

Rafael Martínez-Guerra Juan Javier Montesinos-García Juan Pablo Flores-Flores

Encryption and Decryption Algorithms for Plain Text and Images using Fractional Calculus

Synthesis Lectures on Engineering, Science, and Technology

The focus of this series is general topics, and applications about, and for, engineers and scientists on a wide array of applications, methods and advances. Most titles cover subjects such as professional development, education, and study skills, as well as basic introductory undergraduate material and other topics appropriate for a broader and less technical audience. Rafael Martínez-Guerra • Juan Javier Montesinos-García • Juan Pablo Flores-Flores

Encryption and Decryption Algorithms for Plain Text and Images using Fractional Calculus

Rafael Martínez-Guerra Automatic Control Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico Juan Javier Montesinos-García Institute of Electronics and Mechatronics Technological University of the Mixteca Huajuapan de León, Mexico

Juan Pablo Flores-Flores Automatic Control Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico

 ISSN 2690-0300
 ISSN 2690-0327
 (electronic)

 Synthesis Lectures on Engineering, Science, and Technology
 ISBN 978-3-031-20697-9
 ISBN 978-3-031-20698-6
 (eBook)

 https://doi.org/10.1007/978-3-031-20698-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

In memory of my father, Carlos Martínez Rosales. To my wife and sons, Marilen, Rafael, and Juan Carlos. To my mother and brothers, Virginia, Victor, Arturo, Carlos, Javier, and Marisela.

Rafael Martínez-Guerra

To my mother Irma and my father Javier, whose love and support allowed me to reach all my goals. To my aunt Rosario and Uncle Clemente, their teachings, love and support were instrumental in my formation up to today. To my cousin Oscar, for all these years of support and assertive counsel. In loving memory of my grandmother Sofia, aunt Margarita and cousin Daniel. Juan Javier Montesinos-García

To my family, Eladio, Candelaria, Edy, Abril, Mario, Amaia, Akane and Najmeh. Juan Pablo Flores-Flores

Preface

Many people know that it is possible to intercept and modify data if an application does not protect it when travels on an untrusted network, and the application then becomes a disaster when it comes to security. In this book, we offer an alternative to encrypt and decrypt messages using objects called integer and fractional-order estimators or observers, by means of security codes. We establish a class of observers capable of carrying out this work, by means of security codes where finally, since an observer is nothing more than a mathematical model represented through nonlinear differential equations that can be of integer or fractional type that serve as means to send messages either of the plaintext type or of the image type whose key or security code to encrypt or decrypt is nothing more than a set of initial conditions where it makes sense to speak of this means of transporting the message either plain-text or image for specific attacks for chaotic cryptosystems of the stream cipher type. In this book, we mention the type of observers to treat either the integer or fractional order type and their main characteristics. We discuss an important property of some systems such as Liouville systems that is very important for the encryption and decryption of messages in integer and fractional order nonlinear systems by using the synchronization property of chaotic systems where we address some logistic maps such as Mandelbrot sets including Julia and fractal sets taking advantage of their characteristics to encrypt or recover messages. We discuss some issues about stream and block ciphers and some state observers. Various types of observers are proposed for nonlinear systems of integer and fractional order from the simplest (Luenberger Observer) to the most sophisticated such as the Supertwisting Observer for message receivers as well as their vulnerability to attacks. Observers of the exponential polynomial type are proposed together with the property of the Liouville type. We also propose the usefulness of robust fractional systems of sliding modes with Liouville characteristics as means of transmission and reception of plain-text and image messages. Of all the alternatives for encryption and decryption of messages shown here, a vulnerability analysis to cryptographic attacks (cryptoanalysis) is made, this is a security analysis, an important topic on the subject of secure communications. The book is self-contained, that is to say, the necessary tools to address the issues such as fractional calculus are given in the same book and several examples are presented. Moreover, this book includes exercises that are left to the reader. The book is directed to an audience such as professionals in the areas of mathematics, physics and engineering and researchers in general and related areas with a minimum of knowledge in higher mathematics. However, it also contains advanced research topics for people interested in encryption and decryption, observers, synchronization and secure communications areas. The book is organized as follows. In Chap. 1, a brief overview of the main topics covered is presented giving an introduction to the state of the art on encryption and decryption algorithms, synchronization of chaotic systems, security keys or codes, security analysis such as cryptographic attacks, linear and differential cryptanalysis, in addition to specific attacks for chaotic cryptosystems of type stream cipher. In Chap. 2, some definitions are given about the Lyapunov exponents, stability, and state observers; also fractals and synchronization are briefly introduced. Chapter 3 shows the stream and block ciphers and observers, binary representations as well as some conversions from binary to decimal and vice versa, representations of plain text and images in integer bits and ciphers with generalized synchronization. Chapter 4 deals with the study of Liouville systems and cryptography, and a supertwisting observer is addressed as a receiver as well as its vulnerability to cryptanalysis. Chapter 5 presents some basic concepts of state observers, the exponential polynomial observer is used as a receptor, and the receptors are based on properties related to Liouville systems. Chapter 6 shows some basic elements of fractional calculus and some observers. Chapter 7 deals with the implementation of systems with the property of Liouville and fractional order systems used for the encryption and decryption of plain-text and image messages. In Chap. 8, we present robust fractional order state observers as means of encryption and decryption, presenting a security analysis and situations that lead to decryption failures. Finally, in Chap. 9, a new topic is described in secure communications, and we present encryption and decryption algorithms by using state observers that are represented by means of fractional-order chaotic systems with the Atangana-Baleunu fractional derivative. Additionally, the reader will find throughout this material some exercises to strengthen the knowledge acquired.

