Green Energy and Technology

Mohammadreza Kamali Tejraj M. Aminabhavi Maria Elisabete V. Costa Shahid Ul Islam · Lise Appels · Raf Dewil

Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Green Energy and Technology

Climate change, environmental impact and the limited natural resources urge scientific research and novel technical solutions. The monograph series Green Energy and Technology serves as a publishing platform for scientific and technological approaches to "green"—i.e. environmentally friendly and sustainable—technologies. While a focus lies on energy and power supply, it also covers "green" solutions in industrial engineering and engineering design. Green Energy and Technology addresses researchers, advanced students, technical consultants as well as decision makers in industries and politics. Hence, the level of presentation spans from instructional to highly technical.

Indexed in Scopus.

Indexed in Ei Compendex.

Mohammadreza Kamali · Tejraj M. Aminabhavi · Maria Elisabete V. Costa · Shahid Ul Islam · Lise Appels · Raf Dewil

Advanced Wastewater Treatment Technologies for the Removal of Pharmaceutically Active Compounds

Mohammadreza Kamali D Process and Environmental Technology Lab, Department of Chemical Engineering KU Leuven Sint-Katelijne-Waver, Belgium

Maria Elisabete V. Costa Department of Materials and Ceramics Engineering University of Aveiro Aveiro, Portugal

Lise Appels Process and Environmental Technology Lab, Department of Chemical Engineering KU Leuven Sint-Katelijne-Waver, Belgium Tejraj M. Aminabhavi School of Advanced Sciences KLE Technological University Hubballi, Karnataka, India

Shahid Ul Islam Department of Biological and Agricultural Engineering University of California, Davis Davis, CA, USA

Raf Dewil Process and Environmental Technology Lab, Department of Chemical Engineering KU Leuven Sint-Katelijne-Waver, Belgium

ISSN 1865-3529 ISSN 1865-3537 (electronic) Green Energy and Technology ISBN 978-3-031-20805-8 ISBN 978-3-031-20806-5 (eBook) https://doi.org/10.1007/978-3-031-20806-5

The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Darkness cannot drive out darkness, only light can do that. Hate cannot drive out hate, only love can do that.

Martin Luther King

Preface

Water pollution is one of the most serious environmental threats of the twentyfirst century, creating much disturbance to the benign nature of the environment. The toxic effects of this phenomenon on aquatic life and its deleterious impacts on maintaining the balance of the ecosystem have been widely investigated in recent years, as reported by scientists around the world. The scarcity of clean water resources is therefore an outcome of this global issue, leading to severe health, economic, and social concerns. The detection and remediation of contaminants of emerging concern (CECs) in water bodies in particular have added further challenges to the scientific community worldwide. These issues have created innumerable risks to humans and the environment; such aspects have not yet been deeply investigated and fully understood. To solve these issues, enormous efforts have been initiated by the scientific community to explore and develop efficient and economic methods to remove such compounds from polluted waters.

The present book covers an overview of the fundamental aspects related to the detection, quantification, and removal of pharmaceutically active compounds (PhACs) as an important class of contaminants of emerging concern. Critical discussions are provided regarding the fate of PhACs using a variety of treatment systems and technologies as well as the mechanisms involved in their removal using a wide range of biological and physico-chemical methods. The book is aimed at discussing the sustainability aspects of various methods developed and used in the elimination of PhACs in efforts to help decision-makers select the best available technique among the existing alternatives.

The fundamentals presented in various chapters of this book will aid readers and researchers in designing innovative future studies to address the remaining gaps in the literature for further developing sustainable wastewater treatment technologies to deal with toxic PhACs. To achieve these goals, the latest achievements of the scientific community are carefully retrieved, analyzed, and critically discussed from the most reputable platform of ever-increasing science, Web of Science (WoS; previously known as Web of Knowledge), for critical analysis and discussion. Furthermore, many complementary references are included in each chapter of the book to help readers and researchers search for more detailed information regarding the fundamentals and applicability of the technologies discussed in this book. We sincerely hope that this book will benefit a wide range of academicians, researchers, industrialists, and policy-makers, seeking further development and implementation of sustainable wastewater treatment technologies to remove pharmaceutically active compounds as well as other types of contaminants of emerging concern.

