

BEGINNING
SOFTWARE ENGINEERING

INTRODUCTION ��xxvii

▸▸ PART I SOFTWARE ENGINEERING STEP-BY-STEP

CHAPTER 1	 Software Engineering from 20,000 Feet �� 3

CHAPTER 2	 Before the Beginning�� 15

CHAPTER 3	 The Team �� 29

CHAPTER 4	 Project Management�� 53

CHAPTER 5	 Requirements Gathering �� 81

CHAPTER 6	 High-Level Design �� 117

CHAPTER 7	 Low-Level Design�� 155

CHAPTER 8	 Security Design�� 185

CHAPTER 9	 User Experience Design�� 209

CHAPTER 10	 Programming�� 245

CHAPTER 11	 Algorithms �� 273

CHAPTER 12	 Programming Languages�� 307

CHAPTER 13	 Testing �� 327

CHAPTER 14	 Deployment�� 359

CHAPTER 15	 Metrics�� 371

CHAPTER 16	 Maintenance�� 401

▸▸ PART II PROCESS MODELS

CHAPTER 17	 Predictive Models�� 427

CHAPTER 18	 Iterative Models�� 445

CHAPTER 19	 RAD �� 465

Continues

▸▸ PART III ADVANCED TOPICS

CHAPTER 20	 Software Ethics�� 523

CHAPTER 21	 Future Trends�� 547

APPENDIX	 Solutions to Exercises�� 559

GLOSSARY���631

INDEX���663

BEGINNING

Software Engineering

BEGINNING

Software Engineering

Second Edition

Rod Stephens

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978-1-119-90170-9
ISBN: 978-1-119-90172-3 (ebk.)
ISBN: 978-1-119-90171-6 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affili-
ates in the United States and other countries and may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022944804

Cover Image and Design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

ABOUT THE AUTHOR

Rod Stephens started out as a mathematician, but while studying at MIT, he discovered how much
fun programming is and he’s been programming professionally ever since. He’s a long-time developer,
instructor, and author who has written more than 250 magazine articles and 35 books that have been
translated into many different languages.

During his career, Rod has worked on an eclectic assortment of applications in such fields as tel-
ephone switching, billing, repair dispatching, tax processing, wastewater treatment, concert ticket
sales, cartography, optometry, and training for professional football teams. (That’s US football, not
one of the kinds with the round ball. Or the kind with three downs. Or the kind with an oval field.
Or the indoor kind. Let’s just say NFL and leave it at that.)

Rod’s popular C# Helper website (www.csharphelper.com) receives millions of hits per year and
contains thousands of tips, tricks, and example programs for C# programmers. His VB Helper
website (www.vb-helper.com) contains similar material for Visual Basic programmers.

You can contact Rod at RodStephens@csharphelper.com.

ABOUT THE TECHNICAL EDITOR

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced
122 books and more than 600 articles to date. The topics range from networking to artificial intel-
ligence and from database management to heads-down programming. Some of his current books
include discussions of data science, machine learning, and algorithms. He also writes about computer
languages such as C++, C#, and Python. His technical editing skills have helped more than 70 authors
refine the content of their manuscripts. John has provided technical editing services to a variety of
magazines, performed various kinds of consulting, and he writes certification exams. Be sure to
read John’s blog at http://blog.johnmuellerbooks.com. You can reach John on the
Internet at John@JohnMuellerBooks.com. John also has a website at www.johnmuellerbooks
.com.

http://www.csharphelper.com
http://www.vb-helper.com
mailto:RodStephens@csharphelper.com
http://blog.johnmuellerbooks.com
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com
http://www.johnmuellerbooks.com

ACKNOWLEDGMENTS

Thanks to David Clark, Christine O’Connor, Kenyon Brown, Judy Flynn, Barath Kumar Rajasekaran,
and all of the others who worked so hard to make this book possible. David was this book’s project
manager. You’ll learn what a project manager does in Chapter 4. It’s a bit different for writing a book
but not as different as you might think. Many thanks for your hard work, David!

Thanks also to technical editor and longtime friend John Mueller for giving me the benefit of his
valuable experience. You can see what John’s up to at www.johnmuellerbooks.com.

