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PREFACE

The seeds for this book were sown in sessions on Big Data Analytics,
held at the 2016 Fall Meeting of the American Geophysical Union.
At the time, Earth Science data were projected to rise by orders of
magnitude in the coming decade, and the community was investigating a
variety of emergent technologies and techniques to make the best use of
the coming deluge. The chapters of this book are a representative, but by
no means exhaustive, collection of those and similar investigations.

Big Earth Data Analytics can be defined as the application of
increasingly sophisticated tools for data analysis and display to the rapidly
increasing volume of Earth science data to obtain information, and
eventually insight. This combines two concepts: Big Earth Data and Data
Analytics. Big Earth Data refers both to the volume of data sets and the
combination of data from a variety of sources, in a variety of formats,
and from a variety of disciplines. To get a sense of the volume, NOAA
generates tens of terabytes of data a day from satellites, radars, ships,
weather models, and other sources. The National Aeronautics and Space
Administration (NASA) Earth Observation archives were growing by
more than 30 TB per day in 2020 with daily growth expected to increase
to 130 TB/day by 2024 as new satellites launch; and the European Centre
for Medium-Range Weather Forecasts (ECMWF) meteorological data
archive adds 200 terabytes of new data daily. However, the data are "big"
not only in their volume but in their varied formats, disciplines, structures,
and formats. As such, they are disruptors to traditional analysis methods,
and to the kinds of questions that can be asked by researchers. Data
analytics are increasingly driven by the availability of high-volume and
heterogeneous data sets. Data size and complexity affect all aspects of data
management and usage, requiring new approaches and tools. Despite the
challenges to acquire, use, and analyze Big Earth Data, they are already
being utilized extensively in climate, oceanographic, and biology related
works. Easily available data lead to the ability to analyze longer scale
records and patterns over large spatial domains.

Analyses of these data borrow both from traditional scientific analyses
and from tools developed for business applications. These types of data

xv
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analytics are developed by university and other research teams. They are
increasingly becoming an area of interest to cloud providers and analytics
companies. From Google’s Earth Engine for analyzing Earth science
data at scale, to the National Oceanic and Atmospheric Administration’s
(NOAA’s) Big Data Program, big data about the Earth and their analysis
are increasingly common. Amazon’s Elastic MapReduce and SageMaker
are common building blocks for cloud-based analysis and Galileo (a.k.a.
Service Workbench) is Amazon’s latest Web application for interactive
analysis. Microsoft Azure ML Studio is another popular cloud-based
data analysis solution. Big Earth Data analyses increasingly rely on
cloud-based storage and processing capabilities as the volume of the data
and the computing resources needed go beyond local resources.

This book is organized into three parts. It starts with the big picture,
covering Big Data Analytics Architecture. This part begins with a chapter
addressing the geospatial aspect of Big Earth Data from a variety of per-
spectives. This is followed by a chapter discussing the data management
challenges posed by data at scale, particularly in the context of making
them available for analysis. This is complemented by a chapter discussing
the challenges of scaling up the analysis itself. The following chapters cover
large-scale projects such as NASA’s Earth Exchange, which enables large
scale data analysis in a supercomputing environment and the NOAA Big
Data Project, which makes data sets available to end users via several cloud
providers. Part I also includes chapters on architectures and fully realized
systems, such as Data Cube, NEXUS and the Apache Science Data Ana-
lytics Platform, and a NoSQL based platform for exploring and analyzing
in situ data.

The second part of the book, Analysis Methods for Big Earth Data,
addresses some specific techniques to derive information and/or insight
from big data, emphasizing the unique aspects of Earth Observations.
Part II begins with two chapters on the use of geospatial statistics for
analysis, followed by a chapter melding machine learning with geophysical
constraints, and finally a chapter benchmarking different analytical
methods for spatiotemporal analysis.

The third part of the book, Big Earth Data Applications, describes a
few specific applications of big analysis techniques and platforms: weather
and climate model analysis, atmospheric river patterns, Antarctic land
surface temperatures extremes, satellite in situ match-ups of oceanographic
data, and vessel tracking. This is clearly a small sample of existing applica-
tions; rather, the sample shows how some very different analysis methods
can find diverse applications in the Earth sciences.

While the application of big Earth data analytics covers a range of
applications, a number of common themes in the chapters of this book
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include (1) the role of the cloud, especially with ever increasing data sizes;
(2) limitations and costs of using the cloud, including the unpredictability
of costs and the high cost of data egress from the cloud; (3) techniques to
maintain data integrity during file transfers; (4) efficiencies via partial reads
from Web object storage; (5) the use of data/object stores; (6) serverless and
other intrinsic functions to standardize computations; (7) data pipelines
and the use of Docker to encapsulate analyses; (8) development of appli-
cation programming interfaces; (9) GeoTIFFs, Zarr, and Parquet as cloud
file formats for satellite and in situ data; and (10) hard limits on data sizes
in the cloud, which is especially important with satellite data.