Sint-Katelijne-Waver, Belgium

Mohammadreza Kamali

About This Book

This book provides an overview of the most important biological and physicochemical (waste)water treatment technologies developed from time to time in the literature in efforts to remove pharmaceutically active compounds (PhACs). Chapter 1 of the book summarizes and discusses the available literature on the occurrence, environmental concentrations, fate, possible effects of the typical PhACs after these are introduced into the receiving environments. Chapter 2 introduces the advanced techniques for the detection of various PhACs, their quantification, and methods employed to identify the mechanisms involved in removing the PhACs using various physico-chemical and biological treatment approaches. Chapter 3 covers a discussion on the scientometric analysis for the identification, retrieval, and analvsis of the scientific documents published from the Web of Science (WoS) on the application of various biological and physico-chemical treatments to deal with the PhACs. Chapters 4–7 of the book address the critical discussion of the applicability of the most popular biological wastewater treatment technologies, including activated sludge, anaerobic digestion, microbial fuel cells, and constructed wetlands, to remove various types of PhACs from water streams. The mechanisms involved in the removal of PhACs using these technologies and possible interactions between such compounds and the microbial communities are elegantly discussed. The mechanisms involved in the application of membrane separation and adsorption technologies and their applications for the removal of PhACs are critically evaluated with the relevant examples in Chaps. 8 and 9 of the book. The last two chapters (i.e., 10 and 11) are aimed at discussing the potential of homogeneous (Chap. 10) and heterogeneous (Chap. 11) advanced oxidation processes (AOPs) used in the elimination of PhACs. These two chapters deeply discuss the mechanisms involved in the removal of various types of PhACs along with the pros and cons involved in the application of both energy-free and energy-intensive AOPs. Overall, the entire book outlines the existing research gaps involved in the development of sustainable technologies for the removal of pharmaceutically active compounds and provides valuable recommendations for further future studies.

Contents

1	Phar Bodi	maceutically Active Compounds in Water	1
	1 1	Introduction	1
	1.1	Occurrence and Environmental Concentrations	3
	1.2	Fate and Toxicity	1
	1.5	Further Reading	17
	1.5	Summary	17
	Refe	rences	18
	Refer		10
2	Tech	niques for the Detection, Quantifications,	
	and	Identification of Pharmaceutically Active Compounds	
	and '	Their Removal Mechanisms	25
	2.1	Introduction	25
	2.2	Detection and Quantification Techniques	26
	2.3	Techniques for Identification of the Removal Mechanisms	28
		2.3.1 Adsorptive Removal	28
		2.3.2 Advanced Oxidation Processes	31
		2.3.3 Biological Treatment Systems	36
		2.3.4 Toxicity Studies	40
	2.4	Further Reading	41
	2.5	Summary	41
	Refe	rences	43
3	Rem	oval of Pharmaceutically Active Compounds in Water	
	Bodi	es—Science History and Research Hotspots	51
	3.1	Introduction	51
	3.2	Methodology	52
	3.3	Results and Discussion	53
	0.0	3.3.1 Research Statistics	53
		3.3.2 Research Trends and Hotspots	58
		1.5.2 Research fromus und frompots	50

	3.4	Further Reading	61
	3.5	Summary	63
	Refer	rences	65
4	Dhar	macautically Active Compounds in Activated Sludge	
	Syste	maceutically Active Compounds in Activated Studge	71
	4 1	Introduction	71
	4.1	4.1.1 Effects of Pharmaceutically Active Compounds	/1
		on Aerobic Microorganisms	72
	12	Biodegradation of $PhACe$ With AS	72
	4.2	Adsorption of PhACs With AS	75
	4.J	Modifications in AS Processes for the Efficient Permoval	15
	4.4	of PhACs	79
		4.4.1 Ungrading the Existing Excilition	70
	15	4.4.1 Opgrading the Existing Facilities	/0 05
	4.5	Summer	0J 05
	4.0 Dofor		0 <i>J</i> 85
	Kelei	ences	65
5	Phar	maceutically Active Compounds in Anaerobic Digestion	
	Proc	esses—Biodegradation and Fate	91
	5.1	Introduction	91
	5.2	AD for PhAC-Containing Effluents	92
	5.3	AD for PhAC-Containing Waste Sludge	95
	5.4	Further Reading	101
	5.5	Summary	101
	Refer	rences	102
6	Micr	objal Fuel Cells for the Bioelectricity Ceneration	
U	from	Effluents Containing Pharmaceutically Active Compounds	107
	6 1	Introduction	107
	6.2	Microhial Fuel Cells: Fundamentals and Mechanisms	107
	6.3	Microbial Fuel Cells for the Degradation	100
	0.5	of Pharmaceutically Active Compounds	110
	64	Combined Technologies	114
	6.5	Future Reading	116
	6.6	Summary	116
	Refer	ences	117
	Refer		117
7	Cons	tructed Wetlands for the Elimination of Pharmaceutically	
	Activ	re Compounds; Fundamentals and Prospects	121
	7.1	Introduction	121
	7.2	Plant Species in Constructed Wetlands	123
	7.3	CWs for (Waste)Water Treatment; General Considerations	123
	7.4	CWs for the Elimination of PhACs	125
		7.4.1 Removal Mechanism	125
		7.4.2 Operating Conditions	127
		7.4.3 Combination Strategies	129