Mexico City, Mexico

Rafael Martínez-Guerra Juan Javier Montesinos-García Juan Pablo Flores-Flores

Contents

1	Intr	oduction	1
	1.1	Chaotic System Synchronization and Encryption Algorithms	1
		1.1.1 Encryption Through Chaotic Systems	2
	1.2	Key or Security Code	3
	1.3	Security Analysis	4
		1.3.1 Cryptographic Attacks (Cryptanalysis)	4
		1.3.2 Differential Cryptanalysis	5
		1.3.3 Linear Cryptanalysis	6
	1.4	Specific Attacks for Stream Cipher-Type Chaotic Cryptosystems	6
		1.4.1 Message Extraction	6
		1.4.2 Parametric Estimation	7
		1.4.3 Brute Force Attacks	7
	Refe	erences	7
2	Syn	chronization of Chaotic Systems	0
-	2 1	Chaotic Systems	9
	2.1	2 1 1 Lyapunov Exponents	10
	2.2	Stability 1	12
	2.2	2.2.1 Nonlinear Systems	13
		2.2.2 Stability and Linearization	15
		2.2.3 Evapunov's Direct Method	24
	2.3	State Observers	30
	2.0	2 3 1 Luenberger Observer	30
	24	Fractals and Synchronization	38
	Refe	erences	46
3	Stre	am Cyphers and Block Cyphers	17
-	3.1	Message and Data Carrier Signals	17
		3.1.1 Decimal and Binary Numbers.	18

		3.1.2 Binary to Decimal and Decimal to Binary Conversions	53
		3.1.3 Representation of Plaintext with 8 Integers	55
		3.1.4 Representation of Plain Images with 8 Bit Integers	58
		3.1.5 Data Carrier Signal	69
	3.2	Stream Ciphers and State Observers	72
		3.2.1 Pseudorandom Number Generator	73
		3.2.2 The Luenberger Observer in a Stream Cipher	77
	3.3	Block Ciphers and Observers	83
		3.3.1 Block Cipher	85
	Refe	rences	95
4	Liou	villian Systems and Cryptography	97
	4.1	Introduction	97
	4.2	Transmitter	98
	4.3	Receiver 1	101
		4.3.1 Super-Twisting Based Receiver 1	101
		4.3.2 Proof of Stability 1	103
		4.3.3 Reconstruction of the States Based Receiver	107
	4.4	Numerical Simulation	108
	4.5	Vulnerability to Cryptanalysis	113
	4.6	Concluding Remarks	114
	Refe	rences 1	115
5	Stat	a Observers and Cryptography	117
3	5 1	Introduction	117
	5.1	Encryption	117 118
	5.2	5.2.1 Constanting Decudo Random Numbers	110
		5.2.1 Octorating Escudo-Kandom Numbers	110
	53	Data Recovery	173
	5.5	5.3.1 Exponential Polynomial Receiver	123
		5.3.2 Stability	123
		5.3.2 Jiouvillian System Properties Based Receiver	124 126
	54	Numerical Simulation	120
	5.5	Concluding Remarks	120
	Refe		132
	non		102
6	Fra	tional Systems	133
	6.1	Gamma Function	133
		6.1.1 Some Properties of the Gamma Function	135
	6.2	Beta Function	138
	6.3	Euler's Number and Its Relation to the Gamma Function	141
		Missellensous Examples	144

