EEEEEEEEEEEEE

SEGINNING

Software
-ngineering

Rod Stephens WILEY

BEGINNING
SOFTWARE ENGINEERING

INTRODUCTION

» PART I
CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16

» PART Il

CHAPTER 17
CHAPTER 18
CHAPTER 19

SOFTWARE ENGINEERING STEP-BY-STEP

Software Engineering from 20,000 Feet
Before the Beginning
TheTeamo e
Project Management
Requirements Gathering
High-Level Design i ..
Low-Level Design..........cooiiiinan...
Security Design. o
User Experience Design.
Programming i i
Algorithms
Programming Languages.
Testing . oo oo
Deploymentt
Metrics

Maintenance.

PROCESS MODELS

Predictive Models.

lterative Models

Continues

» PART Il ADVANCED TOPICS

CHAPTER 20 Software Ethics. i 523
CHAPTER 21 Future Trends it e 547
APPENDIX Solutions to Exercises.ot 559
GLOSS ARY . .t e e et e e e e 631

BEGINNING
Software Engineering

BEGINNING
Software Engineering

Second Edition

Rod Stephens

WILEY

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

ISBN: 978-1-119-90170-9
ISBN: 978-1-119-90172-3 (ebk.)
ISBN: 978-1-119-90171-6 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www . copyright . com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affili-
ates in the United States and other countries and may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be
created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not
be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware
that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022944804

Cover Image and Design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

ABOUT THE AUTHOR

Rod Stephens started out as a mathematician, but while studying at MIT, he discovered how much
fun programming is and he’s been programming professionally ever since. He’s a long-time developer,
instructor, and author who has written more than 250 magazine articles and 35 books that have been
translated into many different languages.

During his career, Rod has worked on an eclectic assortment of applications in such fields as tel-
ephone switching, billing, repair dispatching, tax processing, wastewater treatment, concert ticket
sales, cartography, optometry, and training for professional football teams. (That’s US football, not
one of the kinds with the round ball. Or the kind with three downs. Or the kind with an oval field.
Or the indoor kind. Let’s just say NFL and leave it at that.)

Rod’s popular C# Helper website (www . csharphelper . com) receives millions of hits per year and
contains thousands of tips, tricks, and example programs for C# programmers. His VB Helper
website (www.vb-helper.com) contains similar material for Visual Basic programmers.

You can contact Rod at RodStephens@csharphelper.com.

ABOUT THE TECHNICAL EDITOR

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced
122 books and more than 600 articles to date. The topics range from networking to artificial intel-
ligence and from database management to heads-down programming. Some of his current books
include discussions of data science, machine learning, and algorithms. He also writes about computer
languages such as C++, C#, and Python. His technical editing skills have helped more than 70 authors
refine the content of their manuscripts. John has provided technical editing services to a variety of
magazines, performed various kinds of consulting, and he writes certification exams. Be sure to

read John’s blog at http://blog.johnmuellerbooks.com. You can reach John on the

Internet at John@JohnMuellerBooks . com. John also has a website at www. johnmuellerbooks
.com.

http://www.csharphelper.com
http://www.vb-helper.com
mailto:RodStephens@csharphelper.com
http://blog.johnmuellerbooks.com
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com
http://www.johnmuellerbooks.com

ACKNOWLEDGMENTS

Thanks to David Clark, Christine O’Connor, Kenyon Brown, Judy Flynn, Barath Kumar Rajasekaran,
and all of the others who worked so hard to make this book possible. David was this book’s project
manager. You’ll learn what a project manager does in Chapter 4. It’s a bit different for writing a book
but not as different as you might think. Many thanks for your hard work, David!

Thanks also to technical editor and longtime friend John Mueller for giving me the benefit of his
valuable experience. You can see what John’s up to at www. johnmuellerbooks.com.