While the chapters in this book provide a broad introduction to the
subject, there are still many opportunities to address challenges posed by
big data analytics, such as incorporating new data sources, implementing
data standards, optimizing the use of cloud and supercomputing resources,
and incorporating artificial intelligence and machine learning. As these
challenges are surmounted, the computing power and agile infrastructure
of the cloud will support the emergence of important new analyses and
insights, in turn supporting new policy making. At the same time, new
policy challenges are raised by the solutions. The use of cloud resources for
data storage and analysis has the potential to both enable and complicate
the accessibility of both the data and the analysis methods by the wider
community, particularly as the community broadens to new application,
education, and citizen scientist users. On the other hand, data egress fees
or cloud provider-specific tools may impair long-term data preservation,
scientific reproducibility, and basic equity.

Thomas Huang
NASA Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California, USA
Tiffany C. Vance

U.S. Integrated Ocean Observing System
National Oceanic and Atmospheric Administration

Silver Spring, Maryland, USA
Christopher Lynnes

NASA Goddard Space Flight Center
Greenbelt, Maryland, USA (retd.)
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1

AN INTRODUCTION TO BIG DATA ANALYTICS

Erik Hoel

Environmental Systems Research Institute, Redlands, California, USA

Big data analytics, in the context of geospatial data, employs
distributed computing using advanced tools that support
spatiotemporal analysis, spatial statistics, and machine
learning algorithms and techniques (e.g., classification,
clustering, and prediction) on very large spatiotemporal
data sets to visualize, detect patterns, gain deeper under-
standings, and answer questions. In this chapter, the key
definitions, domain specific problems, analysis concepts,
current technologies and tools, and remaining challenges
are discussed.

1.1. Overview

Big data analytics involves analyzing large volumes of varied data, or
big data, to identify and understand patterns, correlations, and trends that
ordinarily are invisible due to the volumes involved in order to allow users
and organizations to make better decisions. These analytics, in the context
of geospatial data, commonly involve spatial processing, sophisticated
spatial statistical algorithms, and predictive modeling. Big data can be
obtained from a wide variety of sources; this includes sensors (both

Big Data Analytics in Earth, Atmospheric, and Ocean Sciences, Special Publications 77,
First Edition. Edited by Thomas Huang, Tiffany C. Vance, and Christopher Lynnes.
© 2023 American Geophysical Union. Published 2023 by John Wiley & Sons, Inc.
DOI: 10.1002/9781119467557.ch1
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2 Big Data Analytics in Earth, Atmospheric, and Ocean Sciences

stationary and moving), aerial and satellite imagery, Lidar, videos, social
networks, website activity, sales transaction records, and real-time stock
trading transactions. Users and data scientists apply big data analytics to
evaluate these large collections of data, data with volumes that traditional
analytical systems are unable to accommodate (Miller & Goodchild,
2014). This is particularly the case with unstructured or semistructured
data (such data types are problematic with data warehouses, which often
utilize relational database concepts and work with structured data).

To address these complex demands, many new analytic environments
and technologies have been developed. This includes distributed processing
infrastructures such as Spark and MapReduce (Dean & Ghemawat, 2008;
Garillot &Maas, 2018; Zaharia et al., 2010), distributed file stores, and
NoSQL databases (Alexander & Copeland, 1988; DeWitt & Gray, 1992;
Klein et al., 2016; NoSQL, 2022; Pavlo & Aslett, 2016). Many of these tech-
nologies are available in open-source software frameworks, such as Apache
Hadoop (2018), that can be used to process huge data sets with clustered
systems.

When working with big data, there is a collection of objectives that
users have when performing big data analytics (Marz & Warren, 2013;
Mysore et al., 2013). These include
1. Discovering value from big data. Visualize and analyze big data in a way

that reveals patterns, trends, and relationships that traditional reports
and spatial processing do not. Data may exist in many disparate places,
streams, or web logs.

2. Exploiting streaming data. Filter and convert raw streaming data from
various sources, which contain geographical elements, into geographic
layers of information. The geographical layers can then be used to cre-
ate new, more useful maps and dashboards for decision making.

3. Exposing geographic patterns. Use maps and visualization to see the
story behind the data. Examples of identifying geographical patterns
include retailers seeing where promotions are most effective and where
the competition is, banks understanding why loans are defaulting and
where there is an underserved market, climate-change scientists deter-
mining the impact of shifting weather patterns.