	7.5	Further Reading	132
	7.6	Summary	133
	Refer	rences	133
8	Mem	brane Separation Technologies for the Elimination	
Ŭ	of Pl	narmaceutically Active Compounds—Progress	
	and	Challenges	139
	8.1	Introduction	139
	8.2	Membrane-Based Technologies for PhAC Removal	140
		8.2.1 Forward Osmosis and Reverse Osmosis	140
		8.2.2 Nanofiltration	142
		8.2.3 Ultrafiltration	144
		8.2.4 Microfiltration	146
		8.2.5 Membrane Bioreactors	147
	8.3	Fouling by Pharmaceuticals	149
	8.4	Further Reading	151
	8.5	Summary	151
	Refer	rences	153
9	Adso	orptive Techniques for the Removal of Pharmaceutically	
	Activ	e Compounds—Materials and Mechanisms	159
	9.1	Introduction	159
	9.2	Adsorption Mechanisms	160
	9.3	Sustainable Adsorbents	162
		9.3.1 Carbon-Based Adsorbents	162
		9.3.2 Ion-Exchange Resins	165
		9.3.3 Clay-Based Adsorbents	166
		9.3.4 Metal Oxide-Based Adsorbents	168
		9.3.5 Natural Biopolymers	170
	9.4	Further Reading	171
	9.5	Summary	172
	Refer	rences	173
10	Hom	ogeneous Advanced Oxidation Processes for the Removal	
	of Ph	narmaceutically Active Compounds—Current Status	
	and l	Research Gaps	181
	10.1	Introduction	181
	10.2	Energy-Free HO-AOPs	182
		10.2.1 Ozonation	182
		10.2.2 Activation of Oxidation Agents	187
	10.3	Energy-Intensive HO-AOPs	191
		10.3.1 Light-Assisted HO-AOPs	191
		10.3.2 Electricity-Assisted HO-AOPs	192
	10.4	Further Reading	201
	10.5	Summary	201
	Refer	rences	202

11	1 Heterogeneous Advanced Oxidation Processes		
	(HE-	AOPs) for the Removal of Pharmaceutically	
	Activ	e Compounds—Pros and Cons	211
	11.1	Introduction	211
	11.2	Energy-Free HE-AOPs	212
		11.2.1 Catalytic Ozonation	212
		11.2.2 Activation of Oxidation Agents	215
	11.3	Energy-Intensive HE-AOPs	222
		11.3.1 Photocatalysis	222
		11.3.2 Photoelectrocatalysis	226
		11.3.3 Photocatalytic Ozonation	229
	11.4	Further Reading	230
	11.5	Summary	230
	Refer	ences	232

Abbreviations

3DPT	Three-dimensional printing technology
AC	Activated carbon
ACI	Average citation per item
ACMFCs	Air cathode microbial fuel cells
AD	Anaerobic digestion
AERs	Anion-exchange resins
AnMBRs	Anaerobic membrane bioreactors
AOPs	Advanced oxidation processes
AOXs	Halogenated organic compounds
ARBs	Antibiotic-resistant bacteria
ARGs	Antibiotic resistance genes
AS	Activated sludge
Ass	Active species
ATP	Adenosine triphosphate
BC	Biochar
BDD	Boron-doped diamond
BET	Brunauer–Emmett–Teller (theory)
BOD	Biological oxygen demand
CB	Conduction band
CD	Corona discharge
cDNA	Complementary DNA
CECs	Contaminants of emerging concern
CFs	Carbon fibers
CMC	Critical micelle concentration
CMs	Conductive materials
CNTs	Carbon nanotubes
COD	Chemical oxygen demand
CW	Constructed wetlands
DBD	Dielectric barrier discharge
DHA	Dehydrogenase activity
DHEA	Dehydroepiandrosterone

DIET	Direct electron transfer
DO	Dissolved oxygen
EC	Electrical conductivity
EET	Extracellular electron transfer
EMEA	European Medicine Agency
EO-AOPs	Electrochemical advanced oxidation processes
EPR	Electron paramagnetic resonance
EPSs	Extracellular polymeric substances
ESI	Electrospray ionization
ESR	Electron spin resonance
FO	Forward osmosis
FTIR	Fourier transform infrared spectroscopy
FWS-CWs	Water surface flow constructed wetlands
GA	Gamma irradiation
GAC	Granular activated carbon
GADP	Gliding arc discharge
GC	Gas chromatography
GC-MS	Gas chromatography with mass spectrometry
GC-MS/MS	Gas chromatography with tandem mass spectrometry
GDP	Glow discharge plasma
GO	Graphene oxide
HDL	High-density lipoprotein
HE-AOPs	Heterogeneous advanced oxidation processes
HLR	Hydraulic loading rate
HO-AOPs	Homogeneous advanced oxidation processes
HPLC	High-performance liquid chromatography
HRs	Hydroxyl radicals
HRT	Hydraulic retention time
HSF-CWs	Horizontal subsurface flow constructed wetlands
IF	Infrared
LC	Liquid chromatography
LC-MS	Liquid chromatography with mass spectrometry
LC-MS/MS	Liquid chromatography with tandem mass spectrometry
LECA	Light expanded clay aggregates
LOEC	Lowest observed effect concentration
LTQ	Linear trap quadrupole
MAs	Metal-based adsorbents
MBBRs	Moving-bed biofilm reactors
MBRs	Membrane bioreactors
MEUF	Micellar-enhanced ultrafiltration
MFC	Microbial fuel cells
MGEs	Mobile genetic elements
MOFs	Metal-organic frameworks
MOx	Metal oxides
MS	Mass spectrometry

