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Preface

We’re living in an era of fast and unpredictable change. Billions of people are
connected to each other through their mobile devices. Data is being collected and
processed each day like never before. With 5G and IoT set to generate an estimated
1 billion terabytes of data by 2025, companies continue to search for new techniques
and tools that can help them practice data collection effectively in promoting their
business. A large portion of this data will come from smart devices, smart communi-
ties. The era of big data through reliability and statistical computing with almost all
applications in our daily life has experienced a dramatic shift in the past two decades
to a truly global industry. The forces that have driven this change are still at play and
will continue. Most of the products which affect our daily lives are becoming even
more complex than ever.

The book consists of 15 chapters that covers a selection of recent developments
and applications on various related topics in reliability and statistical computing.
The emphasis of this book is on the practical applications of reliability and statis-
tical methods and techniques in various disciplines using machine learning, risk
assessment, modeling and optimization, and other computational methods.

All chapters in the book arewritten by leading researchers and practitioners in their
respective fields with a hope to connect the gap between the theoretical and practical
computations in the application areas of reliability and statistical computing.

I acknowledgeSpringer for this opportunity andprofessional support. Importantly,
I would like to thank all the chapter authors and reviewers for their availability for
this work.

Piscataway, NJ, USA
September 2022

Hoang Pham
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Alexandra-Ştefania Moloiu, Grigore Albeanu, Henrik Madsen,
and Florin Popenţiu-Vlădicescu
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Forecasting The Long-Term Growth
of S&P 500 Index

Stephen H.-T. Lihn

Keywords Forecast model · Economic cycle · Mean reversion · CAPE · Stock
market · Wavelet

JEL Classification: C38 · C53 · E32 · E37 · E47

1 Introduction

The U.S. stock market has exhibited amazing resilience in the long run. Its long-
term growth is a wonderful story of American capitalism. In the past 200 years, it
has produced a consistent real return of about 6.6% per year (Fig. 1 and Siegel [20]).
However, this wonderful return comes with many ups and downs every decade. In
some cases, the market went down more than 50%. In other cases, the market was
stagnant for more than a decade. The longest and largest drawdown in history was
from 1929 to 1948. More recently, the peak reached in 2000 had not been surpassed
until 2012.Making thingsmore intricate, these two large bear markets were preceded
by two strongest ten-year bull markets in history. How do we make sense of them?
More importantly, are they forecastable?
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2 S. H.-T. Lihn

Fig. 1 Panel (1) The nominal total return index for the U.S. stock market X (t) in the logarithmic
scale since 1802. Panel (2) shows the real total return index Xreal (t). The slope βrep = 6.55% is the
long-term real equity premium over inflation. The linear regression has an impressive R2 = 0.994
with the standard error of 0.32. Panel (3) shows the mean-reverting behavior of the residuals ε (t)
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For most typical investors, It is believed that the S&P 500 index (SPX) is the
best single gauge of the U.S. stock market.1 This index consists of 500 largest public
corporations in theU.S., weighted by theirmarket capitalizations. In a 2017 interview
with CNBC,2 Warren Buffett said, “Consistently buy an S&P 500 low-cost index
fund, I think it’s the thing that makes the most sense practically all of the time.” At
the 2021 Berkshire Hathaway annual meeting, he reiterated his conviction, “I just
think that the best thing to do is buy 90% in S&P 500 index fund.”3 What is the
rationale behind these statements? How much faith should we have in it? What kind
of returns can be expected from SPX if we “surrender our freedom”, so to speak, of
selecting from thousands of stocks, mutual funds and ETFs. This research is intended
to answer some of these questions in an econometric setting.

Recent application of trend filtering technique has revealed linear characteristics
of market trends [16]. In the short term, the market process is highly lepkurtotic
(kurtosis � 3) and influenced heavily by the underlying volatility process. In the
long term, however, the market process is not a random walk process. It is a mean-
reverting process with linear growth. More interestingly, when the time horizon is
extended to decades, themean-reverting process is slightly platykurtic (kurtosis< 3),
which is strikingly different from the lepkurtotic random walk process observed in
the short term.