4. Finding spatial relationships. Seeing spatially enabled big data on a map
allows you to answer questions and ask new ones. Where are disease
outbreaks occurring? Where is insurance risk greatest given recently
updated population shifts? Geographic thinking adds a new dimension
to big data problem solving and helps you make sense of big data.
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5. Performing predictive modeling. Predictive modeling using spatially
enabled big data helps you develop strategies from if/then scenarios.
Governments can use it to design disaster response plans. Natural
resource managers can analyze recovery of wetlands after a disaster.
Health service organizations can identify the spread of disease and
ways to contain it.

1.1.1. What Differentiates Spatial Big Data

Spatial big data are differentiated from standard (nonspatial) big data
by the presence of spatial relationships, geostatistical correlations, and
spatial semantic relations (this can be generalized to include the temporal
domain (Hägerstrand, 1970). Spatial big data offer additional challenges
beyond what is encountered with more traditional big data. Spatial big
data are characterized by the following (Barwick, 2011):
• Volume. The quantity of data. Spatial big data also include global satel-

lite imagery, mobile sensors (smart phones, GPS trackers, and fitness
monitors), and georeferenced digital camera imagery.

• Variety. Spatial data are composed of 2D or 3D vector or raster
imagery. Spatial data are more complex and subsume the types found
with conventional big data.

• Velocity. Velocity of spatial data is significant given the rapid collection
of satellite imagery in addition to mobile sensors.

• Veracity. For vector data (points, lines, and polygons), the quality and
accuracy vary. Quality is dependent upon whether the points have
been GPS determined, determined by unknown origins, or determined
manually. Resolution and projection issues can also alter veracity. For
geocoded points, there may be errors in the address tables and in the
point location algorithms associated with addresses. For raster data,
veracity depends on accuracy of recording instruments in satellites or
aerial devices, and on timeliness.

• Value. For real-time spatial big data, decisions can be enhanced
through visualization of dynamic change in such spatial phenomena
as climate, traffic, social-media-based attitudes, and massive inventory
locations. Exploration of data trends can include spatial proximities
and relationships.
Once spatial big data are structured, formal spatial analytics can be

applied, such as spatial autocorrelation, overlays, buffering, spatial cluster
techniques, and location quotients.
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1.2. Definitions

The terms in Table 1.1 are referenced in this chapter and are included
here to facilitate a more rapid understanding of the general concepts dis-
cussed later.

Table 1.1 Terms for understanding general concepts

Amazon Web
Services

(AWS) A secure, on-demand, cloud computing platform
where users pay for the computing resources that they
consume (e.g., computing, database storage, and
content delivery).

Artificial
Intelligence

Computer systems or machines that are able to perform
tasks and mimic behavior that normally requires
human intelligence, such as visual perception, speech
recognition, and language translation.

Big Data as a
Service (BDaaS)

Cloud-based hardware and software services that
support the analysis of large or complex data sets.
These services can provide data, analytical tools,
event-driven processing, visualization, and
management capabilities.

Cloudera A software company that provides a software platform
that can run either in the cloud or on-prem,
supporting data warehousing, machine learning, and
big data analytics. The company is a major
contributor to the Apache Hadoop platform (e.g.,
Avro, HBase, Hive, and Spark).

Computer Vision A scientific discipline that focuses on the acquisition,
extraction, analysis, and understanding of information
obtained from either single or multidimensional image
or video data.

Data as a Service
(DaaS)

Built on top of software as a service, data are provided to
users on demand for further processing and analysis.
The centralization of the data enables higher quality
curated data at a lower cost to the client.

Databricks A company that provides a cloud-based platform for
working with Apache Spark. Databricks traces it
origins to the AMPLab project at Berkeley that
evolved into an open-source distributed computing
framework for working with big data.

Data Mining The process of discovering and extracting hidden
patterns and knowledge found in big data using
methods and techniques that are commonly associated
with database management, machine learning, and
statistics.
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Table 1.1 (continued)

Deep Learning A subfield of machine learning that focuses on
algorithms and computational architectures that
mimic the structure of the brain (commonly termed
artificial neural networks). Recent advances in large-
scale distributed processing have enabled the
development and use of very large neural networks.

Elastic Compute
Cloud (EC2)

Infrastructure within Amazon Web Services (AWS) that
provides scalable computing capacity; clients can
develop, deploy, and run their own applications. EC2
is elastic and allows clients to scale their compute and
storage up or down as necessary.