MUVP	Microwave-UV plasma
NAC	NH ₄ Cl-triggered activation
NF	Nanofiltration
NGS	Next-generation sequencing
OC	Oseltamivir carboxylate
OLR	Organic loading rate
ORR	Oxygen reduction reaction
ORs	Oxidative radicals
OUR	Oxygen uptake rate
PC	Photocatalysis
PCOz	Photocatalytic ozonation
PCR	Polymerase chain reaction
PEC	Photoelectrocatalytic
PEM	Proton-exchange membrane
PhACs	Pharmaceutically active compounds
PI	Periodate
PL	Photolysis
PMS	Peroxymonosulfate
PPCPs	Pharmaceutical and personal care products
PS	Persulfate
QIA	Quantitative image analysis
qPCR	Quantitative PCR
Q-TOF-MS	Quadrupole time-of-flight mass spectrometry
rGO	Reduced graphene oxide
RO	Reverse osmosis
ROS	Reactive oxygen species
SDGs	Sustainable Development Goals
SEM	Scanning electron microscopy
SPE	Solid-phase extraction
SRT	Solid retention time
SSA	Specific surface area
STAs	Spin-trapping agents
TEM	Transmission electron microscopy
TFC	Turbulent flow chromatography
TFCMs	Thin-film composite membranes
TMCs	Transition metal carbides
TOC	Total organic carbon
TSS	Total suspended solids
VB	Valence band
VFAs	Volatile fatty acids
VSF-CWs	Vertical subsurface flow constructed wetlands
WoS	Web of Science
WWTPs	Wastewater treatment plants
XPS	X-ray photoelectron spectroscopy
	•

Fig. 1.1	Various origins of CECs in water bodies, adapted	2
$E_{in} = 1.2$	Poutos and fata of DhACs into the anvironment	2
$\frac{\Gamma Ig. 1.2}{\Gamma Ia}$	First charactions of antibiotic resistant bastoric adopted	3
Fig. 1.5	First observations of antibiotic-resistant bacteria, adapted	12
E_{14}	Deleges of ADDs and ADCs from municipal westswater	15
Fig. 1.4	Release of ABRS and ARGS from municipal wastewater	
	of the average of such accurts in the avairant routes	
	of the presence of such agents in the environment	
	with possible severe health and environmental impacts,	10
F : 1.7	adapted from Osinska et al. [98]	13
F1g. 1.5	Various mechanisms for the resistance of microbial	
	communities to antibiotics. As can be observed in this	
	figure, the type of mechanism involved in this process	
	is highly dependent on the type of PhACs, adapted	
	from Pazda et al. [91], and Wright [99]	14
Fig. 1.6	Daphnia magna has been used as a model in the toxicity	
	assessment of PhACs and indicated effects such	
	as immobilization, lethality, and reproductive,	
	behavioral, physiological, and biochemical changes	
	when exposed to PhACs, reprinted with permission	
	from Tkaczyk et al. [105]	15
Fig. 1.7	Morphological changes in zebrafish embryos as a result	
	of exposure to ketoprofen (1, 10, and 100 μ g/ml at 24, 48,	
	72, and 96 h). H, PE, YES, SC, DH, and NSA represent	
	heart, pericardial edema, yolk sac edema, scoliosis,	
	delayed hatching, and normal spine axis, respectively.	
	Reprinted with permission from Rangasamy et al. [113]	16
Fig. 2.1	Schematic of the steps required for sample preparation	
	for HPLC analysis. Solid-phase extraction (SPE, Step	
	4) is an important task that requires a precise selection	
	of the adsorbent in the cartridges	27

Fig. 2.2	Schematic of the electrospray ionization process, adopted	• •
F ' 0 0	from Sahora and Fernández-del Castillo [12]	28
Fig. 2.3	FTIR spectra for the adsorption of albendazole using	
	reverse osmosis (RO)/nanonitration (NF) memoranes.	
	The rise in the baseline in the range of 3100–3650 cm ⁻⁴	
	is an indication of the H-bonding process. Additionally,	
	a direct H-bond with nitrogen can be observed at 3320	
	cm ⁻¹ . Finally, the carbonyl group and the bending	
	of the methyl group of albendazole can be seen at 1620	
	cm ⁻¹ and between 800 and 1000 1632 cm ⁻¹ , respectively,	21
F ' 0 (adopted from Dolar et al. [20]	31
F1g. 2.4	Mapped electron density isosurface of sulfamethoxazole	
	$(\rho = 0.01 \text{ a.u. } \mathbf{a} \mathbf{f} - (\mathbf{r}); \mathbf{b} \mathbf{f} + (\mathbf{r}); \mathbf{c} \mathbf{f} 0(\mathbf{r}), \text{ mapped using}$	
	the Fukui function, adapted from Luo et al. [30]	33
Fig. 2.5	ESR spectra obtained from UV photolysis	
	of peroxydisulfate (PDS) (a), without UV (b),	
	without spin-trapping agents (c), and with UV, PDS,	
	and spin-trapping agents (d), indicating the formation	
	of hydroxyl and sulfate radicals $(E-G)$, adopted from Gao	~ ~
	et al. [56]	35
Fig. 2.6	Schematic illustration of an automated respirometric	
	system used by Vasiliadou et al. [103] for the study	10
	of the toxicity of the PhACs	40
F1g. 3.1	The number of published documents per year	
	on the wastewater treatment method for the elimination	
	of PhACs. As seen in this figure, publications in this field	
	have been initiated since the 1950s and have accelerated	
	since 2000. There has also been a sharp increase	50
F : 0.0	in the number of publications in this field in recent years	53
F1g. 3.2	various types of documents (and their relative shares)	
	published on the removal of PhACs and the respective	
	evaluation trends. The analysis was performed using	- 4
F ' 2 2	the ScientoPy tool	54
F1g. 3.3	Contribution of various countries to publications	
	on wastewater treatment methods for PhACs. The	- 4
F ' 2 4	analysis was performed using the ScientoPy tool	54
F1g. 3.4	The contributions of various countries all over the world	
	and their cooperation in the production of scientific	
	documents on the application of (waste)water treatment	
	technologies for the removal of PhACs were analyzed	
F : 0.5	using the CiteSpace tool	56
F1g. 3.5	Contribution of various institutions throughout the world	
	to the production of scientific documents on wastewater	
	treatment technologies for the elimination of PhACs. The	
	analysis was performed using the ScientoPy tool	- 56

