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Preface

This book provides a unified treatment of continuum physics. A systematic
approach to the balance equations is elaborated for wide-ranging classes of mate-
rials (classical continua, micropolar continua, mixtures, electromagnetic continua)
following the lines of the encyclopedic handbook articles of Truesdell and Toupin
and Truesdell and Noll. As is standard in Rational Thermodynamics, the consti-
tutive properties are required to obey the objectivity principle and to be consistent
with the second law of thermodynamics. Yet here a rather new approach is
developed by viewing the entropy production as a constitutive function per se as is
the case for the entropy and the entropy flux. While this does not determine any
new result for simple materials, it proves conceptually and practically advantageous
in the modelling of nonlinear phenomena such as those occurring in hysteretic
continua, e.g. in plasticity, electromagnetism, and physics of shape-memory alloys.

The book is suitable for engineers, physicists, and mathematicians. The
derivations of the sought results are fairly detailed through careful proofs. Though a
wide variety of subjects are examined, the contents are developed so as to get a
self-contained and consistent presentation of the various topics.

Part I reviews the kinematics of continuous bodies and illustrates the general
setting of balance laws. Kinematics treats essential preliminaries to continuum
physics such as reference and current configurations, transport relations, singular
surfaces, objectivity and objective time derivatives. Next, a chapter on balance
equations develops the balance laws of mass, linear momentum, angular momen-
tum, energy, entropy (Clausius—Duhem inequality), and the balance laws in
electromagnetism.

Part II is first devoted to the general requirements of constitutive models. In this
sense, emphasis is given to the application of objectivity (the constitutive equations
must be invariant under changes of frame) and consistency with the second law
of thermodynamics (the constitutive equations must satisfy the restrictions placed
by the entropy inequality). Next, a review is given of common models of simple
materials, namely materials described by the first-order gradient of deformation,
velocity, and temperature. In this framework, detailed descriptions are given of
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(thermoelastic, elastic, and dissipative) solids and (elastic, thermoelastic, viscous,
and Newtonian) fluids.

A wide variety of constitutive models is investigated in Part III, consisting of
separate chapters of non-simple materials. The chapter on rate-type models reviews
the rheological devices and next shows some schemes within the Eulerian and the
Lagrangian description with emphasis on objective time derivatives. The chapter on
materials with memory begins with a general setting of (fading) memory and next
shows memory models for thermoelasticity, heat conduction, viscoelasticity, elec-
tromagnetic solids, and modelling via fractional derivatives. Next, the modelling of
aging (thermoelastic, rate-type, and thermo-viscoelastic) materials is exhibited in
connection with the thermodynamic restrictions. Also, materials of higher-order
grade are examined in the form of fluids and solids or models via interstitial
working. The possible consistency of the hyperstress with the standard balance laws
is shown to hold. A chapter is devoted to mixtures; in addition to balance equations
for the constituents and the whole mixture, some aspects are investigated such as
models of diffusion, Soret and Dufour effects, immiscible mixtures, and models for
the whole mixture. Micropolar media are modelled as materials with a physical
internal structure. Each point of the continuum is viewed as a body with a finite
number of degrees of freedom. The balance laws are then reviewed so that the
internal degrees of freedom show up in the balance of orientational momentum and
energy. The model, so established, is then applied to the description of liquid
crystals and nanofluids. Porous materials are described as mixtures (solid-liquid or
solid—void). Also, porous materials with double porosity are established. The
chapter on electromagnetism of continuous media describes a number of phe-
nomena. The interaction of the electromagnetic field with deformation is examined
within electroelasticity, magnetoelasticity, and plasma theory. This in turn allows us
to examine magneto-, electro-, and mechanical-optical effects. Memory effects are
modelled in quite a general setting. Nonlinearity effects are especially framed
within micromagnetics and ferrofluids. Chiral media and ferrites are investigated in
detail also to show the optical activity effects on linearly- and circularly-polarized
waves. Finally, superconductivity and superfluidity are developed in a common
framework of mixtures of reacting fluids; normal electrons and superconducting
electrons in one case, normal fluid and superfluid in the other.