The mean-reverting process can be confirmed by the model-free wavelet analysis.
The Morlet wavelet [13, 14] provides the ability to decipher the market cycles in
a financial time series. By applying the wavelet analysis to both the 10-year and
20-year returns, we are able to show that the U.S. stock market exhibited a 36-year
cycle after World War II (WWII).

Next, we review the algorithm developed in [10] that separates themean-reversion
component from the linear growth component in the market process. The mean-
reversion component is associatedwith the “cyclically adjusted P/E ratio”, akaCAPE
[1], in a profoundway. The nickname of ourmodel is called “jubilee tectonicmodel”.
The “jubilee” name comes from its optimal trend-following window of 45 years and
the periodicity of 36 years from the wavelet analysis. The “tectonic” name comes
from the hypothesis that there are fault lines in the historical CAPE, which can be cal-
ibrated and corrected in this model through statistical learning. Such “model breaks”
have been categorically discussed in Chap.19 of [7]. We apply a more restrictive
approach to capture these breaks, and attempt to give them economic interpretation
when appropriate.

The forecast of future equity return is an important topic for policy makers and
asset allocators. Research from Vanguard [6] found that “many commonly cited
signals have had very weak and erratic correlations with actual subsequent returns.”
CAPE remains one of the most powerful predictors. Even then, it has explained only

1 https://www.spglobal.com/spdji/en/indices/equity/sp-500/.
2 https://www.cnbc.com/2017/05/12/warren-buffett-says-index-funds-make-the-best-retirement-
sense-practically-all-the-time.html.
3 https://www.cnbc.com/2021/05/03/investing-lessons-from-warren-buffett-at-berkshire-
hathaway-meeting.html.

https://www.spglobal.com/spdji/en/indices/equity/sp-500/
https://www.cnbc.com/2017/05/12/warren-buffett-says-index-funds-make-the-best-retirement-sense-practically-all-the-time.html
https://www.cnbc.com/2017/05/12/warren-buffett-says-index-funds-make-the-best-retirement-sense-practically-all-the-time.html
https://www.cnbc.com/2021/05/03/investing-lessons-from-warren-buffett-at-berkshire-hathaway-meeting.html
https://www.cnbc.com/2021/05/03/investing-lessons-from-warren-buffett-at-berkshire-hathaway-meeting.html
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about 34% of the time variation.4 Recent forecasts using CAPE have been over-
pessimistic. The lofty CAPE issue continues to trouble the academic community,
as [24] wrote on Project Syndicate: “It is impossible to pin down the full cause of
the high price of the U.S. stock market.” In an attempt to address such issue, Siegel
[21] studied six variations: reported earnings, operating earnings, and NIPA profits,
in combination with price index portfolio and total return portfolio. The R2 was
increased from 34 to 40% in the best case scenario.

In the jubilee tectonicmodel, the tectonically adjusted CAPE, plusmean reversion
and inflation, form the five-factor econometric model that forecasts long-term equity
returns with R2 above 80%. This model produces different predictions for the future:
The original CAPE model predicts below average real returns for the next decade.
But the jubilee tectonic model predicts much higher returns and very positive outlook
for the next decade.

1.1 Objectives

The key points of this chapter are:

• Setup, global linear regression, and equity risk premium
• Wavelet analysis on periodicity
• Channel deviation framework and CAPE
• The 20-year forecast model.

1.2 Data Sources, Tools, and Abbreviations

This chapter uses the jubilee package [11] and theWaveletComp package [17] in R
to produce the analysis. The S&P 500 data in the jubilee package is assembled from
several original sources. The main data source is from Shiller’s online data website
[23]. The excel file “ie_data.xls” contains monthly averaged prices, dividends, and
earnings of SPX since 1871.5 It also contains consumer price index (CPI) and 10-year
Treasury yield (GS10). It derives the real prices, real dividends, and real earnings,
and calculates the 10-year CAPE.

The second data source is from Schwert [19], from which we obtain the stock
market total return data since January of 1802. The third data source is the annual
CPI data since 1800 from Minneapolis FED [12]. The fourth data source is from
FRED [9] of St Louis FED, which provides daily and/or monthly online updates for
many financial and economic time series.

