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Preface
The idea to write this book came about from many years of
interacting with students, both undergraduate and
postgraduate. There seemed to be a disconnect between
the theoretical treatment of mechanical vibrations and the
signal processing procedures needed to measure vibration
in the laboratory. They are often treated as separate
subjects, sometimes taught in different departments by
different lecturers. When the first author of the book came
to UNESP Ilha Solteira in Brazil at the end of 2010, he
decided to teach a course that combined the two
approaches. The notes developed for that course form the
basis of this book.
At the beginning of 2010 Bin Tang came as an academic
visitor, supported from the China Scholarship Council
(Grant No. 2009821053), to the Institute of Sound and
Vibration Research (ISVR) in Southampton, UK, where
Mike Brennan had a position as professor of engineering
dynamics. They worked together for about one year on
research related to nonlinear vibrations. Bin Tang then
returned to his position as an assistant professor at Dalian
University of Technology (DUT), and Mike departed for
Brazil. The following year Mike visited Bin Tang in DUT,
and about two years later, Bin Tang came to Brazil as an
academic visitor, supported by the Brazilian National
Council for Scientific and Technological Development
(CNPq). He stayed for two years, and during this time they
had many discussions about the topics in this book, honing
the ideas and concepts. A decision was made to write the
book, but this never really began in earnest until the
COVID 19 pandemic struck in 2020. This curtailed the
much‐enjoyed academic activity of travelling and meeting



colleagues around the world, and freed up some time to
work on the book.
The authors are extremely grateful for the many
discussions with both colleagues and students over the
years that have helped to form the perspective from which
the book is written. The authors would like to acknowledge
the financial support of the Brazilian National Council for
Scientific and Technological Development (CNPq), (Grant
No. 401360/2012-1) and the National Natural Science
Foundation of China (Grant No. 11672058). It is hoped that
students who are new to the topic, or those who are more
experienced in some areas of either vibration or signal
processing will find the book useful.
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                                    São Paulo State
University (UNESP)
                                    Ilha Solteira
                                    Brazil
                                    Bin Tang
                                    Dalian University of
Technology
                                    China
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