Hysteretic effects and phase transitions are developed in Part IV. Hysteresis is
modelled in ferroelectrics, ferromagnetism, and plasticity. In all of these contexts,
the modelling is performed by having recourse to the entropy production as a
(non-negative) constitutive function. It follows that the free energy governs the
anhysteretic behaviour, while the entropy production characterizes the hysteretic
properties. Phase transitions are described in different ways. A transition may occur
at a sharp interface between two different phases; the jump conditions across the
interface govern the transition. Instead, a transition may occur in a diffuse region
where the pertinent fields change continuously; in essence, the transition region is
occupied by a mixture of constituents in different phases. A scheme for phase
transitions and hysteretic effects in shape-memory alloys is also outlined.
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Notation

We use mostly direct notation and the recourse to index notation is made only
when, otherwise, the pertinent expression might become ambiguous. The symbols
of continuum mechanics are used, e.g. in the books of Truesdell and Noll [426] and
Gurtin et al [214]. Yet difficulties arise whenever any well-established symbol has a
different meaning in continuum mechanics and in electromagnetism. For instance,
E is the Green-St Venant strain tensor in continuum mechanics and the electric field
in electromagnetism while D is the stretching tensor in continuum mechanics and
the electric displacement in electromagnetism. To avoid the introduction of newly
defined symbols, we have maintained the standard symbols whenever the pertinent
chapter makes it clear which meaning has to be assigned to the symbol. There are
places where the stretching tensor and the electric displacement occur simultane-
ously; in such cases, we use D for the stretching tensor. Another difficulty arises in
connection with the vector w; it is currently used for angular velocity and vorticity.
To avoid any ambiguities, we have maintained the symbol @ for the angular
velocity and have used @ for the vorticity (i.e. V xv).

Throughout, lightface letters indicate scalars, while boldface letters indicate
vectors or tensors. In the mechanical context, lowercase (uppercase) boldface letters
indicate vectors (tensors). In electromagnetism, following the literature, the (electric
and magnetic) vectors are denoted by uppercase letters, e.g. E, B. Moreover, Lin is
the set of all tensors, Lin™ is the set of all tensors with positive determinant, Sym is
the set of all symmetric tensors, Skw is the set of all skew tensors, Psym is the set of
all symmetric, positive definite tensors, Orth is the set of all orthogonal tensors,
Orth* is the set of all rotations (all orthogonal tensors with positive determinant).
For the benefit of the reader an Appendix “Notes on vectors and tensors” reviews
the essential contents of algebra and analysis of vector and tensor functions.

Genova, Italy Angelo Morro
Brescia, Italy Claudio Giorgi
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Basic Principles and Balance Equations



Chapter 1 ®)
Kinematics R

This chapter deals with the kinematics of deformable bodies. Both deformation and
motion of a body are developed by using the reference configuration; the position
vector in the reference configuration is the operative label of the points of the body.

The basic relations so determined for deformation and motion are essential to
the next chapters. Attention is addressed to the topics of objectivity and objective
time derivatives, thus establishing a general framework that proves remarkable in
the description of material properties in terms of time derivatives. This framework
shows the connection between various known objective time derivatives (Jaumann,
Green—Naghdi, Cotter—Rivlin, Oldroyd, Truesdell). Transport relations are obtained
for convecting (or non-convecting) sets, thus establishing basic properties for the
derivation of (local) balance equations and jump conditions for discontinuous fields.
Hence, the kinematical and the geometric relations are derived for singular surfaces
which provide a general setting for the investigation of discontinuity waves. More-
over, the transport theorems for surface integrals are established thus leading, in
particular, to the convected time derivative.

1.1 Frames of Reference and Configurations

A frame of reference or observer .7 is an arbitrary set of rigidly fixed axes relative to
which the position of points is determined. For simplicity, the chosen fixed axes are
taken to be orthogonal and hence the corresponding unit vectors are an orthonormal
basis; denote by {ej, e,, e3} the chosen orthonormal basis. The time at which an event
takes place can be specified relative to a particular event taken as a reference. An
event is then a pair { P, t} consisting of a point P, in the three-dimensional Euclidean
space &, and a time . A chosen position O, origin, is taken as reference and hence
we can identify each position P with the position vector x relative to the origin,
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Fig. 1.1 A motion x maps
the point, labelled by the
position vector X € R, to the
position vector x = x (X, 1)

_p 4

/ ]

"4 y

x = P — O. Hence, a frame of reference . may be viewed as the Cartesian product
of the set {&, O, {ey, e», e3}} and the real time axis R.

A change of frame is a 1-1 mapping of space time onto itself such that distances,
time intervals, and temporal order are preserved. An event {X, ¢} and its image {x*, #*}
under a change of frame are related by rigid transformations and a time shift. Chosen
possibly different origins O, O*, for the two observers, ., .%#*, we can express a
change of frame by

x* = c(t) + Q(r)x, t"=t—a,

where a € R, ¢(t) = O — O*, and Q(¢) is a rotation tensor, det Q(z) = 1.