Frequently used abbreviations are listed below:

4 The 40% R2 cited in [6] is a result of truncating the CAPE data prior to 1926. Such structural
break can be explained by this research.
5 The word “ie” stands for “Irrational Exuberance”. It is a March 2000 book written by Shiller:
https://en.wikipedia.org/wiki/Irrational_Exuberance_(book).

https://en.wikipedia.org/wiki/Irrational_Exuberance_(book).
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List of Abbreviations

CAPE Cyclically adjusted P/E ratio
CPI Consumer price index
ETF Exchange trade fund
GS10 Ten-year Treasury yield
SPX The SP 500 index
TRI Total return index.

2 Total Return Index and Equity Risk Premium

Wefirst define themethodology of calculating stockmarket’s logarithmic total return
index (TRI). For the long-term analysis, we work with monthly interval �t = 1/12.
Assume themarket index at time t is p (t) and pays dividendd (t) for the period from t
to t + �t . The total log-return is r (t + �t) ≡ log (p (t + �t) + d (t)) − log p (t).
And let CPI (t) be the consumer price index (CPI) at time t , we construct the nominal
and real TRI in logarithmic scale as

X (t) =
∑

t1≤τ≤t

r (τ ) , nominal TRI;

X real (t) = X (t) − log CPI (t) , real TRI.

(1)

where {τ } represents all the months available to our analysis, and t1 is the inception
date of the data, January of 1802.

The above notation of X (t) is the “continuous notation”. Empirically, t is discrete.
The “discrete notation” states that, at time ti , the logarithmic index value is Xi . We
use both notations depending on the context and the cleanliness of expression. We
follow Shiller’s convention that each month is identified by the time fraction of
ti = y (ti ) + (m (ti ) + 1/2) �t , where i = 1, 2, 3, · · · is an integer label, y (t) is the
calendar year, and m (t) is the month of the year (m (t) = 0 for January). Xi is the
average price in that month.

Panel (1) of Fig. 1 shows X (t) of the S&P 500 index since January of 1802. The
linear trend is obvious, but slightly concave. There are ups and downs. A few of them
are quite large. For instance, one in 1860s, one in 1930s, then in 1960–1970s, and
more recently in 2000s.

2.1 Equity Risk Premium

The economists often prefer to examine economic quantities in “real” terms, that is,
subtracting the effect of inflation. Panel (2) of Fig. 1 shows the more common view
in the literatures: the real logarithmic total return index X real (t) (This reproduces
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Figs. 5–4 in [20]). The most notable feature is that X real (t) can be linearly regressed
over the 200-year history, with an impressive R2 = 0.994:

X real (t) ∼ βrep t + αrep + ε (t) . (2)

The slope βrep is about 6.6% per year (between 1802 and 2021). This is called the
real equity risk premium. This constant is one of the most celebrated constants in
modern financial systems.

However, we must note that no other major equity index exhibits such beautiful
linearity over such long history. Geopolitical events, financial bubbles and crashes
often caused significant distortion or even disruption to many national indices. Some
people may even criticize that the linearity of X real (t) for SPX carries with it a strong
survivorship bias. There is no certainty that it will continue to work, although it has
been working quite well for two centuries.

We also note that, on the back of such impressive R2 is the residuals ε (t) where

ε (t) = X (t) − (
βrep t + αrep

) − log CPI (t) . (3)

The residuals ε (t) is illustrated in Panel (3) of Fig. 1. Its standard error is
σ = Stdev (ε (t)) = 0.32 between 1802 and 2021. Thus its 2σ is ±0.63, drawn
in two red dashed lines. Assume ε (t) is mean-reverting, this implies that X real (t)
will swing around its linear progress βrep t + αrep between ±2σ (in 95% confidence)
from decade to decade. This large amount of variation is disguised in the semi-log
plot of Panel (2).

This work is primarily the study of such “fine structure”. A 0.5 downwardmove in
the log scale translates to approximately 50% market drop in a large recession. This
can cause massive blowup for funds and companies that have too much leverage.
When the lack of growth is stretched over a decade, it puts a lot of pressure on
pensions, endowments, and retirement accounts that have significant cash outflow.

Note that the ±2σ swings in ε (t) typically span several decades. Each cycle is
composed of several recessions, which typically occurred every 4–10 years. Reces-
sion forecast is a “shorter-term” activity than what is studied here.

We created a more adaptive algorithm than a global linear regression in (2). It is
used to build a forecast framework for X (t) a few years into the future.