Special thanks to Mary Brodie at https://gearmark.blogs . com for letting me use her quote at
the beginning of Chapter 18, “Iterative Models.”

http://www.johnmuellerbooks.com
https://gearmark.blogs.com

CONTENTS

INTRODUCTION XXVii

CHAPTER 1: SOFTWARE ENGINEERING FROM 20,000 FEET 3
Requirements Gathering 4
High-Level Design 5
Low-Level Design 6
Development 6
Testing 7
Deployment 9
Maintenance 10
Wrap-Up 10
Everything All at Once 11
Summary 12
What You Learned in This Chapter 13

CHAPTER 2: BEFORE THE BEGINNING 15
Document Management 16
Historical Documents 19
Email 19
Code 22
Code Documentation 22
Application Documentation 25
Summary 26
What You Learned in This Chapter 27

CHAPTER 3: THE TEAM 29
Team Features 30

Clear Roles 30
Effective Leadership 30
Clear Goals 31
Consensus 32
Open Communication 32

Support for Risk-Taking 33

CONTENTS

xii

Shared Accountability 33
Informal Atmosphere 34
Trust 34
Team Roles 34
Common Roles 35
More-Specialized Roles 36
Informal Roles 36
Roles Wrap-Up 37
Team Culture 37
Interviews 40
Interview Puzzles 40
The Bottom Line 41
Physical Environment 41
Creativity 41
Office Space 43
Ergonomics 43
Work-Life Balance 45
Collaboration Software 46
Searching 46
Overload 47
Outsourcing 47
Summary 48
What You Learned in This Chapter 50
CHAPTER 4: PROJECT MANAGEMENT 53
Executive Support 54
Project Management 56
PERT Charts 57
Critical Path Methods 62
Gantt Charts 65
Scheduling Software 67
Predicting Times 68
Get Experience 69
Break Unknown Tasks into Simpler Pieces 70
Look for Similarities 71
Expect the Unexpected 71
Track Progress 73

Risk Management 74
Summary 76
What You Learned in This Chapter 79

CONTENTS

CHAPTER 5: REQUIREMENTS GATHERING 81
Requirements Defined 82
Clear 82
Unambiguous 83
Consistent 84
Prioritized 84
Verifiable 88
Words to Avoid 89
Requirement Categories 89
Audience-Oriented Requirements 90
Business Requirements 90

User Requirements 90
Functional Requirements 91
Nonfunctional Requirements 92
Implementation Requirements 92
FURPS 92
FURPS+ 93
Common Requirements 96
Gathering Requirements 96
Listen to Customers (and Users) 97
Use the Five Ws (and One H) 98
Who 98
What 98
When 98
Where 98
Why 99
How 99
Study Users 99
Refining Requirements 100
Copy Existing Systems 101
Clairvoyance 102
Brainstorm 103
Recording Requirements 106
UML 107
User Stories 107
Use Cases 108
Prototypes 108
Requirements Specification 109
Validation and Verification 110

Changing Requirements 110

xiii

CONTENTS

Xiv

Digital Transformation 111
What to Digitize 111
How to Digitize 112

Summary 113

What You Learned in This Chapter 116

CHAPTER 6: HIGH-LEVEL DESIGN 117

The Big Picture 118

What to Specify 119
Security 119
Hardware 120
User Interface 121
Internal Interfaces 122
External Interfaces 123
Architecture 124

Monolithic 124
Client/Server 125
Component-Based 127
Service-Oriented 128
Data-Centric 130
Event-Driven 130
Rule-Based 130
Distributed 131
Mix and Match 132
Reports 133
Other Outputs 134
Database 135
Audit Trails 136
User Access 136
Database Maintenance 137
NoSQL 137
Cloud Databases 138
Configuration Data 138
Data Flows and States 139
Training 139

UML 141
Structure Diagrams 142
Behavior Diagrams 145

Activity Diagrams 145
Use Case Diagram 146

CONTENTS

State Machine Diagram 147
Interaction Diagrams 148
Sequence Diagram 148
Communication Diagram 150
Timing Diagram 150
Interaction Overview Diagram 151