Fig. 3.6	Analysis of the sources active in publishing the scientific documents on the development of (waste)water treatment	
	methods for the removal of PhACs. The analysis	
	was performed using the ScientoPy tool on the data	
	retrieved from WoS	57
Fig. 3.7	Contribution of authors in publications on wastewater	
	treatment methods for PhACs. The figure also includes	
	the number of published documents since 2018. The	
	analysis was performed using the ScientoPy tool	58
Fig. 3.8	The outcome of the category analysis regarding	
	publications on (waste)water treatment methods	
	for PhACs. The analysis was performed using WoS	
	(retrieved 22/03/2022)	59
Fig. 3.9	The outcome of the keyword (both author and indexed)	
	analysis regarding publications on wastewater treatment	
	methods for PhACs. The analysis was performed using	
	the ScientoPy tool	60
Fig. 3.10	The timeline of the evolution of the keywords	
	in the scientific documents published on the application	
	of various (waste)water treatment methods for the removal	
	of PhACs. The analysis was performed using CiteSpace	
	on the data retrieved from WoS (22/3/2022)	62
Fig. 4.1	Main removal routes of some widely used PHACs	
	in the AS treatment process, reprinted with permission	
	from Peng et al. [13]. According to this figure,	
	norfloxacin, sulfamethazine, sulfamethoxazole,	
	ibuprofen, and cephalexin are biodegraded mainly	
	under the COD biodegradation process. Nitrification	
	can also contribute to the degradation of ibuprofen	
	and cephalexin. Low degradation efficiencies	
	(approximately 10%) can also be expected for some	
	PhACs, such as cephalexin and tetracycline,	
	under the hydrolysis route	74
Fig. 4.2	Abundance of the most important microbial phylum	
	as a function of the season (summer and winter), reprinted	
	with permission from van Bergen et al. [3]	75
Fig. 4.3	Various mechanisms involved in the removal	
	of some PhACs. Tetracycline is efficiently removed	
	by adsorption, while a relatively low degree	
	of adsorption has been observed for compounds such	
	as sulfamethazine, sulfamethoxazole, and ibuprofen,	
	reprinted with permission from Peng et al. [13]	76
Fig. 4.4	Schematic of a food web showing the possible movement,	
	bioaccumulation, and biomagnification of PhACs,	
	reprinted with permission from [21]	77

Fig. 4.5	Upgrading of a conventional activated sludge process	
	(a) to an MBBR system (b) using microbial carriers (c),	
	adopted from Falletti and Conte [57]	82
Fig. 4.6	Integration of conventional activated sludge systems	
	with MBBRs (innovative Hybas [™] pilot-scale system)	
	for the efficient degradation of pharmaceuticals, reprinted	
	with permission from Tang et al. [59]	83
Fig. 5.1	The microbial communities that can play a role	
U U	in the biodegradation of PhACs during the AD process,	
	adapted from Aziz et al. [15]	93
Fig. 5.2	An anaerobic/aerobic/anoxic configuration, used	
0	for the efficient removal of PhACs, adopted from Ahmad	
	and Eskicioglu [32]	95
Fig. 5.3	A schematic of the alkaline fermentation process	20
1.8.0.0	for the elimination of ARGs in sludge adapted	
	from Huang et al. [45]	96
Fig 54	The observed removal efficiency of various PhACs	10
1 19. 0. 1	under various SRTs was adopted from Carballa et al	
	[63]: brown bar: 30 days blue bar: 20 days and	
	green har: 10 days	98
Fig. 5.5	The main mechanisms of the improvement in the removal	70
rig. 5.5	afficiency of the AD process by the addition of ZVI	
	reprinted with permission from Yuan et al. [60]	100
Fig. 6.1	A schematic of the single chamber (up)	100
11g. 0.1	and dual chamber MECs adopted from Abu Beesh [27]	
	and Dahmani et al. [28]	100
Fig 6.2	Scanning electron microscony (SEM) of <i>Escharichia</i>	109
Fig. 0.2	coli on various anode materials including carbon cloth	
	(a) and coffee waste corbonization anodes without KOH	
	(\mathbf{a}) and connect waste carbonization anodes without KOII (CWACO) (b) and with different KOH portions (1:1	
	(C WACO) (b) and with different KOH polytons (1.1 CWACO (b) 1:5 $CWACO$ (c) 1:10 $CWACO$ (d)), reprinted	
	C wall (b), 1.5 C wall (c) 1.10 C wall (d)), reprinted	110
E:= 6.2	Schematics of the dual chember (1-ft) and single chember	110
F1g. 0.5	Schematics of the dual-chamber (left) and single-chamber	
	(fight) multielectrode MFCs for bioelectricity generation	
	from organic and morganic pollutants, adapted	110
EL CA	from Chaijak and Sato [55] and Pol and Chaijak [54]	112
F1g. 6.4	A schematic of parabolic graphitic membrane-less MFCs	
	for the treatment of pharmaceutical effluents, adapted	
-	from Rashid et al. [56]	112
F1g. 6.5	Bioaugmentation is an effective strategy for bioelectricity	
	generation from pharmaceutical effluents with high	
	salinity, adapted from Pugazhendi et al. [62]	113
Fig. 6.6	A schematic of an MFC-Fenton combination	
	for the generation of hydroxyl radicals to deal with a wide	
	range of organic and nonorganic pollutants	115