2.2 Discussion—A Naive 10-Year Forecast

In Panel (3), we observe several empirical rules from which we can make a naive
10-year forecast. First, ε (t) oscillates between −2σ and +2σ . At the dot-com peak
of 2000, it touched +2σ . And at the bottom of 2009 financial crisis, it touched −2σ .
Amid the pandemic of 2020, ε (t) was approximately at zero.

Assume ε (t) will reach +2σ in 2030, the annual rate of change of ε (t) is σ/5 in
10 years. The annual real return of X (t) will be σ/5 + βrep. If the annual inflation
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Fig. 2 Wavelet analysis on 10-year forward returns of S&P 500 index, rnomf 10 (t). The dominant
period is 36 years after WWII. The transition period 1905–1931 is marked by the red vertical dash
lines, before which the period is shorter, between 16 and 24 years. The 8-year period was very
strong for some intervals, e.g. during the Great Depression years, and between 1980 and 2020

is about 3% for the next 10 years, we arrive at the 10-year forward nominal return
rnomf 10 (t) of 16%.

This is a pretty naive estimate. Nevertheless, we will show in Panel (1) of Figs. 2
and 3 that 16% is a reasonable average estimate for a long-term bull market. One



8 S. H.-T. Lihn

Fig. 3 Wavelet analysis on 20-year forward returns of S&P 500 index, rnomf 20 (t). The dominant
period is 36 years after the transition year 1931, before which there was no clear dominant period

must remembe that X (t) has the average annual volatility of about 12–13% between
1950 and 2021. In a good year, the return can reach 30%, but in a bad year, the
volatility can be as high as 60%.
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3 Wavelet Analysis on the 36-Year Long Term Cycle

In this section, we use the Morlet wavelet [13, 14] to show the 36-year long-term
cycle in the U.S. stock market after WWII. This pattern can be observed in both the
10-year and 20-year returns with very little model assumptions. Recognition of such
long-term cycle can greatly demystify the behavior of the stock market, e.g. the bull
markets in the 1950s, and 1980–90, and the bear markets during 1970s and 2000s.

The WaveletComp package in R is used to perform the wavelet analysis. The
advantage of this package is its simple user interfaces and beautiful graphical outputs.
We briefly explain the main features of the wavelet theory, according to [18].

3.1 Introduction to the Wavelet Transform

The “mother” Morlet wavelet is defined as

ψ (t) ≡ π−1/4eiwt e−t2/2, (4)

where the “angular frequency” w is set to 6. This is the preferred value in the litera-
tures since it is approximately 2π . This wavelet can be thought of as the composite of
a Fourier component eiwt and a Gaussian component e−t2/2. The Fourier component
captures the phase of a wave.

The wavelet transform of a time series xt is defined as its convolution with a set

of “wavelet daughters” ψ

(
t − τ

s

)
. The daughters are generated from the mother

wavelet by translation in time by τ and scaling by s. Each convoluted wave is

Wave (τ, s) ≡
∑

t

xt
1√
s
ψ∗

(
t − τ

s

)
, (5)

where ∗ denotes the complex conjugate. Since xt in our case is monthly data, τ is
shifted in the unit of dt =1/12 (year).

For scaling, the choice of the set of s determines the coverage in the frequency
domain, called “periods”

{
s j

}
. It is a fractional power of 2, a “voice” in an “octave”

with 1/d j determining the number of voices per octave:

s j = smin 2
j ·d j , j = 0 . . . J, (6)

where smin is set to 1 (year), and d j is set to 1/128. The maximum of s j is set to 64
(year), which determines J = 768. These settings allow us to analyze periods from
1 year to 64 years, that covers our target period of interest: 36 years.

The power spectrum is defined as [4]
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Power (τ, s) ≡ 1

s
|Wave (τ, s)|2 . (7)

The power ridges are the s locations of local maximums in Power (τ, s) at a given
τ [3]. The WaveletComp package has a built-in utility to identify statistically sig-
nificant power ridges in the entire spectrum. For our purpose, the most interesting
power ridge is the ridge of global maximum:

{
smax (τ ) = argmaxs Power (τ, s)

}
.