Bodies occupy regions of the Euclidean space &. To describe the evolution of a
body, we need to label the points.! This is accomplished by labelling the points of the
body by the position in a reference configuration (or placement) R C &’; sometimes
the body is identified with the reference configuration [216]. Upon choosing an origin,
the positions in R are associated with a position vector; to make it apparent that we are
dealing with the reference configuration the vector is denoted by a uppercase boldface
letter, most often X. By definition, the reference configuration is independent of time.
We denote by V the gradient operator in & and by V; the gradient operator in R (Fig.
1.1).

The motion of the body is described by saying the position of any point in & as
a function of time. Granted a choice of origin also for the position in the current
configuration, the current position vector, say X, is then a function of the point (at)
X and time ¢. Hence, a motion of the body is a (smooth) function x that assigns to
each position (vector) in R and time ¢ a position

x = x(X, 1)

in space; we say that X is a material vector while X is a spatial vector. Symbolically,
xR, t) C & denotes the current configuration (at time ¢). The reference configura-
tion R might be the configuration at a chosen initial time #y but need not be so. If X
is fixed then x (X, #) describes the motion of the pertinent point in time. Hence

xX, 1) = 0xX, 0, XX, 1):=xX,1),

! The term points is used, instead of particles, to make it clear that no internal structure is ascribed.
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are the velocity and acceleration of the point X at time ¢. If, instead, ¢ is fixed then
X is a mapping from R to the current configuration, at time ¢.

For brevity, throughout X € R means that X is the position vector of a point in R.
Likewise, X € Z C & means that x is the position vector of a point in 2.

1.2 Deformation

To begin with, we restrict attention to a fixed time 7 and hence x (X, ¢), as a function
of X, describes the deformation at time ¢t. Hence, the dependence on the parameter
t is understood and we let

x = x(X).

It is assumed that x(X) is a 1-1 mapping so that two material points, X # Y, cannot
occupy the same position in the current configuration, X # y. Assume also that x is
differentiable. Hence, there is a tensor F(X) such that

x(Y) = xX) =F (Y = X) +o(]Y = X]),

F being a tensor function of the position X and possibly of #; F is said to be the
deformation gradient. To within o(]Y — X]), F maps material vectors, Y — X, to
spatial vectors, x(Y) — x(X). If )x depends linearly on X then F is independent of
X,

x(Y) = xX) =F (Y - X),

and the deformation is said to be homogeneous. Hence, in general, a deformation
approaches the corresponding homogeneous deformation, with F = F(X); the closer
Y is to X the more x approaches a homogeneous deformation.

In components,2 there is amatrix F € R3*3 such that, for any twopoints X, Y € R,

Xn(Y) = xn(X) = Fre X)(Yx — X)) +0o(lY =X]),  h=123.
The entries { F,x} are the components of the deformation gradient
F=Vx,  Fix = OxyXn-

To determine the effects of deformation on lengths, areas, and volumes, it is

convenient to establish some properties of the deformation gradient. First we observe

that the invertibility of x implies

J = detF # 0.

2 As in well-known textbooks [152, 428, 429], to make the notation more explicit, throughout in
suffix notation, we use capital indices for quantities related to the reference configuration.
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Indeed since the trivial deformation
x=X

gives J = 1 we may regard the deformation as a continuous process and hence we
assume
J > 0.

Also, we let
j =detF!

and hence J j = 1.
As any invertible tensor, the deformation gradient F satisfies the polar decompo-
sition

F =RU = VR,

where R € Orth while U, V € Psym.
To show this property, we first observe that F'F € Psym in that, for any vector
W,
w-F'Fw = (Fw) - (Fw) > 0

and, since F is invertible,
Fw=0 <— w=0.

We can then define® U = v/FTF. Since F'F ¢ Psym then the eigenvalues, say {1},
are positive; let {N;} be the eigenvectors and then F'F = Z?:l 1iN; ® N;. Hence
U = VFTF is defined as U = Z?:l AiN; ® N, A; = /. Hence also U is invert-
ibleand U~! = Z?Zl (1/2)N; ® N;. We can then write F = RU and take it as the
definition of R; we find that

R=FU!, R'R=U'F'FU'=1

and, if J > O thendet R = 1. Accordingly, R is arotation if J > 0 and is orthogonal
if merely J # 0. Given U : U? = F’F the tensor R is unique in that by

RU = RU

it follows R = R.
Likewise, since FF” € Psym we can define V € Psym such that

FF' = V2.

