruc-
tures in the seedlings of Musa acuminata (Kang et al. 2007). In Hordeum vulgare geno-
types, exogenous application of SA enhanced antioxidant enzyme and ice nucleation 
activity and thus provided cold tolerance (Mutlu et al. 2013). Similarly, in lemon fruit, SA 
increased total phenolics synthesis and also improved tolerance to chilling temperature 
(Siboza et al. 2014). In case of drought stress, a number of studies have reported the stress 
mitigation role of SA application. Habibi (2012) reported an increase in the rate of net CO2 
assimilation and plant dry mass when supplemented with 500 μM SA to drought-stressed 
H. vulgare plants. A foliar application (1.0 μM of SA) was found to enhance the antioxida-
tive defense system in Z. mays plants (draught-tolerant vs. drought-sensitive cultivar) 
exposed to drought stress (Saruhan et al. 2012). It has been reported that oHCA was associ-
ated with the biosynthesis of SA and thus played an important part in providing drought 
tolerance to O. sativa plants (Pál et al. 2014).

SA has also been found as a key element in providing the plants the resistance to various 
microbial pathogens like fungi, bacteria, viruses, and oomycetes (Kunkel and Brooks 2002; 
Vlot et al. 2009). Glazebrook (2005) established a positive correlation between resistance 
responses of plants against hemibiotrophic and biotrophic pathogens and the levels of 
endogenous SA. In case of Citrus sinensis plants, a 45% reduction in disease caused by 
Xanthomonas axonopodis was reported (Wang and Liu 2012). The resistance of tomato and 
Arabidopsis plants was enhanced against Botrytis cinerea with the application of SA (Ferrari 
et  al.  2003; Li and Zou  2017). Similarly, treating tomato plants with SA has also been 
reported to provide resistance against Fusarium oxysporum and Alternaria alternata 
(Esmailzadeh et  al.  2008; Jendoubi et  al.  2015). A retarded nymph development was 
observed in case of Oebalus pugnax, which is a piercing and sucking insect, when SA was 
applied exogenously to O. sativa plants (Stella de Freitas et al. 2019).

The exogenous treatment of plants subjected to pathogen stress with SA results in enhanced 
expression of pathogenesis-related genes (PR1, PR2, and PR5) and this overexpression of 
genes increases tolerance to not only pathogens but also various other abiotic stresses (Hong 
and Hwang 2005; Sarowar et al. 2005; Ali et al. 2018). The mechanism of SA-induced toler-
ance to plants against stress can include various steps like osmolyte accumulation (glycinebe-
taine, proline, soluble sugars, and amines), thus maintaining osmotic homeostatis, enhancing 
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scavenging of ROS, production of stress proteins, regulation of transpiration, mineral uptake 
regulation, inhibition of ethylene synthesis, and increase in the production of secondary 
plant metabolites (Horváth et al. 2007; Khan et al. 2015; Emamverdian et al. 2020).

Conclusions

Plants’ growth and regulation requires a regular cross talk between various plant growth 
regulators, among which SA has been found to play a vital role. Seed germination, plant 
physiological functions, flowering, and tolerance against abiotic and biotic stresses are the 
various aspects of plant growth and regulation, where the role of SA has been found and 
elaborated in various research studies. Since its discovery as a healing substance obtained 
from the bark of willow tree, SA has been proved to be valuable not only for humans but 
also for plants. There are certain reports which suggest that application of SA over a certain 
amount brings negative effects. Thus, studies involving exogenous application of SA in an 
optimal amount for positive plant growth and negative growth of unwanted plants in crop 
production can open new aspects. Further, manipulating levels of endogenous SA in trans-
genic plants can open new areas in crop biotechnology and thus help in growing crops with 
positive growth and increased stress tolerance.
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