The instantaneous or local wavelet phase characterizes the periodic phenomena:

Phase (τ, s) ≡ Arg (Wave (τ, s)) , (8)

We can follow the phase of global maximum power ridge smax (τ ) over τ (assume
it meets certain continuity condition) to understand the long-term periodicity of the
market:

Phasemax (τ ) ≡ Arg (Wave (τ, smax (τ ))) , (9)

By transforming the phase via the triangle wave function f (θ) = 1 − 2
π
arccos

(cos (θ)), where θ = Phasemax (τ ), the periodicity of interest can be clearly illus-
trated.

The time series can be smoothed and reconstructed by summing over a set of
waves:

(xt ) = d j · √
dt

0.776 · ψ (0)

∑

s

1√
s
Re (Wave (τ, s)) . (10)

The reconstruction factor 0.776 is adopted from [25] as an empirically suggested
constant for the full reconstruction.

Financial time series is known to have high noise-to-signal ratio. Proper shrink-
age during reconstruction (smoothing and/or denoising) can enhance the signal of
interest. The wavelet shrinkage is performed by either filtering out s smaller than a
certain threshold, or dropping weaker waves according to the strength of the power
spectrum.

3.2 Wavelet Regression of the 10-Year Returns

The 10-year forward returns rnomf 10 (t) is analyzed in this section. We emphasize that
the input data is model-free. The only parametrization is the choice of the return
window: 10 years. The wavelet analysis is shown in Fig. 2. From the “Power Ridge”
chart in Panel (3), we observe that the dominant period was 36 years after WWII.

In both Figs. 2 and 3, the charting conventions are as follows:
Panel (1) shows the time series xt (rnomf 10 (t) and rnomf 20 (t)) in the black line, and

the reconstructed (xt ) in the red line. The triangle phase f (θ) of the strongest power
ridge is drawn in the solid blue line, and the secondary in the dashed blue line. Two
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vertical red dashed lines are drawn at 1905 and 1931—two fault line locations from
the 20-year forecast model in Sect. 6.2.

Both the 10-year and 20-year returns could not exceed 15–17% for too long. This
level marks the rampant bull market. On the other hand, the 10-year returns rarely
went below 0%. The 20-year returns also appear to have a floor at 5–7%.

Panel (2) shows the power spectrum Power (τ, s). The y-axis is the period τ . The
color spectrum illustrates the power level where red is high and blue is low. The
power ridges are drawn in black lines.

Panel (3) show the power ridges with the guided red dashed lines at the ladders
of 4, 8, 16, 24, 36 years. The strongest power ridge is drawn in the solid blue line,
and the secondary in the dashed blue line. The remaining ridges in the green lines.

There was a fundamental change in the periodicity before WWI and after WWII.
We conjecture this might be related to the transition of the world power from Europe
to Washington. Prior to WWI, the period is about 16–24 years, much shorter than 36
years.

3.3 Wavelet Regression of the 20-Year Returns

As we see above, the 36-year period is the natural frequency of the long-term mean-
reversion cycles. The regression on the 20-year returns requires the least tectonic
adjustments. This gives us the strong incentive to explore the 20-year returns here,
even though most financial analysis stops at the 10-year returns.

The wavelet analysis on the 20-year forward returns, rnomf 20 (t), is shown in Figure
3. We can clearly observe the 36-year period after the transition year 1931 from the
“Power Ridge” chart in Panel (3).

In Panel (1), before 1931, the 20-year returns were pretty flat, around 7%.Most of
the smaller fluctuations were smoothed out. In Panel (3), during theGreat Depression
years, the 8-year period was very strong. But before 1905 and after 1931, there
was almost no power distributed in any of the secondary periods. This is consistent
with our observation that rnomf 20 (t) removed most of the short-term fluctuations and
preserved the most important long-term signals.

The 36-year period began to emerge after the 1929 crash. It went through two
cycles after WWII. As of this writing, the market is at the bottom of this cycle, and
is about to revert from a bear market to a bull market.

4 Channel Deviation Framework

In this section, we lay out the channel deviation framework, in which X (t) is decom-
posed into the smooth channel moving average α (T ), the channel return R (T ), and
the mean-reverting channel deviation Y (T ). We show how the optimal look-back
duration �Tb = 45 is chosen for the S&P 500 index.
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4.1 Mean-Reversion Decomposition

For a given time series that is predominantly in a linear trend, such as the total return
index X (t) in (1), we assume it is composed of a linear process and a mean-reverting
process. The goal of this framework is to decompose X (t) into these two processes
while maintaining causality.