	6.5	Fractional-Order Differential Equations	151
		6.5.1 Laplace Transform of Fractional-Order Functions	152
		6.5.2 Solution of FODE by Means of the Laplace Transform	154
	6.6	Fractional Dynamical System	156
		6.6.1 Commensurate Fractional-Order Systems	156
		6.6.2 Incommensurate Fractional-Order Systems	157
	Refe	erences	157
7	Fra	ctional-Order Liouvillian Systems and Encryption	159
	7.1	Introduction	159
	7.2	Preliminaries	160
	7.3	Fractional Derivative Numerical Estimation	163
	7.4	Encryption Algorithm	165
	7.5	Decryption	169
	7.6	Numerical Results	171
	7.7	Security Analysis	175
	7.8	Concluding Remarks	184
	Refe	erences	187
8	Fra	ctional-Order Robust State Observers and Encryption	191
	8.1	Introduction	191
	8.2	Preliminaries	192
	8.3	Encryption Algorithm	193
	8.4	Receiver and Decryption	197
	8.5	Numerical Results	201
		8.5.1 Situations that Lead to Decryption Failure	207
	8.6	Security Analysis	208
	8.7	Concluding Remarks	217
	Refe	erences	217
9	Secu	re Communications by Using Atangana-Baleanu Fractional	
	Der	ivative	221
	9.1	Introduction	221
	9.2	Preliminaries	222
	9.3	Encryption Algorithm	224
	9.4	Receiver and Decryption	226
	9.5	Numerical Results	228
	9.6	Security Analysis	231
	9.7	Concluding Remarks	235
	Refe	erences	236
In	dex.		239
		· · · · · · · · · · · · · · · · · · ·	

Notations and Abbreviations

\mathbb{N}	The set of natural numbers
\mathbb{Z}	The set of integers numbers
Q	The set of rational numbers
\mathbb{R}	The set of real numbers
\mathbb{C}	The set of complex numbers
A, B, \ldots	Capital letters represent arbitrary sets
x, y, \ldots	Lowercase letters represent elements of a set
$A \subset B$	A is subset of B
$x \in A$	x is element of A
$A \cup B$	The union of two sets
$A \cap B$	The intersection of two sets
A^c	Complement set of A
$A \setminus B$	Difference of sets A and B
\oplus	Bitwise XOR logical operation
Ø	Empty set
\iff	Necessary and sufficient condition
A	For all
\sim	Equivalence relation
$a \equiv b \mod n$	<i>a</i> is congruent with <i>b</i> module <i>n</i>
*	Binary operation for groups
det(A)	The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$
$\mid A \mid$	The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$
Tr(A)	The trace of a matrix A
A^{\intercal}	The transpose of a matrix A
{}	Set
$(a_{ij})_{i,j}$	$m \times n$ matrix with entries $a_{ij}, 1 \le i \le m, 1 \le j \le n$
rank(A)	Rank of a matrix A
A^{-1} .	Inverse of A
$\dot{y} = \frac{dy}{dt}$	First derivative of y with respect to t

	Designation of the end of a proof
< (>)	Less (greater) than
$\leq (\geq)$	Less (greater) than or equal to

List of Figures

Fig. 2.1	State trajectories with different types of stability. Notice how the	
	asymptotic stability implies convergence to zero	14
Fig. 2.2	State trajectories of the Duffing unforced system, (a) x_1 and (b) x_2	18
Fig. 2.3	State trajectories of the Van Der Pol oscillator, (a) x_1 and (b) x_2	20
Fig. 2.4	State trajectories of the Rössler chaotic oscillator, (a) x_1 and (b) x_2	23
Fig. 2.5	State trajectories of a stable linearized duffing oscillator	26
Fig. 2.6	State trajectories of the chaotic forced duffing equation	28
Fig. 2.7	Forced duffing oscillator, state trajectories and estimates, (a) x_1	
	and (b) <i>x</i> ₂	33
Fig. 2.8	State estimation for the forced duffing oscillator, (a)	
	synchronization error and (b) convergence of both trajectories	
	(oscillator and observer)	34
Fig. 2.9	Van Der Pol oscillator, state trajectories and estimates, (a) x_1 and	
	(b) x_2	36
Fig. 2.10	State estimation for the Van Der Pol oscillator, (a) synchronization	
	error and (b) convergence of both trajectories (oscillator and	
	observer)	37
Fig. 2.11	Rössler oscillator, state trajectories and estimates, (a) x_1 , (b) x_2	
	and (c) <i>x</i> ₃	39
Fig. 2.12	State estimation for the Rössler oscillator, (a) synchronization	
	error and (b) convergence of both trajectories (oscillator and	
	observer)	40
Fig. 2.13	Non autosimilar shape	41
Fig. 2.14	Mandelbrot fractal	43
Fig. 2.15	Julia fractal	44
Fig. 2.16	Synchronization of the mandelbrot and julia sets	45
Fig. 3.1	Grayscale image	59
Fig. 3.2	Grayscale operation image	60
Fig. 3.3	Grayscale image after the decryption process is successful	61
Fig. 3.4	Grayscale image after the decryption process fails	63
		xv