xxii

Fig. 6.7	The proposed pathway for the degradation of CBX using a combination of MFCs and Fenton reactions, reprinted	
	with permission from Wang et al. [39]	115
Fig. 7.1	A schematic of various CWs, including free water surface	
	flow CWs (a), horizontal subsurface flow CWs (b),	
	and vertical subsurface flow CWs (c), adapted from Wang	
	et al. [2]	122
Fig. 7.2	Some of the most widely used ornamental plant species	
	used in CWs were adapted from Sandoval et al. [1]	124
Fig. 7.3	Mechanisms involved in the removal of sulfamethoxazole	
	with Mn ore as the additive. Both oxidation and adsorption	
	play roles in the removal of the pharmaceutical using this	
	system, reprinted with permission from Xu et al. [42]	127
Fig. 7.4	Application of Cyperus alternifolius in combined	
	systems for the biodegradation of sulfamethoxazole. Top:	
	a schematic combination of a constructed wetland (CW)	
	with microbial fuel cell (MFC) technology, adapted	
	from Liu et al. [19]. Down: Electrolysis-integrated	
	biorack CW system, adapted from Liu et al. [52]	130
Fig. 7.5	Biodegradation of ACT using the oxidative species	
	generated after exposure of S. validus to PhAC, adopted	
	from Vo et al. [71]	132
Fig. 8.1	Featured properties of various membrane separation	
	processes, including the pore size, and their potential	
	applications to remove various pollutants, adapted	
	from Mallakpour and Azadi [3]	140
Fig. 8.2	SEM images of a TFC membrane representing	
	the inner surface (A), the enlarged inner surface (a),	
	the cross section (B), and the enlarged cross section (b)	
	of the membrane used for the treatment of pharmaceutical	
	compounds, adopted from Goh et al. [20]	141
Fig. 8.3	Illustration of dually charged thin-film nanocomposites	
	made of MOFs. The presence of -COO- groups grants	
	a negative charge to MIL-101(Cr). ED-MIL-101(Cr)	
	represents a dual charge property by grafting	
	ethylenediamine (ED) onto the Cr coordinately	
	unsaturated metal sites of MIL-101(Cr) via the presence	
	of $-NH_3^+$ groups, adapted from Dai et al. [31]	143
Fig. 8.4	Removal of PhACs using ultrafiltration and its	
	combination with coagulation and adsorption using	
	powdered activated carbon. According to the results,	
	the combination of ultrafiltration and adsorption is	
	the best among the studied methods for the removal	
	of a variety of PhACs, adapted from Sheng et al. [13]	145

Fig. 8.5	Incorporation of iron-based materials in a tubular microfiltration membrane for the removal of diclofenac	
	adapted from Plakas et al. [48]	146
Fig 86	Molecular structures of sulfamethoxazole (left)	110
1 15. 0.0	and carbamazenine (right) illustrating the presence	
	of one and three phenolic rings in their structures	
	respectively. This can be anticipated as the reason	
	for the higher resistance of carhamazenine against	
	biodecomposition	1/0
Fig. 87	Typical EPS structure (a) cell structure (b) and structure	149
1 lg. 0.7	of the sludge flocs (\mathbf{a}) , \mathbf{d} and \mathbf{a} also represent	
	the mechanisms of the adhesion of hydrophobic	
	and hydrophilia EDSs onto hydrophobic membranes	
	adopted from Lin et al. [77, 78]	151
$\mathbf{E}_{\mathbf{z}} = 0 1$	Turical machanism of II handing along with other	151
FIg. 9.1	adsorption machanism of H-boliding along with other	
	adsorption mechanisms between blochar and tetracycline,	
	indicated on C. H. H.A., where the cellid and the decked	
	lines are for the roles complete hand, and the line denotes	
	the body contained (28)	160
E . 0.2	the hydrogen bond [28]	102
F1g. 9.2	Activation of pharmaceutical studge blochar using NaOH	
	for the efficient adsorption of tetracycline and the involved	
	adsorption mechanisms, adapted from Liu et al. [44].	
	BCI: impregnation method and BCD: dry mixing method	1.64
E. 0.2	used for the activation of the blochar (BC)	164
F1g. 9.3	Catalytic transformation of blochar, as a low-cost	
	carbonaceous material, to carbon nanotubes assisted	
	by microwave irradiation, adapted from Hildago-Oporto	100
F ' 0.4		165
F1g. 9.4	Possibility of simultaneous adsorption and degradation	
	of PhACs (such as carbamazepine) by graphitic carbon	
	nitride was adopted from Zhang et al. [55]. Visible-light	
	illumination leads to the excitation of electrons	
	from the valence band of the adsorbent, which results	1.00
D : 0.5	in a chain of oxidative reactions	166
F1g. 9.5	Schematic of the possible application of efficient	
	adsorbents for designing fixed-bed column adsorption	
	for the removal of PhACs, adapted from Lonappan et al.	
T : 0.6	[/1] and Ahmed and Hossain [72]	167
F1g. 9.6	Mechanisms involved in the adsorption of norfloxacin	
	onto $U_1O-66-NH_2$, reprinted with permission from Fang	
	et al. [92]	169