Let �Tb be the duration of the look-back channel. At time T , we apply linear
regression

X (t) ∼ α (T ) + R (T ) (t − T ) , where t ∈ [T − �Tb, T ] , (11)

to obtain α (T ), which is called channel moving average (CMA), and R (T ), which
is called channel return. Then we derive the channel deviation at time T as
Y (T ) = X (T ) − α (T ). One can view Y (T ) and α (T ) as the decomposition of
X (T ), where α (T ) is linear and non-stochastic, and Y (T ) is mean-reverting. R (T )

is the instantaneous rate of change of α (T ).
Y (T ) is of paramount importance in this framework.Wewill show that log-CAPE

mean-reverts in similar pattern and scale to Y (T ) in Sect. 5. Since α (T ), R (T ), and
thus Y (T ) are causal, they can be used for forecasting after time T , as shown in
Sect. 6.

4.2 Closed Form Solution

There are closed form solutions for α (T ), R (T ), and Y (T ) in the discrete notation.
(11) is the ordinary least squares (OLS) optimization. Let 〈ti − T 〉 be the mean of
ti − T for ti ∈ [T − �Tb, T ], and N is the sample size of ti , we have 〈ti − T 〉 =
N+1
2 �t ≈

N�1
− 1

2�Tb, and var (ti ) = 1
12

(
N 2 + N

)
�t2 ≈

N�1

1
12�T 2

b . Then

R (T ) = cov (Xi , ti )

var (ti )
= cor (Xi , ti )

stdev (Xi )

stdev (ti )
≈

N→∞

√
12

�Tb
cor (Xi , ti ) stdev (Xi ) ,

α (T ) = 〈Xi 〉 − R (T ) 〈ti − T 〉 = 〈Xi 〉 +
√

3

(
N + 1

N

)
cor (Xi , ti ) stdev (Xi )

≈
N�1

〈Xi 〉 + 1

2
R (T ) �Tb.

(12)
The main feature in R (T ) and α (T ) is the covariance between Xi and ti in the
channel. Given the same Stdev (Xi ), R (T ) is maximized by the best Cor (Xi , ti ),
which is 1 when Xi is perfectly linear to ti .

α (T ) is the result of the optimal linear predictor. The first term in α (T ) is the
moving average 〈Xi 〉. The second term introduces the “correction” for the trend,
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which is non-zero as long as Cor (Xi , ti ) �= 0. The sign of the “correction” is given
by the sign of Cor (Xi , ti ).

Equation (12) leads to the closed form of the channel deviation,

Y (T ) = X (T ) − 〈Xi 〉 −
√

3

(
N + 1

N

)
cor (Xi , ti ) stdev (Xi ) (13)

This equation is out-of-sample, thus is causal. Also note that this framework is scale
independent. The outputs don’t vary much with regard to different data sampling
frequency.

4.3 Optimal Choice of Look-back Channel at 45 Years

The look-back channel �Tb is the only hyperparameter in this framework. It should
be chosen such that the outputs are least biased. The wavelet analysis shows that the
channel must be longer than 36 years. Based on our empirical experimentation, we
know it is between 30 and 50 years. We provide one version of optimization that we
use to determine �Tb = 45.

For a given �Tb < 60, we calculate Y (T ) for all T ’s between 01/1862 and
12/2017. We then calculate the skewness and kurtosis of Y (T ) for such �Tb. We
seek the optimal �Tb that produces the lowest kurtosis and zero skewness with a
tolerance of randomness. The kurtosis and skewness are shown in Fig. 4.

This turns out to be a relatively simple optimization problem to solve. When �Tb
is small, the kurtosis is very high and the skewness is negative. As�Tb increases, the

Fig. 4 Optimization of the look-back channel �Tb. The left panel shows the kurtosis of Y (T )

forms a plateau around 2.5 when �Tb > 35. The right panel shows the skewness of Y (T ) crosses
zero at �Tb = 45, which we choose to be the optimal look-back period
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kurtosis decreases towards 3 and the skewness increases towards zero. When �Tb >

21, the kurtosis decreases below 3, that is, the system transitions from lepkurtotic to
platykurtic. When �Tb > 35, the kurtosis forms a plateau around 2.5. The kurtosis
reaches its minimum of 2.445 at�Tb = 39, but the skewness doesn’t cross zero until
�Tb = 45 at which point the kurtosis is at 2.498, slightly higher than the absolute
minimum. We determine that �Tb = 45 is the optimal choice.