Special thanks to Mary Brodie at https://gearmark.blogs.com for letting me use her quote at
the beginning of Chapter 18, “Iterative Models.”

http://www.johnmuellerbooks.com
https://gearmark.blogs.com

CONTENTS

INTRODUCTION� xxvii

PART I: SOFTWARE ENGINEERING STEP-BY-STEP

CHAPTER 1: SOFTWARE ENGINEERING FROM 20,000 FEET	 3

Requirements Gathering	 4
High-Level Design	 5
Low-Level Design	 6
Development	 6
Testing	 7
Deployment	 9
Maintenance	 10
Wrap-Up	 10
Everything All at Once	 11
Summary	 12
What You Learned in This Chapter	 13

CHAPTER 2: BEFORE THE BEGINNING	 15

Document Management	 16
Historical Documents	 19
Email	 19
Code	 22
Code Documentation	 22
Application Documentation	 25
Summary	 26
What You Learned in This Chapter	 27

CHAPTER 3: THE TEAM	 29

Team Features	 30
Clear Roles	 30
Effective Leadership	 30
Clear Goals	 31
Consensus	 32
Open Communication	 32
Support for Risk-Taking	 33

Contents

xii

Shared Accountability	 33
Informal Atmosphere	 34
Trust	 34

Team Roles	 34
Common Roles	 35
More-Specialized Roles	 36
Informal Roles	 36
Roles Wrap-Up	 37

Team Culture	 37
Interviews	 40

Interview Puzzles	 40
The Bottom Line	 41

Physical Environment	 41
Creativity	 41
Office Space	 43
Ergonomics	 43
Work-Life Balance	 45

Collaboration Software	 46
Searching	 46
Overload	 47

Outsourcing	 47
Summary	 48
What You Learned in This Chapter	 50

CHAPTER 4: PROJECT MANAGEMENT	 53

Executive Support	 54
Project Management	 56

PERT Charts	 57
Critical Path Methods	 62
Gantt Charts	 65
Scheduling Software	 67
Predicting Times	 68

Get Experience	 69
Break Unknown Tasks into Simpler Pieces	 70
Look for Similarities	 71
Expect the Unexpected	 71
Track Progress	 73

Risk Management	 74
Summary	 76
What You Learned in This Chapter	 79

Contents

xiii

CHAPTER 5: REQUIREMENTS GATHERING	 81

Requirements Defined	 82
Clear	 82
Unambiguous	 83
Consistent	 84
Prioritized	 84
Verifiable	 88
Words to Avoid	 89

Requirement Categories	 89
Audience-Oriented Requirements	 90

Business Requirements	 90
User Requirements	 90
Functional Requirements	 91
Nonfunctional Requirements	 92
Implementation Requirements	 92

FURPS	 92
FURPS+	 93
Common Requirements	 96

Gathering Requirements	 96
Listen to Customers (and Users)	 97
Use the Five Ws (and One H)	 98

Who	 98
What	 98
When	 98
Where	 98
Why	 99
How	 99

Study Users	 99
Refining Requirements	 100

Copy Existing Systems	 101
Clairvoyance	 102
Brainstorm	 103

Recording Requirements	 106
UML	 107
User Stories	 107
Use Cases	 108
Prototypes	 108
Requirements Specification	 109

Validation and Verification	 110
Changing Requirements	 110

Contents

xiv

Digital Transformation	 111
What to Digitize	 111
How to Digitize	 112

Summary	 113
What You Learned in This Chapter	 116

CHAPTER 6: HIGH-LEVEL DESIGN	 117

The Big Picture	 118
What to Specify	 119

Security	 119
Hardware	 120
User Interface	 121
Internal Interfaces	 122
External Interfaces	 123
Architecture	 124

Monolithic	 124
Client/Server	 125
Component-Based	 127
Service-Oriented	 128
Data-Centric	 130
Event-Driven	 130
Rule-Based	 130
Distributed	 131
Mix and Match	 132

Reports	 133
Other Outputs	 134
Database	 135

Audit Trails	 136
User Access	 136
Database Maintenance	 137
NoSQL	 137
Cloud Databases	 138

Configuration Data	 138
Data Flows and States	 139
Training	 139

UML	 141
Structure Diagrams	 142
Behavior Diagrams	 145

Activity Diagrams	 145
Use Case Diagram	 146

Contents

xv

State Machine Diagram	 147
Interaction Diagrams	 148

Sequence Diagram	 148
Communication Diagram	 150
Timing Diagram	 150
Interaction Overview Diagram	 151
UML Summary	 151