UML Summary 151
Summary 151
What You Learned in This Chapter 152
CHAPTER 7: LOW-LEVEL DESIGN 155
Design Approaches 156
Design-to-Schedule 157
Design-to-Tools 158
Process-Oriented Design 158
Data-Oriented Design 159
Object-Oriented Design 159
Hybrid Approaches 159
High, Low, and lterative Design 160
OO Design 160
|dentifying Classes 161
Building Inheritance Hierarchies 162
Refinement 163
Generalization 165
Hierarchy Warning Signs 167
Object Composition 167
Database Design 168
Relational Databases 168
First Normal Form 170
Second Normal Form 174
Third Normal Form 176
Higher Levels of Normalization 179
When to Optimize 180
Summary 180
What You Learned in This Chapter 182
CHAPTER 8: SECURITY DESIGN 185
Security Goals 186
Security Types 186
Cybersecurity 188

XV

CONTENTS

Shift-Left Security 189
Malware Menagerie 189
Phishing and Spoofing 193
Social Engineering Attacks 195
Crapware 197
Password Attacks 198
User Access 201
Countermeasures 201
Cyber Insurance 202
Summary 203
What You Learned in This Chapter 207
CHAPTER 9: USER EXPERIENCE DESIGN 209
Design Mindset 210
Ul vs. UX 210
UX Designers 211
Platform 212
User Skill Level 214
Beginners and Beyond 216
Configuration 217
Hidden Configuration 218
Models 219
Metaphors and Idioms 220
Case Study: Microsoft Word 221
Design Guidelines 225
Allow Exploration 225
Make the Interface Immutable 227
Support Commensurate Difficulty 227
Avoid State 228
Make Similar Things Similar 228
Provide Redundant Commands 230
Do the Right Thing 231
Show Qualitative Data, Explain Quantitative Data 232
Give Forms Purpose 232
Gather All Information at Once 233
Provide Reasonable Performance 234
Only Allow What's Right 235
Flag Mistakes 235
Form Design 236
Use Standard Controls 236

Decorating 237

xvi

CONTENTS

Displaying 237
Arranging 237
Commanding 238
Selecting 238
Entering 239
Display Five Things 240
Arrange Controls Nicely 241
Summary 241
What You Learned in This Chapter 242
CHAPTER 10: PROGRAMMING 245
Tools 246
Hardware 246
Network 247
Development Environment 248
Source Code Control 249
Profilers 249
Static Analysis Tools 249
Testing Tools 249
Source Code Formatters 250
Refactoring Tools 250
Training 250
Collaboration Tools 250
Algorithms 251
Top-Down Design 252
Programming Tips and Tricks 255
Be Alert 255
Write for People, Not the Computer 255
Comment First 256
Write Self-Documenting Code 259
Keep It Small 259
Stay Focused 261
Avoid Side Effects 261
Validate Results 262
Practice Offensive Programming 264
Use Exceptions 266
Write Exception Handlers First 266
Don't Repeat Code 267
Defer Optimization 267
Summary 269

What You Learned in This Chapter 270

Xvii

CONTENTS

CHAPTER 11: ALGORITHMS 273
Algorithm Study 274
Algorithmic Approaches 275

Decision Trees 275
Knapsack 275
The Eight Queens Problem 276

Exhaustive Search 277

Backtracking 278

Pruning Trees 279

Branch and Bound 279

Heuristics 280

Greedy 281

Divide and Conquer 282

Recursion 283

Dynamic Programming 285

Caching 287

Randomization 287
Monte Carlo Algorithms 287
Las Vegas Algorithms 288
Atlantic City Algorithms 289

State Diagrams 289

Design Patterns 290
Creational Patterns 291
Structural Patterns 291
Behavioral Patterns 292
Design Pattern Summary 293

Parallel Programming 293

Artificial Intelligence 295
Definitions 295
Learning Systems 296
Natural Language Processing 297
Avrtificial Neural Network 297
Deep Learning 297
Expert System 298
Artificial General Intelligence 298