4.4 Discussion on the Outputs

Figure 5 shows the result of α (T ), Y (T ), and R (T ) at �Tb = 45. We first note that
Y (T ) oscillates between ±0.5 with a periodicity of approximately 40 years. The
periodicity is particular clear by observing the legs of Y (T ). The market swings
violently during two periods: From 1929 to 1933, the oscillation almost reaches
±1.0. From 2000 to 2009, the oscillation is as large as ±0.75. We will elaborate
more on the periodicity and amplitude of Y (T ) in Sect. 5.1.

Secondly, we observe that R (T ) has three plateaus in history. The first plateau
is at 5% before 1860. The second plateau is at 7.13% from 1880 to 1950. The third
plateau is at 10.52% from1970 to now.The values of plateau are determined by zeroth
order genlasso::trendfilter utility in R.6 At 600 degrees of freedom, we
round the output of beta to 3 digits, and select the largest clusters of beta that have
repeated more than 50 months. The average of beta from each cluster is the mean of
the plateau. The 10.52% return of the third plateau is often quoted in the literatures
andmedia as the long-term expected return of SPX. Here we provide a proper context
in terms of R (T ).

5 Relation Between Channel Deviation and CAPE

In this section, we show that Y (t), R (t), and CPI have large explanatory power on
CAPE, even though their data generating processes (See Chap.1 of [7]) don’t seem
to be related at all. The log-CAPE can be decomposed by a four-factor model with
a high R2.

5.1 Regression of Log-CAPE

Let CAPE�T (t) denote the �T -year CAPE where �T = 10, 20. In Panel (1) of
Fig. 6, it is shown that log (CAPE10 (t)) and log (CAPE20 (t)) are very similar (the

6 See also https://cran.r-project.org/web/packages/genlasso/vignettes/article.pdf.

https://cran.r-project.org/web/packages/genlasso/vignettes/article.pdf
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Fig. 5 Optimally decomposed α (T ), Y (T ), and R (T ) at �Tb = 45. The legs of Y (T ) are drawn
in red circles in Panel (2) to illustrate the periodicity. The levels of plateau in R (T ), s0 = 0.05,
s1 = 0.0713, s2 = 0.1052, are calculated from zeroth order genlasso::trendfilter utility.
The 10.52% of s2 is often quoted as the long-term expected return of SPX

blue and cyan lines). Also note that Y (t) is in the same scale of log (CAPE�T (t)).
Hence, we focus on the 20-year model.

And let CPI10 (t) and CPI20 (t) denote the 10 and 20-year log-returns of CPI. That
is,
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CPI�T (t) = log CPI (t) − log CPI (t − �T )

�T
. (14)

In Panel (2), CPI10 (t), CPI20 (t) and R (t) are shown. CPI10 (t) is more volatile than
CPI20 (t). R (t) is the long-termmoving averageof nominal equity returns. It is shifted
down by the equity risk premium βrep (6.6%), and we observe it is approximately the
long-term (40 years) inflation rate. These three factors constitute the inflation inputs
for the regression model.

We perform the following linear regression for t between 1/1881 and 12/2020:

log (CAPE20 (t)) ∼ β0 + β1Y (t) + β2R (t) + β3CPI10 (t) + β4CPI20 (t) + ε,

(15)
which results in a high R2 of 0.82. The summary of linear model from R is shown
below:

1 a ← lm(log.cape20 ∼ eqty.lm.y + eqty.lm.r + cpi.logr.10 +
2 cpi.logr.20, data=df) summary(a)