Summary	 151
What You Learned in This Chapter	 152

CHAPTER 7: LOW-LEVEL DESIGN	 155

Design Approaches	 156
Design-to-Schedule	 157
Design-to-Tools	 158
Process-Oriented Design	 158
Data-Oriented Design	 159
Object-Oriented Design	 159
Hybrid Approaches	 159
High, Low, and Iterative Design	 160

OO Design	 160
Identifying Classes	 161
Building Inheritance Hierarchies	 162

Refinement	 163
Generalization	 165
Hierarchy Warning Signs	 167

Object Composition	 167
Database Design	 168

Relational Databases	 168
First Normal Form	 170
Second Normal Form	 174
Third Normal Form	 176
Higher Levels of Normalization	 179

When to Optimize	 180
Summary	 180
What You Learned in This Chapter	 182

CHAPTER 8: SECURITY DESIGN	 185

Security Goals	 186
Security Types	 186
Cybersecurity	 188

Contents

xvi

Shift-Left Security	 189
Malware Menagerie	 189
Phishing and Spoofing	 193
Social Engineering Attacks	 195
Crapware	 197
Password Attacks	 198
User Access	 201
Countermeasures	 201
Cyber Insurance	 202
Summary	 203
What You Learned in This Chapter	 207

CHAPTER 9: USER EXPERIENCE DESIGN	 209

Design Mindset	 210
UI vs. UX	 210
UX Designers	 211
Platform	 212
User Skill Level	 214
Beginners and Beyond	 216
Configuration	 217
Hidden Configuration	 218
Models	 219
Metaphors and Idioms	 220
Case Study: Microsoft Word	 221

Design Guidelines	 225
Allow Exploration	 225
Make the Interface Immutable	 227
Support Commensurate Difficulty	 227
Avoid State	 228
Make Similar Things Similar	 228
Provide Redundant Commands	 230
Do the Right Thing	 231
Show Qualitative Data, Explain Quantitative Data	 232
Give Forms Purpose	 232
Gather All Information at Once	 233
Provide Reasonable Performance	 234
Only Allow What’s Right	 235
Flag Mistakes	 235

Form Design	 236
Use Standard Controls	 236

Decorating	 237

Contents

xvii

Displaying	 237
Arranging	 237
Commanding	 238
Selecting	 238
Entering	 239

Display Five Things	 240
Arrange Controls Nicely	 241

Summary	 241
What You Learned in This Chapter	 242

CHAPTER 10: PROGRAMMING	 245

Tools	 246
Hardware	 246
Network	 247
Development Environment	 248
Source Code Control	 249
Profilers	 249
Static Analysis Tools	 249
Testing Tools	 249
Source Code Formatters	 250
Refactoring Tools	 250
Training	 250
Collaboration Tools	 250

Algorithms	 251
Top-Down Design	 252
Programming Tips and Tricks	 255

Be Alert	 255
Write for People, Not the Computer	 255
Comment First	 256
Write Self-Documenting Code	 259
Keep It Small	 259
Stay Focused	 261
Avoid Side Effects	 261
Validate Results	 262
Practice Offensive Programming	 264
Use Exceptions	 266
Write Exception Handlers First	 266
Don’t Repeat Code	 267
Defer Optimization	 267

Summary	 269
What You Learned in This Chapter	 270

Contents

xviii

CHAPTER 11: ALGORITHMS	 273

Algorithm Study	 274
Algorithmic Approaches	 275

Decision Trees	 275
Knapsack	 275
The Eight Queens Problem	 276

Exhaustive Search	 277
Backtracking	 278
Pruning Trees	 279
Branch and Bound	 279
Heuristics	 280
Greedy	 281
Divide and Conquer	 282
Recursion	 283
Dynamic Programming	 285
Caching	 287
Randomization	 287

Monte Carlo Algorithms	 287
Las Vegas Algorithms	 288
Atlantic City Algorithms	 289

State Diagrams	 289
Design Patterns	 290

Creational Patterns	 291
Structural Patterns	 291
Behavioral Patterns	 292
Design Pattern Summary	 293