Algorithm Characteristics 301
Summary 302
What You Learned in This Chapter 304

xviii

CONTENTS

CHAPTER 12: PROGRAMMING LANGUAGES 307
The Myth of Picking a Language 308
Language Generations 311

First Generation 311
Second Generation 311
Third Generation (3GL) 312
Fourth Generation 313
Fifth Generation 314
Sixth Generation 314
IDEs 315
Language Families 316
Assembly 316
Imperative 317
Procedural 317
Declarative 318
Object-Oriented 318
Functional 319
Specialized 319
Language Family Summary 319
The Best Language 319
Summary 323
What You Learned in This Chapter 324

CHAPTER 13: TESTING 327
Testing Goals 329
Reasons Bugs Never Die 330

Diminishing Returns 330
Deadlines 330
Consequences 330
It's Too Soon 330
Usefulness 331
Obsolescence 331
It's Not a Bug 331
It Never Ends 332
It's Better Than Nothing 333
Fixing Bugs Is Dangerous 333
Which Bugs to Fix 334
Levels of Testing 334
Unit Testing 335

XiX

CONTENTS

Integration Testing 336
Regression Testing 337
Automated Testing 337
Component Interface Testing 338
System Testing 339
Acceptance Testing 340
Other Testing Categories 341
Testing Techniques 342
Exhaustive Testing 342
Black-Box Testing 343
White-Box Testing 344
Gray-Box Testing 344
Testing Habits 345
Test and Debug When Alert 345
Test Your Own Code 346
Have Someone Else Test Your Code 346
Fix Your Own Bugs 348
Think Before You Change 349
Don't Believe in Magic 349
See What Changed 350
Fix Bugs, Not Symptoms 350
Test Your Tests 350
How to Fix a Bug 351
Estimating Number of Bugs 351
Tracking Bugs Found 352
Seeding 353
The Lincoln Index 353
Summary 355
What You Learned in This Chapter 357
CHAPTER 14: DEPLOYMENT 359
Scope 360
The Plan 361
Cutover 362
Staged Deployment 362
Gradual Cutover 363
Incremental Deployment 365
Parallel Testing 365
Deployment Tasks 365

XX

CONTENTS

Deployment Mistakes 366
Summary 368
What You Learned in This Chapter 370
CHAPTER 15: METRICS 371
Wrap Party 372
Defect Analysis 372
Species of Bugs 373
Discoverer 373
Severity 374
Creation Time 374

Age at Fix 374

Task Type 375
Defect Database 376
Ishikawa Diagrams 376
Software Metrics 379
Qualities of Good Attributes and Metrics 381
Using Metrics 382
Process Metrics 384
Project Metrics 384
Things to Measure 385
Size Normalization 387
Function Point Normalization 389
Count Function Point Metrics 390
Multiply by Complexity Factors 391
Calculate Complexity Adjustment Value 392
Calculate Adjusted FP 394
Summary 395
What You Learned in This Chapter 398
CHAPTER 16: MAINTENANCE 401
Maintenance Costs 402
Task Categories 404
Perfective Tasks 404
Feature Improvements 406

New Features 406

The Second System Effect 407
Adaptive Tasks 408

Corrective Tasks

410

XXi

CONTENTS

Preventive Tasks 414
Clarification 414
Code Reuse 415
Improved Flexibility 416
Bug Swarms 417
Bad Programming Practices 417

Individual Bugs 418

Not Invented Here 418

Task Execution 419
Summary 420
What You Learned in This Chapter 423
CHAPTER 17: PREDICTIVE MODELS 427
Model Approaches 428
Prerequisites 428
Predictive and Adaptive 429
Success and Failure Indicators for Predictive Models 430
Advantages and Disadvantages of Predictive Models 431
Waterfall 432
Waterfall with Feedback 433
Sashimi 434
Incremental Waterfall 436
V-model 438
Software Development Life Cycle 439
Summary 442
What You Learned in This Chapter 444
CHAPTER 18: ITERATIVE MODELS 445
[terative vs. Predictive 446
lterative vs. Incremental 448
Prototypes 449
Types of Prototypes 451
Pros and Cons 451
Spiral 453
Clarifications 455
Pros and Cons 456
Unified Process 457