1
2 Call:
3 lm(formula = log.cape20 ∼ eqty.lm.y+eqty.lm.r+cpi.logr.10+
4 cpi.logr.20, data = df)
5
6 Residuals:
7 Min 1Q Median 3Q Max
8 -0.34672 -0.16100 -0.02993 0.18624 0.45322
9
10 Coefficients:
11 Estimate Std. Error t value Pr(>|t|)
12 (Intercept) 1.00789 0.02938 34.30 <2e-16 ***
13 eqty.lm.y 0.93990 0.01713 54.87 <2e-16 ***
14 eqty.lm.r 25.16626 0.36828 68.33 <2e-16 ***
15 cpi.logr.10 -3.84196 0.28691 -13.39 <2e-16 ***
16 cpi.logr.20 -11.73114 0.42353 -27.70 <2e-16 ***
17 ---
18 Signif. codes: 0 ’***’0.001 ’**’0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
19
20 Residual standard error: 0.1923 on 1555 degrees of freedom
21 (1067 observations deleted due to missingness)
22 Multiple R2: 0.82, Adjusted R2: 0.8196
23 F-statistic: 1771 on 4 and 1555 DF, p-value: < 2.2e-16

All four factors are highly significant. More than three quarters of information
in log-CAPE is contained in the linear combination of our mean reversion analytics
and past inflations.

The result is shown in Panel (3) of Fig. 6.
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Fig. 6 Linear regression of the 20-year log-CAPE by the four factors: Y (t), R (t), CPI10 (t) and
CPI20 (t). Panel (1): Comparison of centered log-CAPE and Y (t), showing their similarity and in
the same scale. Panel (2): R (t), CPI10 (t) and CPI20 (t) as the inflation inputs to supplement the
differences between log-CAPE and Y (t). Here R (t) is shifted down by the real equity premium.
Panel (3): The result of regression on log (CAPE20 (t)) in the four-factor model
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5.2 Discussion

We illustrated the inner workings of the four-factor regression by Panel (1) and Panel
(2) of Fig. 6. Panel (1) shows that log (CAPE20 (t)) is almost in the same scale as
Y (t), and this is confirmed by the coefficient β1 = 0.94 in Eq. (15).

There are times that log-CAPEmoves below Y (t) (e.g. in 1920s, 1950s, and early
1980s) and other times that log-CAPE moves above Y (t) (e.g. in 1900s and 2000s).
Their differences are made up by CPI10 (t) and CPI20 (t). This is confirmed by the
negative correlation (β3 = −3.8 and β4 = −11) in the summary statistics above.
This is shown graphically in Panel (2). We observe that, whenever CPI10 (t) and
CPI20 (t) are above R (t), Y (t) tends to be above log (CAPE20 (t)), and vis versa.

This anti-correlation between log-CAPE and inflation is one of the two main
reasons why CAPE is perceived at a lofty level since 2000. The high CAPE reading
is a reflection of ultra-low inflation in the past two decades.

The second reason is that log-CAPE is positively correlated to R (t)with β2 ≈ 25.
Since R (t) is currently at the third plateau, it also contributes to the high level of
CAPE. From 1950 to 1970, the market was transitioning from the second plateau
to the third, the difference in R (t) is s3 − s2 ≈ 3.4%. Multiplying it by β2 ≈ 25, its
impact on log-CAPE is 0.85, which is translated to 130% higher CAPE. In 1970s
and 1980s, this effect was muted because of the high inflation. Going into 1990s, the
high tide of inflation receded and CAPE began to move much higher.

However, in order to justify such high level of equity returns and valuation, it
seems to imply that the future inflation will have to be much higher.

5.3 Tectonic CAPE

We introduce the concept of tectonic CAPE, in which we hypothesize wars and
national policy changes in the past might have resulted in significant dislocations in
the data generating processes of CAPE and CPI (Chap.19 of [7]). We use nonlinear
optimization technique to uncover these dislocations. However, we do this only
sparingly so that we don’t overfit the data.

At a specific time tadji , the amount �i log CAPE20 should be added to
log (CAPE20 (t)). These adjustments are called the “fault lines”, and the adjusted
CAPE is called “tectonic CAPE”.

Formally, the tectonically adjusted log-CAPE is

log
(
CAPEadj

�T (t)
)

= log (CAPE�T (t)) +
∑

i=1···N

{
0, t < tadji ;
�i logCAPE�T , t ≥ tadji .

(16)
Lihn [10] showed that the 20-year model requires smaller amount of “fault line

adjustments” than the 10-year model. The interpretation is that many economic
shocks tend to average out much better in 20 years than 10 years.