Fig. 3.5	Color image with RGB pixels	64
Fig. 3.6	Image representation with encrypted colors	66
Fig. 3.7	Original color image after the decryption process	67
Fig. 3.8	Plain image after the decryption process fails	68
Fig. 3.9	Ciphertext data signal	70
Fig. 3.10	Cipher image signal	71
Fig. 3.11	Representation of the stream cipher process	72
Fig. 3.12	Representation of the ciphertext auto key (CTAK) process	73
Fig. 3.13	State trajectories of the attractor for the Duffing oscillator	76
Fig. 3.14	Original message to be encrypted by the Van der Pol oscillator	80
Fig. 3.15	Van der Pol oscillator and Luenberger observer convergence for	
	decryption of the image	81
Fig. 3.16	Message recovery error by using the Van der Pol oscillator	82
Fig. 3.17	Encrypted message by the output of the Van der Pol oscillator	83
Fig. 3.18	Recovered message by the Luenberger observer after the	
	encryption of the Van der Pol oscillator	84
Fig. 3.19	Original message to be encrypted by the Colpitts oscillator	85
Fig. 3.20	Colpitts oscillator and Luenberger observer convergence for	
	decryption of the image	86
Fig. 3.21	Message recovery error by using the Colpitts oscillator	87
Fig. 3.22	Encrypted message by the output of the Colpitts oscillator	88
Fig. 3.23	Recovered message by the Luenberger observer after the	
	encryption of the Colpitts oscillator	89
Fig. 3.24	Original message to be encrypted by the Rössler oscillator	90
Fig. 3.25	Rössler oscillator and Luenberger observer convergence for	
	decryption on the image	91
Fig. 3.26	Message recovery error by using the Rössler oscillator	92
Fig. 3.27	Encrypted message by the output of the Rössler oscillator	93
Fig. 3.28	Recovered message by the Luenberger observer after the	
	encryption of the Rössler oscillator	94
Fig. 4.1	Transmitted data	109
Fig. 4.2	Encrypted data by Super-Twisting observer	110
Fig. 4.3	Encrypted data by reconstruction based receiver	110
Fig. 4.4	Recovered data by Super-Twisting observer	111
Fig. 4.5	Recovered data by reconstruction based receiver	112
Fig. 4.6	Chosen image	114
Fig. 4.7	Recovered image by chosen plaintext attack	115
Fig. 5.1	Diagram of the encryption process	120
Fig. 5.2	Plain image	128
Fig. 5.3	Encrypted image by observer (a) and its red (b), green (c) and	
	blue (d) histograms	129