3 The uniqueness of U is proved in [216], p. 32.
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Let F = VR. It follows det R = 1 if J > 0. Now by
F = VR = RR”VR = R(R’VR)

and the uniqueness of the decomposition RU, it follows

R=R, V=RUR’.

We can then write the following statement.

Theorem 1.1 (Polar decomposition) If F is an invertible tensor with det F > 0 then
there are unique, symmetric, positive-definite tensors U and V and a rotation R such
that F = RU = VR.

We say that F = RU and F = VR are the right and left polar decompositions of
F.

A positive-definite symmetric tensor represents a state of pure stretches along
three mutually orthogonal axes. Therefore, the polar decomposition means that any
(homogeneous) deformation may be viewed as the result of a pure stretch U and a
rotation R or the same rotation R followed by the stretch V. Accordingly, U is called
the right stretch tensor and V the left stretch tensor. In calculations, it proves more
convenient to use the right and left Cauchy—Green tensors

C=U>=F'F, B=V?=FF'.

When F is arotation, F = R, FTF = 1. Also F = 1 if the deformation is the identity
transformation x = X. It is then useful to use the Green-St. Venant strain tensor

E=1C-D.

The vector
u=x—X=xX)-X

is called the displacement of the point (at X). The displacement gradient is the tensor*
H=Vu=F-1.

Hence
C=H+1)'H+1)=1+H +H+H'H

and
E=1H+H")+ H'H.

4 To follow the standard notation in continuum mechanics, the symbols B, H, E, and D are used.
When B, H, E, and D are used within electromagnetism they denote the magnetic induction, the
magnetic field, the electric field, and the electric displacement.
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It is useful sometimes to consider the linear part £ of E, i.e.
£ :=3H" +H);

we refer to & as the strain tensor. Since

E=¢6+HH
then for small deformations, that is when ||H|| <« 1, we can use the approximation
E~E&.

Further
€ = symH = sym[Vu(1 + H)].

The infinitesimal strain tensor is defined by

€ :=symVu.
Hence, for small deformations E ~ £ ~ ¢.

It is worth observing that C and B admit the same principal invariants. By direct

calculations, it follows that

wtC=tuF'F=F.-F, uB=uFF' =F.F,
tr C2 = tr (FTFF'F) = (F'F) - (F'F), tB?> =tr (FF'FF") = (F'F) - (FF),
detC = detF'F = (detF)?,  detB = det FFT = (det F)?.
Hence, we find the common values of the principal invariants
I, =trC=1trB,
L =1[(trC)* —tr C*] = L[(r B)> — tr B?],
I; = det C = detB.

By the polar decomposition F = RU = VR, it follows that, associated with a
deformation gradient F, there are various rotation-independent tensors related to U
and V. The right Cauchy—Green deformation tensor (or Green’s deformation tensor)
is defined by C = U? = F”F. The inverse C~! is denoted by F,

F=C'=F'FT.

As to 'V, the left Cauchy—Green deformation tensor is denoted by B and defined by
B = V2 = FF’. The inverse B! is denoted by C,
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C=B'=FTF",

In the literature, F is called the Finger tensor (and denoted by f). The inverse C of
B was introduced by Cauchy and is denoted by c¢; as with tensors, we prefer to use a
capital letter (C instead of ¢). In addition, C is called Piola tensor, and Finger tensor in
the fluid dynamics literature. We avoid the use of Piola tensor for C because the Piola,
or Piola-Kirchhoff, tensor is a well-known stress tensor of continuum mechanics.

We now examine the spectral representation of F. The common eigenvalues of
C=0%?and B = V? are )\1.2, i =1,2,3. Hence

C=Y_ANN:®N., B=Y; \no®n
and
U=Y_ AN, ®@N, V=37 An®n =3 ARN ®RN,
Since n; = RN;, we can write
R=37_n®N;

R is the active rotation R as described in Sect. 1.4.1.
Hence, F is represented in the form

F=RU=(_m @N)C_ AN ®@N) =37 A\m; ®N;.

From the spectral representation, we can derive the matrix representation. If the
deformation is a rotation, then U = 1. Let R be given by a rotation of the angle 6
around n; = Nj3. Since R = Z;zlnj ® N;, we find

thINh-RNkZNh'nj Nj'NkZNh'ﬂk.