XXii

CONTENTS

Pros and Cons 459
Rational Unified Process 459
Cleanroom 460
Cowboy Coding 461
Summary 461
What You Learned in This Chapter 463
CHAPTER 19: RAD 465
RAD Principles 467
James Martin RAD 470
Agile 471
Self-Organizing Teams 473
Agile Techniques 474
Communication 474
Incremental Development 475
Focus on Quality 478

XP 478
XP Roles 479
XP Values 480
XP Practices 481
Have a Customer On-Site 481

Play the Planning Game 482

Use Stand-Up Meetings 483
Make Frequent Small Releases 483

Use Intuitive Metaphors 484
Keep Designs Simple 484
Defer Optimization 484
Refactor When Necessary 485

Give Everyone Ownership of the Code 485

Use Coding Standards 486
Promote Generalization 486

Use Pair Programming 486

Test Constantly 486
Integrate Continuously 486
Work Sustainably 487

Use Test-Driven and Test-First Development 487
Scrum 488
Scrum Roles 489
Scrum Sprints 490
Planning Poker 491

Xxiii

CONTENTS

Burndown 492
Velocity 494
Lean 494
Lean Principles 494
Crystal 495
Crystal Clear 498
Crystal Yellow 498
Crystal Orange 499
Feature-Driven Development 500
FDD Roles 501
FDD Phases 502
Develop a Model 502
Build a Feature List 502

Plan by Feature 503
Design by Feature 503
Build by Feature 504

FDD lteration Milestones 504
Disciplined Agile Delivery 506
DAD Principles 506
DAD Roles 506
DAD Phases 507
Dynamic Systems Development Method 508
DSDM Phases 508
DSDM Principles 510
DSDM Roles 511
Kanban 512
Kanban Principles 513
Kanban Practices 513
Kanban Board 514
Summary 515
What You Learned in This Chapter 517
CHAPTER 20: SOFTWARE ETHICS 523
Ethical Behavior 524
IEEE-CS/ACM 524
ACS 525
CPSR 526
Business Ethics 527
NADA 528

XXiv

CONTENTS

Hacker Ethics 529
Hacker Terms 530
Responsibility 531
Gray Areas 533
Software Engineering Dilemmas 535
Misusing Data and the Temptation of Free Data 535
Disruptive Technology 536
Algorithmic Bias 537

False Confidence 537

Lack of Oversight 538
Getting Paid 539
Thought Experiments 539
The Tunnel Problem 540

The Trolley Problem 542
Summary 544
What You Learned in This Chapter 545
CHAPTER 21: FUTURE TRENDS 547
Security 548
UX/UI 549
Code Packaging 550
Cloud Technology 551
Software Development 552
Algorithms 553
Tech Toys 554
Summary 555
What You Learned in This Chapter 556
APPENDIX: SOLUTIONS TO EXERCISES 559
GLOSSARY 631

INDEX 663

XXV

INTRODUCTION

Programming today is a race between software engineers striving to build bigger and better idiot-
proof programs, and the universe trying to build bigger and better idiots. So far the universe
is winning.

—Rick Cook

With modern development tools, it’s easy to sit down at the keyboard and bang out a working
program with no previous design or planning, and that’s fine under some circumstances. My VB
Helper (www.vb-helper.com) and C# Helper (www.csharphelper.com) websites contain
thousands of example programs written in Visual Basic and C#, respectively, and built using exactly
that approach. I had an idea (or someone asked me a question) and I pounded out a quick example.

Those types of programs are fine if you’re the only one using them and then for only a short while.
They’re also okay if, as on my websites, they’re intended only to demonstrate a programming
technique and they never leave the confines of the programming laboratory.

If this kind of slap-dash program escapes into the wild, however, the result can be disastrous. At best,
nonprogrammers who use these programs quickly become confused. At worst, they can wreak havoc
on their computers and even on those of their friends and coworkers.

