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Darkness cannot drive out darkness, only 
light can do that. Hate cannot drive out hate, 
only love can do that. 

Martin Luther King



Preface 

Water pollution is one of the most serious environmental threats of the twenty-
first century, creating much disturbance to the benign nature of the environment. 
The toxic effects of this phenomenon on aquatic life and its deleterious impacts on 
maintaining the balance of the ecosystem have been widely investigated in recent 
years, as reported by scientists around the world. The scarcity of clean water resources 
is therefore an outcome of this global issue, leading to severe health, economic, 
and social concerns. The detection and remediation of contaminants of emerging 
concern (CECs) in water bodies in particular have added further challenges to the 
scientific community worldwide. These issues have created innumerable risks to 
humans and the environment; such aspects have not yet been deeply investigated 
and fully understood. To solve these issues, enormous efforts have been initiated by 
the scientific community to explore and develop efficient and economic methods to 
remove such compounds from polluted waters. 

The present book covers an overview of the fundamental aspects related to 
the detection, quantification, and removal of pharmaceutically active compounds 
(PhACs) as an important class of contaminants of emerging concern. Critical discus-
sions are provided regarding the fate of PhACs using a variety of treatment systems 
and technologies as well as the mechanisms involved in their removal using a wide 
range of biological and physico-chemical methods. The book is aimed at discussing 
the sustainability aspects of various methods developed and used in the elimination 
of PhACs in efforts to help decision-makers select the best available technique among 
the existing alternatives. 

The fundamentals presented in various chapters of this book will aid readers and 
researchers in designing innovative future studies to address the remaining gaps in 
the literature for further developing sustainable wastewater treatment technologies to 
deal with toxic PhACs. To achieve these goals, the latest achievements of the scientific 
community are carefully retrieved, analyzed, and critically discussed from the most 
reputable platform of ever-increasing science, Web of Science (WoS; previously 
known as Web of Knowledge), for critical analysis and discussion. Furthermore, 
many complementary references are included in each chapter of the book to help
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viii Preface

readers and researchers search for more detailed information regarding the funda-
mentals and applicability of the technologies discussed in this book. We sincerely 
hope that this book will benefit a wide range of academicians, researchers, indus-
trialists, and policy-makers, seeking further development and implementation of 
sustainable wastewater treatment technologies to remove pharmaceutically active 
compounds as well as other types of contaminants of emerging concern. 

Sint-Katelijne-Waver, Belgium Mohammadreza Kamali



About This Book 

This book provides an overview of the most important biological and physico-
chemical (waste)water treatment technologies developed from time to time in 
the literature in efforts to remove pharmaceutically active compounds (PhACs). 
Chapter 1 of the book summarizes and discusses the available literature on the 
occurrence, environmental concentrations, fate, possible effects of the typical PhACs 
after these are introduced into the receiving environments. Chapter 2 introduces the 
advanced techniques for the detection of various PhACs, their quantification, and 
methods employed to identify the mechanisms involved in removing the PhACs using 
various physico-chemical and biological treatment approaches. Chapter 3 covers a 
discussion on the scientometric analysis for the identification, retrieval, and anal-
ysis of the scientific documents published from the Web of Science (WoS) on the 
application of various biological and physico-chemical treatments to deal with the 
PhACs. Chapters 4–7 of the book address the critical discussion of the applicability 
of the most popular biological wastewater treatment technologies, including acti-
vated sludge, anaerobic digestion, microbial fuel cells, and constructed wetlands, to 
remove various types of PhACs from water streams. The mechanisms involved in 
the removal of PhACs using these technologies and possible interactions between 
such compounds and the microbial communities are elegantly discussed. The mech-
anisms involved in the application of membrane separation and adsorption technolo-
gies and their applications for the removal of PhACs are critically evaluated with 
the relevant examples in Chaps. 8 and 9 of the book. The last two chapters (i.e., 
10 and 11) are aimed at discussing the potential of homogeneous (Chap. 10) and 
heterogeneous (Chap. 11) advanced oxidation processes (AOPs) used in the elim-
ination of PhACs. These two chapters deeply discuss the mechanisms involved in 
the removal of various types of PhACs along with the pros and cons involved in 
the application of both energy-free and energy-intensive AOPs. Overall, the entire 
book outlines the existing research gaps involved in the development of sustainable 
technologies for the removal of pharmaceutically active compounds and provides 
valuable recommendations for further future studies.
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