Fig. 9.7	Mechanisms of the formation of chitosan/graphene oxide including the reaction between –COOH groups	
	of graphene oxide with –NH groups of chitosan chains.	
	reprinted with permission from da Silva Alves et al. [104]	171
Fig. 10.1	Most widely studied and implemented AOPs	
0	for the removal of organic pollutants from (waste)waters.	
	Blue box: Homogeneous AOPs (HO-AOPs) divided	
	into energy-free and energy-intensive HO-AOPs	182
Fig 10.2	Reaction nathways of the organic nollutants	102
115.10.2	with ozonation oxidation systems, adopted from Taoufik	
	at al [28]	193
Eig 10.2	A turical apparetus for the conversion of molecular	165
Fig. 10.5	A typical apparatus for the conversion of molecular	
	oxygen to ozone and its application for the oxidation	
	of organic pollutants, adapted from Agnaeinejad-Meybodi	104
F 10.4	et al. [32]	184
F1g. 10.4	Proposed pathway of sulfamethoxazole degradation	
	under the ozonation process. Analysis was performed	
	using liquid chromatography-mass spectrometry	
	(LC–MS) analysis, adopted from Abellán et al. [39]	185
Fig. 10.5	Ciprofloxacin pathways and products of the degradation	
	of ciprofloxacin under UV and xenon	
	illumination, reprinted with permission from	
	Haddad and Kümmerer [65]	191
Fig. 11.1	Most widely studied and implemented AOPs	
	for the removal of organic pollutants from (waste)waters	212
Fig. 11.2	Biochar-supported MnO_x or FeO_x are efficient	
	heterogeneous catalysts to enhance the ozonation	
	degradation of PhACs such as atrazine. Only 48%	
	degradation of this compound was achieved with 2.5	
	mh/L O_3 (at pH 7 in 30 min). However, an increase	
	in atrazine removal to 83% and 100% was observed	
	when Mn-loaded biochar and Fe-loaded biochar.	
	respectively were used as catalysts under identical	
	treatment conditions as reported by Tian et al [17]	213
Fig 113	Typical mechanisms involved in catalytic ozonation using	215
115.11.5	$C_{\rm L}\Delta l_{\rm P}\Omega_{\rm r}$ for the degradation of PhACs, adapted from Xu	
	et al. [16]	214
Fig. 11.4	Machanism involved in the activation of PS	214
11g. 11.4	for the degradation of matribuzin, adapted from Sabri	
	at al. [46]. Divergenerated electrons and heles contribution	
	ta the formation of action and noise contribute	
	to the formation of active species, including hydroxyl	017
	radicals, H', and sulfate radicals	217

Fig. 11.5	Typical mechanisms involved in the activation of PS	
	using carbonaceous materials for the decomposition	
	of PhACs. Both nonradical (activated persulfate)	
	and radical pathways play roles in this oxidation system,	
	resulting in the transformation of the mother pollutants	
	to the final products (CO_2 , H_2O) or the intermediate	
	products, reprinted with permission from Minh et al. [51]	218
Fig 11.6	Pyridinic N graphitic N and pyrrolic N sites	
1 ig. 11.0	in carbonaceous materials for the activation of persulfate	
	adapted from Tang et al. [55]	219
Fig. 11.7	A practical approach for the simultaneous generation	21)
1 ig. 11.7	of sulfate and hydroxyl radicals for the decomposition	
	of PhACs including strazing metronidazole ketoprofen	
	and vanlafaving, adapted from Daniara at al. [56]	210
Fig. 11.8	Machanisms involved in the activation of PL using	219
1 ig. 11.6	carbonaceous materials containing N species, adapted	
	from Vice et al. [72]	221
Eig. 11.0	Vinctice of the degredation of various DhACs using	221
Fig. 11.9	different ovidation systems, including photolysis (UV	
	alare) UV + U.O. (OU redicate) and UV/U.O. (UCO	
	alone), $UV + H_2U_2$ (OH radicals), and $UV/H_2U_2/HCU_3$	222
F' 11 10	(CO_3) , adapted from Zhou et al. [76]	ZZZ
F1g. 11.10	A schematic of the mechanisms involved in the generation	
	of reactive species for the decomposition of PhACs	000
F : 11.11	under photocatalytic processes	223
F1g. 11.11	Various types of heterojunctions for the efficient	
	separation of photogenerated electrons and holes, adapted	
	from Kumar et al. [97]. Novel heterojunction structures	
	have also been developed very fast in recent years, such	
	as Z-scheme and S-scheme structures with efficient	
	charge separation potential (see [98])	225
Fig. 11.12	A schematic of the ZnO 3D-printed scaffolds	
	for the treatment of polluted waters, adapted	
	from Kumbhakar et al. [112]	226
Fig. 11.13	Typical mechanisms involved in the PEC process	
	utilizing semiconductors for the degradation of organic	
	compounds, adapted from Garcia-Segura and Brillas [115]	227
Fig. 11.14	A combined photoelectro-Fenton process	
	for the elimination of bacteria and pharmaceutical	
	compounds and its effects on the reduction	
	of risk quotient (RQ) was adopted from	
	Martínez-Pachón et al. [128]	228