Hadoop An open-source framework and set of software modules
that enable users to solve problems on big data sets
using a distributed cluster of hardware resources. This
includes distributed data storage and computation
using the MapReduce programming model. Apache
Hadoop was originally inspired by Google’s work in
the distributed processing domain.

HDFS A distributed and scalable file system and data store that
is part of Apache Hadoop. HDFS stores big data files
across a cluster of machines and supports high
reliability by replication of the data across different
nodes in the cluster.

Hive Data warehouse software module in Apache Hadoop
that facilitates querying and analyzing big data stored
in HDFS in a distributed and replicated manner using
a SQL-like language termed HiveQL.

IBM Cloud A set of cloud computing capabilities and services that
provides capabilities including Software as a Service
(SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS).

Infrastructure as a
Service (IaaS)

A type of cloud computing infrastructure that virtualizes
computing resources, storage, data partitioning,
scaling, and networking. Unlike Software as a Service
(SaaS) or Platform as a Service (PaaS), IaaS clients
must maintain the applications, data, middleware, and
operating system.

Machine Learning A subset of artificial intelligence where software systems
can automatically learn and improve without any
explicit programming, relying upon statistical
methods for pattern detection and inference. Machine
learning software creates statistical models using
sample data in order to make decisions or predictions.

(Continued)



�

� �

�

6 Big Data Analytics in Earth, Atmospheric, and Ocean Sciences

Table 1.1 (continued)

MapReduce A programming model, originally developed at Google,
that is often used when processing big data sets in a
distributed manner. MapReduce programs contain a
map procedure where data can be sorted and filtered,
and a reduce procedure where summary operations
are performed. MapReduce systems, such as Apache
Hadoop, are responsible for managing
communications and data transfer among the
collection of distributed processing nodes.

Microsoft Azure A cloud computing service from Microsoft for creating,
deploying, and managing applications using data
centers managed by Microsoft. Hundreds of services
are available that provide functionality related to
compute, data management, messaging, mobile, and
storage capabilities.

Natural Language
Processing
(NLP)

A portion of artificial intelligence that focuses on
enabling computers to understand and communicate
(including language translation) through human
language, both written and spoken.

NoSQL data
stores

A non-SQL or non-relational database that provides a
mechanism for storage and retrieval of data. NoSQL
data stores often trade consistency in favor of
availability, speed, horizontal scalability, and
partitionability.

Oracle Cloud A collection of cloud computing services from Oracle
providing servers, storage, network, applications, and
services using Oracle-managed data centers. The
Oracle Clouse provides Software as a Service (SaaS),
Platform as a Service (PaaS), Infrastructure as a
Service (IaaS), and Data as a Service (DaaS).

Pig An Apache platform to develop programs for analyzing
big data sets that run on Apache Hadoop using a
high-level language (Pig Latin). Pig can be used to
develop functionality that runs as MapReduce, Tez, or
Spark jobs.

Platform as a
Service (PaaS)

A category of cloud computing service that allows clients
to develop, deploy, run, and manage applications
without needing to build or maintain the cloud
computing infrastructure. Unlike software as a service
(SaaS), the client is responsible for maintaining the
applications and data.
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Table 1.1 (continued)

Predictive
Analytics

A group of statistical and machine learning algorithms
that are used to predict the likelihood of future or
other unknown events based upon existing
historical data.

Real-time Data
Processing

A collection of software and hardware that processes
data on-the-fly and is subjected to a constraint where
responses must be provided within a short interval of
time (e.g., fractions of a second), independent of
system or event data load.

Redshift A column-oriented, fully managed, data warehouse for
big data. Redshift is similar to other columnar
NoSQL databases as it is intended to scale out with
distributed clusters of low-cost hardware.

Simple Storage
Service (S3)

An object storage service offered by Amazon Web
Services (AWS); it is intended to store any type of data
(objects) that can later be used for big data analytic
processing.

Software as a
Service (SaaS)

A category of cloud computing service that allows clients
to license applications, web-based software,
on-demand software, and hosted software. The
delivery model is on a subscription basis and is
centrally hosted. Differing from Platform as a Service
(PaaS), SaaS does not require client to manage either
data or software.

Spark An analytic engine and cluster-computing framework,
part of Apache Hadoop, that supports applications
that run across a distributed cluster. Originally
developed at Berkeley in 2009, it provides a framework
for programming clusters of machines with data
parallelism.

Speech
Recognition

A collection of methodologies and techniques that
enables the recognition and transformation of spoken
language into text for further computational
processing.

Storm A real-time, distributed, high-volume, stream-processing
framework for big data. It is part of the Apache
Hadoop open-source framework.