Fig. 5.4	Encrypted image by the reconstruction (a) and its red (b), green	
	(c) and blue (d) histograms	130
Fig. 5.5	Recovered image by the observer (a) and its red (b), green (c) and	
	blue (d) histograms	131
Fig. 5.6	Recovered image by the reconstruction (a) and its red (b), green	
	(c) and blue (d) histograms	132
Fig. 7.1	Making an 8 bit integer by using the outer bits	168
Fig. 7.2	Encryption and decryption	170
Fig. 7.3	Message and its red, green and blue histograms	172
Fig. 7.4	Convergence of the attractors and error	173
Fig. 7.5	Encrypted message and its red, green and blue histograms	174
Fig. 7.6	Recovered message and its red, green and blue histograms	175
Fig. 7.7	Fractional derivative of the output and its estimated value	176
Fig. 7.8	Data carrier signal and the recovered data carrier signal	177
Fig. 7.9	Results for Luenberger(up) and Sliding modes (down)	178
Fig. 7.10	First test for a data carrier signal contaminated by noise	179
Fig. 7.11	Second test for a data carrier signal contaminated by noise	180
Fig. 7.12	Effects of noise on the recovery of an image	181
Fig. 7.13	Chosen plain image and resulting image of the attack	182
Fig. 7.14	Correlation of adjacent pixels of the plain image and the encrypted	
	image	183
Fig. 7.15	Chosen plaintext attack result	184
Fig. 7.16	Noise effects on the scaled data carrier signal	185
Fig. 7.17	Noise effects on the images	186
Fig. 8.1	Common sliding modes performance	195
Fig. 8.2	Signal representation of integer 173	196
Fig. 8.3	(a) Message and recovered message, (b) message recovery error	202
Fig. 8.4	(a) x_1 and \hat{x}_1 , (b) Synchronization error	203
Fig. 8.5	(a) x_2 and \hat{x}_2 , (b) Synchronization error	204
Fig. 8.6	Message and its red, green and blue histograms	205
Fig. 8.7	Encrypted message and its red, green and blue histograms	206
Fig. 8.8	Recovered message and its red, green and blue histograms	207
Fig. 8.9	Improper message reconstruction	209
Fig. 8.10	Chosen plain image and resulting image of plaintext attack	211
Fig. 8.11	Message and resulting image of synchronization attack	213
Fig. 8.12	Chosen plain image and resulting image of plaintext attack	214
Fig. 8.13	Message and resulting image of synchronization attack	215
Fig. 8.14	Correlation of adjacent pixels of the plain image and the encrypted	
	image	216
Fig. 9.1	Signal representation of the integer number 173	225
Fig. 9.2	Original message	231
Fig. 9.3	Encrypted message	232

Fig. 9.4	Recovered message	232
Fig. 9.5	The number 173 as message and the recovered signal	233
Fig. 9.6	Message recovery error	233
Fig. 9.7	Attractor synchronization	234
Fig. 9.8	Synchronization error	235
Fig. 9.9	Cryptanalysis result	236

Introduction

Check for updates

1

Abstract

In this chapter we give an overview of cryptography and cryptanalysis where basic concepts and definitions are given, also the relation of cryptography to chaotic systems synchronization is addressed.

1.1 Chaotic System Synchronization and Encryption Algorithms

Chaotic systems synchronization was introduced in [1]. There is proposed a methodology such that a chaotic system called slave, follows the state trajectories of a second chaotic system called master. This, by means of a coupling signal. Subsequently, numerous proposals have emerged to achieve the same goal, such as complete synchronization, generalized synchronization, impulsive synchronization, phase synchronization, delay synchronization, etc. As a result, multiple applications of chaotic systems synchronization have been found. One of the most important is secure communications [2–9], which is the main topic of this book.

Most encryption algorithms based on chaotic systems can be classified into one of the following kinds of encryption:

- **Chaotic masking**: It consists of adding the signal message on the output of a chaotic system.
- Chaos shift keying (CSK): It consists of transmitting a message as variations of a given parameter of the chaotic system. It usually requires converting the message to its binary equivalent, therefore, in this scheme 1 corresponds to a specific parameter

value and 0 to another. As a result, changes occur in the behavior of the chaotic system attractor.

• **Chaotic modulation**: Here, the message changes the value of some parameter of the chaotic system.

These are the best known methods that consist in encrypting messages with chaotic systems and then recovering them by means of a synchronization. A more extensive explanation of these encryption algorithms, based on chaotic systems is given below.

1.1.1 Encryption Through Chaotic Systems

There exist two basic types of chaotic cryptosystems: analog and digital. The former are mainly based on the synchronization of chaotic systems, the second ones, can be independent of synchronization and are completely digital. The implementation of an analog encryption algorithm requires the circuits responsible of generating chaos to be described in sufficient detail, such as the explicit form of the differential equation of the system and parameters that generate chaotic behavior. Meanwhile, for digital systems, precision, arithmetic (floating or fixed point), hardware configuration, among others, must be given.