Parallel Programming	 293
Artificial Intelligence	 295

Definitions	 295
Learning Systems	 296
Natural Language Processing	 297
Artificial Neural Network	 297
Deep Learning	 297
Expert System	 298
Artificial General Intelligence	 298

Algorithm Characteristics	 301
Summary	 302
What You Learned in This Chapter	 304

Contents

xix

CHAPTER 12: PROGRAMMING LANGUAGES	 307

The Myth of Picking a Language	 308
Language Generations	 311

First Generation	 311
Second Generation	 311
Third Generation (3GL)	 312
Fourth Generation	 313
Fifth Generation	 314
Sixth Generation	 314
IDEs	 315

Language Families	 316
Assembly	 316
Imperative	 317
Procedural	 317
Declarative	 318
Object-Oriented	 318
Functional	 319
Specialized	 319
Language Family Summary	 319

The Best Language	 319
Summary	 323
What You Learned in This Chapter	 324

CHAPTER 13: TESTING	 327

Testing Goals	 329
Reasons Bugs Never Die	 330

Diminishing Returns	 330
Deadlines	 330
Consequences	 330
It’s Too Soon	 330
Usefulness	 331
Obsolescence	 331
It’s Not a Bug	 331
It Never Ends	 332
It’s Better Than Nothing	 333
Fixing Bugs Is Dangerous	 333
Which Bugs to Fix	 334

Levels of Testing	 334
Unit Testing	 335

Contents

xx

Integration Testing	 336
Regression Testing	 337
Automated Testing	 337
Component Interface Testing	 338
System Testing	 339
Acceptance Testing	 340
Other Testing Categories	 341

Testing Techniques	 342
Exhaustive Testing	 342
Black-Box Testing	 343
White-Box Testing	 344
Gray-Box Testing	 344

Testing Habits	 345
Test and Debug When Alert	 345
Test Your Own Code	 346
Have Someone Else Test Your Code	 346
Fix Your Own Bugs	 348
Think Before You Change	 349
Don’t Believe in Magic	 349
See What Changed	 350
Fix Bugs, Not Symptoms	 350
Test Your Tests	 350

How to Fix a Bug	 351
Estimating Number of Bugs	 351

Tracking Bugs Found	 352
Seeding	 353
The Lincoln Index	 353

Summary	 355
What You Learned in This Chapter	 357

CHAPTER 14: DEPLOYMENT	 359

Scope	 360
The Plan	 361
Cutover	 362

Staged Deployment	 362
Gradual Cutover	 363
Incremental Deployment	 365
Parallel Testing	 365

Deployment Tasks	 365

Contents

xxi

Deployment Mistakes	 366
Summary	 368
What You Learned in This Chapter	 370

CHAPTER 15: METRICS	 371

Wrap Party	 372
Defect Analysis	 372

Species of Bugs	 373
Discoverer	 373
Severity	 374
Creation Time	 374
Age at Fix	 374
Task Type	 375
Defect Database	 376

Ishikawa Diagrams	 376
Software Metrics	 379

Qualities of Good Attributes and Metrics	 381
Using Metrics	 382

Process Metrics	 384
Project Metrics	 384

Things to Measure	 385
Size Normalization	 387
Function Point Normalization	 389

Count Function Point Metrics	 390
Multiply by Complexity Factors	 391
Calculate Complexity Adjustment Value	 392
Calculate Adjusted FP	 394

Summary	 395
What You Learned in This Chapter	 398

CHAPTER 16: MAINTENANCE	 401

Maintenance Costs	 402
Task Categories	 404

Perfective Tasks	 404
Feature Improvements	 406
New Features	 406
The Second System Effect	 407

Adaptive Tasks	 408
Corrective Tasks	 410

Contents

xxii

Preventive Tasks	 414
Clarification	 414
Code Reuse	 415
Improved Flexibility	 416
Bug Swarms	 417
Bad Programming Practices	 417

Individual Bugs	 418
Not Invented Here	 418

Task Execution	 419
Summary	 420
What You Learned in This Chapter	 423

PART II: PROCESS MODELS

CHAPTER 17: PREDICTIVE MODELS	 427

Model Approaches	 428
Prerequisites	 428
Predictive and Adaptive	 429

Success and Failure Indicators for Predictive Models	 430
Advantages and Disadvantages of Predictive Models	 431