Even experienced developers sometimes run afoul of these half-baked programs. I know someone

(I won’t give names, but I also won’t say it wasn’t me) who wrote a simple recursive script to delete
the files in a directory hierarchy. Unfortunately, the script recursively climbed its way to the top of the
directory tree and then started cheerfully deleting every file in the system. The script ran for only
about five seconds before it was stopped, but it had already trashed enough files that the operating
system had to be reinstalled from scratch. (Actually, some developers believe reinstalling the operating
system every year or so is character-building. If you agree, then perhaps this approach isn’t so bad.)

I know another experienced developer who, while experimenting with Windows system settings,
managed to set every system color to black. The result was a black cursor over a black desktop,
displaying black windows with black borders, menus, and text. This person (who wasn’t me this time)
eventually managed to fix things by rebooting and using another computer that wasn’t color-impaired
to walk through the process of fixing the settings using only keyboard accelerators. It was a triumph
of cleverness, but I suspect she would have rather skipped the whole episode and had her two wasted

days back.

For programs that are more than a few dozen lines long, or that will be given to unsuspecting end
users, this kind of free-spirited development approach simply won’t do. To produce applications that
are effective, safe, and reliable, you can’t just sit down and start typing. You need a plan. You

need . .. <drumroll> . . . software engineering.

http://www.vb-helper.com
http://www.csharphelper.com

INTRODUCTION

This book describes software engineering. It explains what software engineering is and how it helps
produce applications that are effective, flexible, and robust enough for use in real-world situations.

This book won’t make you an expert systems analyst, software architect, project manager, or pro-
grammer, but it explains what those people do and why they are necessary for producing high-quality
software. It also gives you the tools that you need to start. You won’t rush out and lead a
1,000-person effort to build a new air traffic control system for the FAA, but it can help you work
effectively in small-scale and large-scale development projects. (It can also help you understand what
a prospective employer means when he says, “Yeah, we mostly use scrum with a few extra XP
techniques thrown in.”)

WHAT IS SOFTWARE ENGINEERING?

A formal definition of software engineering might sound something like, “An organized, analytical
approach to the design, development, use, and maintenance of software.”

More intuitively, software engineering is everything that you need to do to produce successful
software. It includes the steps that take a raw, possibly nebulous idea and turn it into a powerful and
intuitive application that can be enhanced to meet changing customer needs for years to come.

You might be tempted to restrict software engineering to mean only the beginning of the process,
when you perform the application’s design. After all, an aerospace engineer designs planes but doesn’t
build them or tack on a second passenger cabin if the first one becomes full. (Although I guess a space
shuttle riding piggyback on a 747 sort of achieved that goal.)

One of the big differences between software engineering and aerospace engineering (or most other
kinds of engineering) is that software isn’t physical. It exists only in the virtual world of the computer.
That means it’s easy to make changes to any part of a program even after it is completely written. In
contrast, if you wait until a bridge is finished and then tell your structural engineer that you’ve
decided to add two extra lanes and lift it three feet higher above the water, there’s a good chance he’ll
cackle wildly and offer you all sorts of creative but impractical suggestions for exactly what you can
do with your two extra lanes.

The flexibility granted to software by its virtual nature is both a blessing and a curse. It’s a blessing
because it lets you refine the program during development to better meet user needs, add new features to
take advantage of opportunities discovered during implementation, and make modifications to meet
evolving business requirements. Some applications even allow users to write scripts to perform new
tasks never envisioned by the developers. That type of flexibility isn’t possible in other types of
engineering.

Unfortunately, the flexibility that allows you to make changes throughout a software project’s life
cycle also lets you mess things up at any point during development. Adding a new feature can
break existing code or turn a simple, elegant design into a confusing mess. Constantly adding,
removing, and modifying features during development can make it impossible for different parts of

the system to work together. In some cases, it can even make it impossible to tell when the project
is finished.

XXViii