In general, encryption algorithms are typically divided into two kinds: symmetric key and asymmetric key. The former uses the same key to encrypt and decrypt information, as a consequence these are extremely fast and useful to handle large volumes of data at high speed. This kind of algorithms are divided into two classes:

- **Stream cipher**: These generate a pseudo-random stream of symbols (keystream) by means of a public deterministic algorithm, which is governed by a secret key. Thus, the message is combined with the keystream, usually with a two-module sum or with a bitwise XOR. Among the most common stream ciphers we have: A5 / 1, A5 / 2, E0. RC4, SEAL, etc.
- **Block encryption**: These encrypt the original message by clustering its elements in blocks of two or more, so that each encrypted block is of the same size. These algorithms usually consist of an initial transformation, a cryptographic function iterated certain number of times and a final transformation. Then, the key is expanded using some algorithm so that enough key elements are obtained for each round of encryption. The most popular algorithms of this kind are: AES, DES, RC5, etc.

Symmetric key algorithms generally have keys between 128 and 256 bits. On the other hand, asymmetric key algorithms use two keys for the encryption and decryption process. Usually one of the keys is public and the other private. When encrypting, both keys are used and to decrypt only the private key is necessary. These algorithms are generally slow as require complex operations with large integers, so they are used to encrypt small data

packets such as digital signatures, secret key agreements, etc. The most common public key algorithm is RSA and its keys usually require between 1024 and 4096 bits [10].

The key is fundamental in any encryption algorithm. However, very few works in the literature, proportionate detailed information about the key. Therefore, in the following a simple introduction is given to understand the importance of these keys and how they should be obtained for chaotic cryptosystems.

1.2 Key or Security Code

A common element in all encryption algorithms is the key. The security code of an encryption algorithm must depend exclusively on the key [11].

No matter how strong and how well designed an algorithm is, if the key is not adequate, then the encryption will be easily violated [10]. As has been said, there is little information about how to choose or design the keys. Moreover, fundamental specifications such as the space of the key or the variables to be used as key are not presented. Therefore, here this will be one of the main aspects to be covered when proposing encryption algorithms.

The key space is defined as the set of values that can be used as keys. The size of the key space is given by the number of possible keys for the system. The keys from classical encryption algorithms are usually strings of random bits that are generated by some automatic process. In the chaotic encryption schemes, the properties of the key space elements are not the same, since not all keys are equally strong. For this, a bifurcation diagram can be useful to find intervals in which a key produces periodic orbits and thus avoid the use of weak keys (degenerate keys).

When many parameters are used simultaneously as a key, finding the most convenient intervals (without degenerate keys) might be difficult due to the dependence between the parameters. In such case, the positive Lyapunov exponents can be used to describe the key space. Thus, it must be obtained the largest Lyapunov exponent for the desired parameter combinations, then, if the obtained exponent is positive, the parameter combination can be used as a key.

The key space must be large enough to avoid brute force attacks. However, if the region that produces chaotic behavior is not large enough, it must be increased as much as possible to avoid equivalent keys. That is, to avoid a group of keys that can decrypt the same encrypted message due to its closeness. Thus, the region that produces chaotic behavior must be discretized so that the space between adjacent keys does not produce equivalent keys.

The keys should favor the presence of the so called avalanche property, that is, when a change occurs in the key the encrypted message will change radically and ideally it should change at least half of the values of the encrypted message. In some cases, the chaotic system parameters are set and only one of them is used as a key, which can be counterproductive since it is possible to use a bit-error-rate (BER) attack in which some system parameters are set and from these, an approximation of the one used as the key can be obtained. Therefore, the partial knowledge of the key should never reveal information about the message or the unknown part of the key.

The security of an encrypted message is usually given by the priority when designing an encryption algorithm. When a new encryption algorithm is presented, it is common to provide a security analysis of it. Therefore, in the following will be presented an explanation on what an appropriate security analysis should contain for each type of cryptosystem.

1.3 Security Analysis

Security is the main interest of an encryption algorithm, so it must be evaluated at least by a basic security analysis. This is, it must at least withstand the most known and popular attacks to identify and correct defects before the system is published.

The algorithm will be resistant to the most common attacks if have two basic characteristics: confusion and diffusion. The first makes the relationship between the key and the encrypted message as complex as possible, making difficult to find redundancies or statistical patterns in the encrypted message. The second property consists of rearranging or scattering the bits in a message so that the influence of the message and the key are dispersed as best as possible within the encrypted message. To fulfill these requirements, the algorithm must satisfy the following [12]

- 1. Sensitivity with respect to the key, that is, changing a single character of the key produces completely different encrypted messages when the algorithm is applied to the same message.
- 2. Sensitivity with respect to the message, that is, altering one bit of the message should create totally different encrypted messages.
- 3. Absence of patterns in the encrypted text.