Waterfall	 432
Waterfall with Feedback	 433
Sashimi	 434
Incremental Waterfall	 436
V-model	 438
Software Development Life Cycle	 439
Summary	 442
What You Learned in This Chapter	 444

CHAPTER 18: ITERATIVE MODELS	 445

Iterative vs. Predictive	 446
Iterative vs. Incremental	 448
Prototypes	 449

Types of Prototypes	 451
Pros and Cons	 451

Spiral	 453
Clarifications	 455
Pros and Cons	 456

Unified Process	 457

Contents

xxiii

Pros and Cons	 459
Rational Unified Process	 459

Cleanroom	 460
Cowboy Coding	 461
Summary	 461
What You Learned in This Chapter	 463

CHAPTER 19: RAD	 465

RAD Principles	 467
James Martin RAD	 470
Agile	 471

Self-Organizing Teams	 473
Agile Techniques	 474

Communication	 474
Incremental Development	 475
Focus on Quality	 478

XP	 478
XP Roles	 479
XP Values	 480
XP Practices	 481

Have a Customer On-Site	 481
Play the Planning Game	 482
Use Stand-Up Meetings	 483
Make Frequent Small Releases	 483
Use Intuitive Metaphors	 484
Keep Designs Simple	 484
Defer Optimization	 484
Refactor When Necessary	 485
Give Everyone Ownership of the Code	 485
Use Coding Standards	 486
Promote Generalization	 486
Use Pair Programming	 486
Test Constantly	 486
Integrate Continuously	 486
Work Sustainably	 487
Use Test-Driven and Test-First Development	 487

Scrum	 488
Scrum Roles	 489
Scrum Sprints	 490
Planning Poker	 491

Contents

xxiv

Burndown	 492
Velocity	 494

Lean	 494
Lean Principles	 494

Crystal	 495
Crystal Clear	 498
Crystal Yellow	 498
Crystal Orange	 499

Feature-Driven Development	 500
FDD Roles	 501
FDD Phases	 502

Develop a Model	 502
Build a Feature List	 502
Plan by Feature	 503
Design by Feature	 503
Build by Feature	 504

FDD Iteration Milestones	 504
Disciplined Agile Delivery	 506

DAD Principles	 506
DAD Roles	 506
DAD Phases	 507

Dynamic Systems Development Method	 508
DSDM Phases	 508
DSDM Principles	 510
DSDM Roles	 511

Kanban	 512
Kanban Principles	 513
Kanban Practices	 513
Kanban Board	 514

Summary	 515
What You Learned in This Chapter	 517

PART III: ADVANCED TOPICS

CHAPTER 20: SOFTWARE ETHICS	 523

Ethical Behavior	 524
IEEE-CS/ACM	 524
ACS	 525
CPSR	 526
Business Ethics	 527
NADA	 528

Contents

xxv

Hacker Ethics	 529
Hacker Terms	 530

Responsibility	 531
Gray Areas	 533
Software Engineering Dilemmas	 535

Misusing Data and the Temptation of Free Data	 535
Disruptive Technology	 536
Algorithmic Bias	 537
False Confidence	 537
Lack of Oversight	 538
Getting Paid	 539

Thought Experiments	 539
The Tunnel Problem	 540
The Trolley Problem	 542

Summary	 544
What You Learned in This Chapter	 545

CHAPTER 21: FUTURE TRENDS	 547

Security	 548
UX/UI	 549
Code Packaging	 550
Cloud Technology	 551
Software Development	 552
Algorithms	 553
Tech Toys	 554
Summary	 555
What You Learned in This Chapter	 556

APPENDIX: SOLUTIONS TO EXERCISES� 559

GLOSSARY� 631

INDEX� 663

INTRODUCTION

Programming today is a race between software engineers striving to build bigger and better idiot-
proof programs, and the universe trying to build bigger and better idiots. So far the universe
is winning.

—Rick Cook

With modern development tools, it’s easy to sit down at the keyboard and bang out a working
program with no previous design or planning, and that’s fine under some circumstances. My VB
Helper (www.vb-helper.com) and C# Helper (www.csharphelper.com) websites contain
thousands of example programs written in Visual Basic and C#, respectively, and built using exactly
that approach. I had an idea (or someone asked me a question) and I pounded out a quick example.