It follows that
cosf —sinf 0

R =|sinf@ cosf O
0 0 1

The Green-St Venant strain tensor E describes the deviation of the present con-
figuration from the reference one, where F = 1 and then also C = 1. Hence, a better
description of deformation might involve E. Now

F'C-—DF '=FTEFE'F-1DF'=1-F T 'F'=1-B"".

Hence, letting
E,:=11-B"
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we have
E,=F TEF'.

The tensor E, is called the Eulerian Almansi strain tensor.

1.2.1 Effects on Lengths, Areas, and Volumes

Distances and Lengths

Look at two position vectors X, Y € R and the corresponding spatial position vectors
x = x(X), y = x(Y) in the deformed region x(R) C &. Itis

y—x=F( —X) +o(Y - X)),
F being evaluated at X. To within o(]Y — X|), we have
y—x=FY-X) (1.1)
and hence
=% (y—x = [FY -X)]- [FY-X)] = (Y -X) - F'F(Y - X) = (Y - X) - C(Y — X).
Then the distance ! = |y — x| between the points in the deformed region is given by
?=(Y-X) CY -X); (1.2)
the length / depends on the material vector Y — X and not merely on the length
|Y — X]. That is why the right Cauchy—Green tensor C is viewed as a metric tensor.
If we are interested also in the direction of y — x, then we consider (1.1) and

observe that the unit vector e = (Y — X)/|Y — X| is mapped to

Yy—X

= Fe
Y — X]
The ratio of the lengths
ly —x|
= |Fe|,
Y — X

is consistent with the action of deformation via the right Cauchy—Green tensor C,

ly —x> =Y —-X|?e-Ce=]Y —X*e-F'Fe = |Y — X| |Fe|%.
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The deviation of the deformation from the identity deformation is well described
by E. To get a detailed effect of E, we lety — x = F(Y — X) and find

ly —xI> = Y = X]> = (Y = X) - (C — (Y = X).

Since Y — X = FT(y — x) we find

ly—x? =Y -X?=F'y-% - C-DF 'y-0=@¢-x F(C-DF 'y-x.
Hence

ly —xP = [Y =X’ = (Y = X) - 2E(Y = X) = (y — x) - 2E,(y — x).

The Green-St. Venant tensor E yields the difference |y — x|> — |Y — X|? in terms of
the vector Y — X while the Eulerian Almansi tensor, E4 or e, yields the difference
in terms of y — X.

We now examine the length of a curve. Let C be a curve in R represented para-
metrically as .

Y=Y, A € [a, b].

By deformation, C is mapped to C given by

YO — y) =x(Y(N).

The line integral of a continuous function f defined on C reads

b b
SO NIA = [ f )N IX (YW))IdA

where ' means derivative with respect to the parameter A. Since x'(Y())) =

F(YO\)Y'()\) then

b b
SO V1A = [ fOYODIFY )Y (VIdA.

Let f = 1 and observe that
b
L=[lyMldx

is the length of C while fuh [Y'(A\)|d A is the length of C. Hence

b
L= [IFYQ)Y NIdA.

By means of the polar decomposition, we can write
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FY|=RUY -RUY)/?RTRUY -UY)"* = |UY|.
Asa consequence

b
L= [TUYA)NY' N]dA,

so that the length is unchanged if F is (locally) a pure rotation, U = 1. This shows
that U # 1 does not preserve lengths.

A deformation that preserves the distance between points is said to be rigid; x is
rigid if

IX(Y) —xX)[=Y-X], VY XeR. (1.3)
By (1.3), it follows
[(xX(Y) = x(X)]- [x(Y) = xX)] = (Y = X) - (Y = X).

Differentiation with respect to X and Y yields

FI(Y)F(X) =1.

Letting X = Y we find
FIX)FX) =1

and hence F is a rotation, say R, at any point of the body. Consequently
FOY)FT(Y)F(X) = F(Y)

implies F(X) = F(Y). Hence, in a rigid deformation F is a rotation R, independent
of the position. Moreover, by integration of

VKX:R

we have
x(Y) = x(X) + R(Y — X). (1.4)

It is of interest to examine the (approximate) description of small rigid deforma-
tions. By (1.4), since R = F then letting x(Y) = Y + u(Y), we have

u(Y) —uX) = (-1+F)(Y - X).
By F'F = C = U? = 1, it follows

A+HHA+H) =1, H +H=0