The first two characteristics generate confusion, while the last one is responsible for providing diffusion.

1.3.1 Cryptographic Attacks (Cryptanalysis)

During the security analysis, must be carried out attacks that assume that the cryptanalyst knows the exact design of the algorithm and how it works. This is, everything about the algorithm, except the key, is known. This must be done since the algorithm is sold to several users and therefore, it is reasonable to assume that it will easily be stolen, compromising all the details of its operation. Thus, the security of the algorithm must depend only on its key and not in the secrecy of its operation.

A cryptographic system can be described by the following elements:

- 1. *P* is the set of possible messages.
- 2. *C* is the set of possible encrypted messages.
- 3. *K* is the space of the key.
- 4. e_k is the encryption algorithm for each element $k \in K$.
- 5. d_k is the corresponding decryption algorithm for the element $k \in K$ mentioned in the previous point.

The operation of an algorithm can be summarized as follows: given a message $x \in P$, this can be encrypted with a key $k \in K$ by using the encryption rule $e(x, k) = y, y \in C$. Meanwhile, the encrypted message y is decrypted by using the corresponding decryption rule d(y, k) = x, such that d(e(x, k), k) = x.

There are several kinds of attacks to carry out the cryptanalysis of an algorithm. The most popular ones are listed below, starting with the most complicated:

- 1. Ciphertext only (encrypted message): The attacker knows one or more encrypted messages $y_1, y_2, \ldots, y_n \in C$.
- 2. Known plaintext (known message): The attacker knows one or more messages $x_1, x_2, \ldots, x_n \in P$ and its corresponding encrypted message $y_1, y_2, \ldots, y_n \in C$.
- 3. Chosen plaintext (chosen message): The attacker has temporary access to the encryption device and can choose some messages $x_1, x_2, \ldots, x_n \in P$ as well as obtain the encrypted messages $y_1, y_2, \ldots, y_n \in C$ that are generated.
- 4. Chosen ciphertext (chosen encrypted message): The attacker has temporary access to the encryption device and can choose some encrypted messages $y_1, y_2, ..., y_n \in C$ as well as obtain the messages $x_1, x_2, ..., x_n \in P$ that are generated.

The objective of each of these attacks is to obtain the key k or some equivalent key that was used to encrypt the messages. In particular, the attacks of known and chosen message are very effective in the cryptanalysis of algorithms based on chaotic systems [13–16]. There exist other attacks that are less common. However, these have characteristics of the already mentioned above. In the case of block encryption algorithms, the analysis on the susceptibility to differential and linear cryptanalysis should be included.

1.3.2 Differential Cryptanalysis

Differential cryptanalysis was introduced by Guojie et al. [17] and is a variant of the chosen message attacks, which tries to find the key of an iterative encryption algorithm. It consists of analyzing the differences caused in encrypted messages when performing determined changes in the messages that generated them. These differences are used to determine the most probable key among all the possible keys. At the same time, the number of tests that

would be done when implementing a brute force attack is reduced. Usually, the difference is chosen as the result of a bitwise XOR operation between the two unencrypted messages.

1.3.3 Linear Cryptanalysis

Linear cryptanalysis was introduced in [18] and is essentially a known message attack whose purpose is to generate a linear expression that approximates a certain block cipher. A linear expression for a given iteration will be an equation that is based on the moduletwo sum between the inputs and outputs of such iteration.

1.4 Specific Attacks for Stream Cipher-Type Chaotic Cryptosystems

There are several cryptanalysis forms for stream cipher encryption algorithms based on chaotic systems. These can be classified as follows:

- 1. Extraction of the signal from the message s(t) of the transmitted signal y(t).
- 2. Extraction of the signal that carries the data c(t) and then remove it and retrieve the message s(t).
- 3. Estimation of the transmitter's secret parameters to completely break the algorithm.
- 4. Brute force attacks.

Each of these analyses is explained in greater detail below.

1.4.1 Message Extraction

When using chaotic masking techniques, extracting the signal is possible if the message s(t) is a periodic signal during a sufficient amount of time. Methods such as autocorrelation and cross-correlation analysis, spectral power analysis, filtering techniques, and generalized synchronization are usually used.