Those types of programs are fine if you’re the only one using them and then for only a short while.
They’re also okay if, as on my websites, they’re intended only to demonstrate a programming
technique and they never leave the confines of the programming laboratory.

If this kind of slap-dash program escapes into the wild, however, the result can be disastrous. At best,
nonprogrammers who use these programs quickly become confused. At worst, they can wreak havoc
on their computers and even on those of their friends and coworkers.

Even experienced developers sometimes run afoul of these half-baked programs. I know someone
(I won’t give names, but I also won’t say it wasn’t me) who wrote a simple recursive script to delete
the files in a directory hierarchy. Unfortunately, the script recursively climbed its way to the top of the
directory tree and then started cheerfully deleting every file in the system. The script ran for only
about five seconds before it was stopped, but it had already trashed enough files that the operating
system had to be reinstalled from scratch. (Actually, some developers believe reinstalling the operating
system every year or so is character-building. If you agree, then perhaps this approach isn’t so bad.)

I know another experienced developer who, while experimenting with Windows system settings,
managed to set every system color to black. The result was a black cursor over a black desktop,
displaying black windows with black borders, menus, and text. This person (who wasn’t me this time)
eventually managed to fix things by rebooting and using another computer that wasn’t color-impaired
to walk through the process of fixing the settings using only keyboard accelerators. It was a triumph
of cleverness, but I suspect she would have rather skipped the whole episode and had her two wasted
days back.

For programs that are more than a few dozen lines long, or that will be given to unsuspecting end
users, this kind of free-spirited development approach simply won’t do. To produce applications that
are effective, safe, and reliable, you can’t just sit down and start typing. You need a plan. You
need . . . <drumroll> . . . software engineering.

http://www.vb-helper.com
http://www.csharphelper.com

Introduction

xxviii

This book describes software engineering. It explains what software engineering is and how it helps
produce applications that are effective, flexible, and robust enough for use in real-world situations.

This book won’t make you an expert systems analyst, software architect, project manager, or pro-
grammer, but it explains what those people do and why they are necessary for producing high-quality
software. It also gives you the tools that you need to start. You won’t rush out and lead a
1,000-person effort to build a new air traffic control system for the FAA, but it can help you work
effectively in small-scale and large-scale development projects. (It can also help you understand what
a prospective employer means when he says, “Yeah, we mostly use scrum with a few extra XP
techniques thrown in.”)

WHAT IS SOFTWARE ENGINEERING?

A formal definition of software engineering might sound something like, “An organized, analytical
approach to the design, development, use, and maintenance of software.”

More intuitively, software engineering is everything that you need to do to produce successful
software. It includes the steps that take a raw, possibly nebulous idea and turn it into a powerful and
intuitive application that can be enhanced to meet changing customer needs for years to come.

You might be tempted to restrict software engineering to mean only the beginning of the process,
when you perform the application’s design. After all, an aerospace engineer designs planes but doesn’t
build them or tack on a second passenger cabin if the first one becomes full. (Although I guess a space
shuttle riding piggyback on a 747 sort of achieved that goal.)

One of the big differences between software engineering and aerospace engineering (or most other
kinds of engineering) is that software isn’t physical. It exists only in the virtual world of the computer.
That means it’s easy to make changes to any part of a program even after it is completely written. In
contrast, if you wait until a bridge is finished and then tell your structural engineer that you’ve
decided to add two extra lanes and lift it three feet higher above the water, there’s a good chance he’ll
cackle wildly and offer you all sorts of creative but impractical suggestions for exactly what you can
do with your two extra lanes.

The flexibility granted to software by its virtual nature is both a blessing and a curse. It’s a blessing
because it lets you refine the program during development to better meet user needs, add new features to
take advantage of opportunities discovered during implementation, and make modifications to meet
evolving business requirements. Some applications even allow users to write scripts to perform new
tasks never envisioned by the developers. That type of flexibility isn’t possible in other types of
engineering.

Unfortunately, the flexibility that allows you to make changes throughout a software project’s life
cycle also lets you mess things up at any point during development. Adding a new feature can
break existing code or turn a simple, elegant design into a confusing mess. Constantly adding,
removing, and modifying features during development can make it impossible for different parts of
the system to work together. In some cases, it can even make it impossible to tell when the project
is finished.