Stream Processing A computer programming paradigm (similar to dataflow
programming), where given a sequence of data (a
stream), a series of pipelined operations (or kernel
functions) is applied to each element in the stream.
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1.3. Example Problems

There are a significant number of industries and application domains
that benefit from spatiotemporal big data analytics (Hey et al., 2009). As the
sheer number of processes and technologies that are collecting spatial data
grows, the ubiquity and significance of the data have grown. Spatial big
data analytics has wide applicability and value across numerous domains;
a few of these are the following.

1.3.1. Agriculture

Farmers can use spatial big data analytics to detect and analyze
patterns in weather data, correlated with historical crop yields, surface
topography, and soil characteristics. This helps farmers determine the best
seed varieties to use and times and places to plant crops in order to maxi-
mize yields. In addition, the distribution of fertilizer can be optimized based
upon historical information. Tractor and heavy equipment movement can
also be tracked via GPS and incorporated into the logistic optimization
analytics, and the areas of usable and productive land within a field can be
identified.

1.3.2. Commerce

Commercial retailers have always used local shopping patterns and
demographics to drive marketing strategies and site selection. However,
retailers can now use spatial big data analytics to analyze the locations
and characteristics of customers along with social media conversations
and browsing behavior in order to better understand customers’ needs.
Retailers can essentially build a richer and more useful understanding and
relationship with their customer base. New store site selection on regional
or national levels can be optimized based on the locations of customers,
competitors, and other nontraditional data.

1.3.3. Connected Cars

Developers of systems for connected cars and autonomous vehi-
cles can use spatial big data analytics to provide accurate situational
awareness to drivers and vehicles about their surrounding environment.
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Systems can apply analytics capabilities such as road snapping, predictive
road snapping, change detection of objects sensed by the vehicle but not on
the map, and accident prediction. This is all under the topic of improved
vehicle reliability and passenger safety.

1.3.4. Environment

Environmental organizations can employ spatial big data analytics
to answer a number of important questions including whether there are
spatiotemporal correlations between species observations (this can be by
geographic area or species).

1.3.5. Financial Services

In the financial services/insurance industry, spatial big data analytics
are used to overlay weather data with claim data to assist companies in
detecting possible instances of fraud. In other contexts, non-traditional
data sources like satellite imagery are combined with traditional topo-
graphic data sources to identify the potential risk of offering flood
insurance. Insurers can also assess spatial relationships between their
insurance portfolios and past hazards to balance risk exposure. Finally,
banks can use spatiotemporal historical transaction data to help them
detect evidence of fraud.

1.3.6. Government Agencies

National and regional government agencies would like to use spatial
big data analytics to process and overlay nationwide data sets contain-
ing land use; parcels; planning information; geological informational, and
environmental data in order to create information products that can be used
by analysts, scientists, and policy makers to make better policy decisions.

1.3.7. Health Care

Public health agencies can use spatial big data analytics to see how
far patients are from health facilities helping them evaluate access to care.
Hospital networks can determine the density of hospitals in certain areas
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to identify gaps and opportunities. They can also measure the prevalence
of certain habits and illnesses in the community using demographic data.
Public health agencies can also utilize tracking data to perform contact
tracing of infected individuals to identify who they have been in contact
with in the past. The contact information can then be utilized to help reduce
the infections in the general population. Proximity tracing is a variant in
which contact is specified using a proximity-based filtering criteria (e.g.,
spatial and temporal range) in order to identify potential contact events.

1.3.8. Marketing

Geospatial big data analytics is frequently used in corporate market-
ing for prospect and customer segmentation. Data from body sensors (e.g.,
smart phones, smart watches, fitness monitors) can be used to segment the
customer base according to physical activity or behavioral patterns and
deliver advertising in a targeted manner. Companies also want to be able
to identify where their customers are in relation to their competitors’ cus-
tomers. This allows them to identify areas where they are losing the market
and help determine where they need to focus their marketing efforts.

1.3.9. Mining

Mining companies can apply spatial big data analytics to perform com-
plex vehicle tracking analysis to find ways to better manage equipment
moves. For example, they can analyze patterns of equipment locations when
braking, and they can review shock absorption, RPM changes, and other
telematics information. They can also analyze geochemical sample results.

1.3.10. Petroleum

Spatial big data analytics enable petroleum companies to identify suit-
able areas for exploration based upon historical production, geographic
composition, and competitor activity (including leasing activity). Spatial
big data analytics can also be used to review historical production data to
assess reservoir production over time. Vehicle tracking data can be analyzed
to determine time spent on both commercial and noncommercial roads.
They can also review vessel tracks over offshore blocks using AIS vessel
tracking information.