Power spectral analysis and filtering take advantage of the chaotic signals limitations, which are used to mask the message. The power spectrum of the message must be completely covered with the power spectrum of the chaotic signal that was used to mask it. However, several encryption algorithms fail at this, since the commonly used chaotic oscillators, such as Rössler, Lorenz, Chua, Duffing, etc., have a much lower density power than common messages. Therefore, these cannot support this type of filter-based attacks.

The generalized synchronization attack was introduced in [19]. This assumes that the attractor used is known, but the oscillator parameters are ignored. Its purpose is to

reconstruct the signals used to hide the message and then access the signal that contains the message.

1.4.2 Parametric Estimation

Several chaos-based encryption schemes are not sensitive enough to variations in transmitter and receiver parameters, allowing similar parameters to be used for message retrieval.

Different methods can be used for this, for example, it is possible to solve the differential equations based on the signals that they emit. Also, the parameters can be estimated from a generalized synchronization scheme. In addition, some adaptive control techniques can be useful to find equivalent keys.

1.4.3 Brute Force Attacks

A brute force attack consists on testing all the possible keys. The effectiveness of this attack will depend on the size of the key space and the attacker's processing capacity. It is commonly considered that any space with less than 2^{100} elements it is not safe, although this number increases when the processing power is improved [10].

References

- 1. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. *Physical Review Letters A*, 64, 821–824.
- Kocarev, L., Halle, K. S., Eckert, K., Chua, L. O., & Parlitz, U. (1992). Experimental demonstration of secure communications via chaotic synchronization. *International Journal of Bifurcation and Chaos*, 2(03), 709–713.
- Liao, T. L., & Huang, N. S. (1999). An observer-based approach for chaotic synchronization with applications to secure communications. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 46(9), 1144–1150.
- Cuomo, K. M., Oppenheim, A. V., & Strogatz, S. H. (1993). Synchronization of Lorenzbased chaotic circuits with applications to communications. *IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing*, 40(10), 626–633.
- Smaoui, N., Karouma, A., & Zribi, M. (2011). Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. *Communications in Nonlinear Science and Numerical Simulation*, 16(8), 3279–3293.
- Wang, S., Kuang, J., Li, J., Luo, Y., Lu, H., & Hu, G. (2002). Chaos-based secure communications in a large community. *Physical Review E*, 66(6), 065202.
- Li, Z., & Xu, D. (2004). A secure communication scheme using projective chaos synchronization. *Chaos, Solitons & Fractals*, 22(2), 477–481.
- Nana, B., Woafo, P., & Domngang, S. (2009). Chaotic synchronization with experimental application to secure communications. *Communications in Nonlinear Science and Numerical Simulation*, 14(5), 2266–2276.

- 9. Li, C., Liao, X., & Wong, K. W. (2004). Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. *Physica D: Nonlinear Phenomena*, 194(3–4), 187–202.
- 10. Schneier, B. (2007). Applied cryptography: Protocols, algorithms, and source code in C. John Wiley & Sons.
- 11. Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied cryptography. CRC Press.
- Alvarez, G., & Li, S. (2006). Some basic cryptographic requirements for chaos-based cryptosystems. *International Journal of Bifurcation and Chaos*, 16(08), 2129–2151.
- 13. Biham, E., & Shamir, A. (2012). *Differential cryptanalysis of the data encryption standard*. Springer Science & Business Media.
- Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2000). Cryptanalysis of a chaotic encryption system. *Physics Letters A*, 276(1–4), 191–196.
- Stojanovski, T., Kocarev, L., & Parlitz, U. (1996). A simple method to reveal the parameters of the Lorenz system. *International Journal of Bifurcation and Chaos*, 6(12b), 2645–2652.
- Li, C., Li, S., Zhang, D., & Chen, G. (2005, May). Chosen-plaintext cryptanalysis of a clippedneural-network-based chaotic cipher. In *International Symposium on Neural Networks* (pp. 630– 636). Berlin, Heidelberg: Springer.
- Guojie, H., Zhengjin, F., & Ruiling, M. (2003). Chosen ciphertext attack on chaos communication based on chaotic synchronization. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 50(2), 275–279.
- Matsui, M. (1993, May). Linear cryptanalysis method for DES cipher. In Workshop on the Theory and Application of of Cryptographic Techniques (pp. 386–397). Berlin, Heidelberg: Springer.
- Yang, T., Yang, L. B., & Yang, C. M. (1998). Breaking chaotic switching using generalized synchronization: Examples. *IEEE Transactions on Circuits and Systems I: Fundamental Theory* and Applications, 45(10), 1062–1067.