xxvi

List of Tables

Table 1.1	Typical pharmaceuticals, their properties, and concentrations in surface and groundwater	
	bodies	5
Table 1.2	Further reading suggestions for more detailed coverage	
	of the literature on the origin, presence, and possible	
	effects of PhACs on humans, the environment, and living	
T 11 0 1	organisms	17
Table 2.1	Scavenging agents reported detecting the reactive species	~
T 11 0 0	involved in the advanced oxidation processes	34
Table 2.2	Specific microorganisms reported for the biodegradation	27
T-1-1-0-2	of PhACs	31
Table 2.5	on pharmacautical containing offluent protocols	
	and the observed results and remarks	41
Table 2.4	Further reading suggestions for more detailed coverage	41
14010 2.4	of the literature on various analytical techniques	
	for the detection and quantification of the PhACs	
	and their decomposition products	42
Table 3.1	The keywords used for the advanced search in WoS	12
10010 011	for the technologies developed thus far for the treatment	
	of pharmaceutically active compounds	52
Table 3.2	Contribution of the scientific journals to the publication	
	of scientific documents on the application of various	
	(waste)water treatment methods for the removal of PhACs	57
Table 3.3	The topics of the "Hot Papers" in WoS, published	
	on the removal of PhACs from the polluted (waste)waters	63
Table 3.4	The summary of the documents concerned	
	the sustainability aspects in wastewater treatment	
	methods for the elimination of PhACs	64

List of Tables

				•	
х	х	ν	1	1	1
•••	•••		-	-	•

Table 3.5	Further reading suggestions for more detailed coverage of the literature on various technologies for the removal	
	of the interature on various technologies for the removal	65
Table / 1	Evaluation of the performance of conventional AS	05
14010 4.1	systems to deal with pharmaceutical compounds	70
Table 4.2	Systems to dear with pharmaceutical compounds	19
Table 4.2	summary of some recent studies on the combination	
	of physico-chemical treatment techniques	
	with conventional activated sludge processes	
	for the efficient degradation of PhACs	84
Table 4.3	Further reading suggestions for more detailed	
	coverage of the literature on the fate and removal	
	of pharmaceutically active compounds using activated	
	sludge processes	85
Table 5.1	Further reading suggestions for more detailed coverage	
	of the literature on the PhACs in AD processes	101
Table 6.1	Further reading suggestions for more detailed coverage	
	of the literature on the removal of PhACs using MFCs	116
Table 7.1	Efficiencies observed in the literature for the removal	
	of various PhACs using MBR technologies	128
Table 7.2	Further reading suggestions for more detailed coverage	
	of the literature on the constructed wetland technologies	
	for the removal of pharmaceutically active compounds	132
Table 8.1	Efficiencies observed in the literature for the removal	
	of various PhACs using MBR technologies	148
Table 8.2	Recent progress in developing antifoling strategies	
14010 012	for the efficient removal of PhACs	152
Table 8.3	Further reading suggestions for more detailed coverage	10-
14010 010	of the literature on the application of membrane-based	
	technologies for the removal of PhACs	153
Table 9.1	Further reading suggestions for more detailed coverage	155
10010 9.1	of the literature on the adsorption of active pharmaceutical	
	compounds in (weste)waters	172
Table 10.1	Stability of some phermacoutically active compounds	1/2
Table 10.1	scaling of some pharmaceuticany active compounds	106
Table 10.2	Against ozonauon [40]	100
Table 10.2	of EQ. AOD any access for the any accel of DhACa	104
T.1.1. 10.2	of EO-AOP processes for the removal of PhACs	194
Table 10.3	Further reading suggestions for more detailed	
	coverage of the literature on ozone-based technologies	
	for the removal of pharmaceuticals in (waste)waters	201
Table 11.1	Further reading suggestions for more detailed	
	coverage of the literature on ozone-based technologies	
	for the removal of pharmaceuticals in (waste)waters	231