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Preface
Smart integration is a process in which an existing system
infrastructure is upgraded through the integration of
multiple technologies, for example, automated sensors,
advanced automated controls and forecasting systems. A
smart grid allows for interaction between the consumers
and enables optimal use of energy and communication
systems based on price preferences and system technical
stresses, without forgetting the environmental aspect.
The continuous reduction in dimensions and the need for
increasingly high power density have highlighted the need
for ever more efficient structures. Smart power technology
has been developed to meet this demand. This technology
makes specific use of (L)DMOS devices, offering new
solutions because of its unique high voltage and high
current characteristics. The operation of these devices is
accompanied by a number of phenomena. Good modeling
makes it possible to account for these phenomena and
predict the physical behavior of the transistor prior to
production. To this, we add an axis that has become
unavoidable: the entanglement between devices, circuits,
connections and substrates.
(Micro)grid designs have evolved significantly in recent
years with the incorporation of information and
communication technology (ICT) solutions, such as artificial
intelligence (AI) and machine learning (ML). A smart
microgrid, equipped with sensors and automation controls,
can efficiently perform load profiling and forecasting,
generation management, load prioritization, etc. A go-to
example is the vehicles that are quickly becoming a center
of communication, navigation and connectivity. Automotive
solutions will integrate with smart city infrastructures,



personal devices and in-vehicle services to become part of
a connected whole.
This book introduces different domains and tools and
allows the reader to develop their understanding of smart
power systems through real studies. Knowledge of high
school mathematics is sufficient to progress through these
studies.
Mohamed Abdelhamid Abouelatta
Ahmed Shaker Ahmed Zaki Ghazala
Christian Gontrand
January 2021



1
Overview of Smart Power Integration

1.1. Introduction
Since 1965, integrated circuit (IC) technology has followed
Moore’s law which states that the number of integrated
devices doubles every 18 months. This growth is partly due
to an increase in the size of ICs that can be produced.
However, the dominant effect is due to the reduction in
feature size of component devices that are integrated. The
reduction of feature size tends to bring advantages of
increased speed and the possibility to operate at lower
voltages, allowing reduced power consumption. These
advantages make technology shrinkage very attractive for
technical performance reasons, as well as cost.
However, there are many applications where voltage
cannot be reduced for external reasons. There are three
areas where this is the case: power electronics, automotive
applications and wide dynamic range circuits. In such
applications, system integration of high voltage, analog and
digital circuitry on a single IC is attractive in order to gain
advantage in terms of miniaturization, reliability, efficiency
and cost. However, in order to make these gains, the
conflict of reducing voltage due to technology feature size
has to be resolved with the requirements for operation at
continued relatively high voltage.
The different operation and interface requirements of high
voltage, analog and digital require a technology
development optimized for these system requirements.
Different technologies have been developed to address



these applications, such as smart power and various
bipolar-CMOS-DMOS (BCD) processes.
Smart power integrated circuits (PICs) that monolithically
integrate low-loss power devices and control circuitry have
attracted much attention across a wide range of
applications. These ICs improve system reliability, reduce
volume and weight and increase overall efficiency.
Considerable effort has been put into the development of
smart power devices for automotive electronics, peripheral
computer appliances and portable equipment, such as cell
phones, video cameras, and so on.
Commonly used smart power devices are the lateral double
diffused MOS Field Effect Transistor (LDMOSFETs) and
lateral insulated gate bipolar transistors (LIGBTs)
implemented in bulk silicon or silicon on insulator (SOI).
The main challenges in the development of these devices
are obtaining the best trade-off between specific ON-
resistance RON,SP (RON × area) and breakdown voltage
(BV), and shrinking feature size without degrading device
characteristics.

1.2. Smart PIC applications



Figure 1.1. Applications of power devices
Smart PIC technology is expected to have an impact in all
areas in which discrete power semiconductor devices are
currently being used. It is anticipated that this technology
will open up new applications based upon the added
features of smart controls. In Figure 1.1, applications of
power devices are shown as a function of operating
frequency. Another classification approach of these
applications involves current and voltage handling
requirements, as shown in Figure 1.2. Some of these
applications are listed in the following subsections.



Figure 1.2. System ratings of power devices

1.2.1. Flat panel displays
The popularity of portable electronic products such as cell
phones and notebook computers has generated significant
demand for flat panel displays. These displays are usually
liquid crystal displays (LCD) or electro-luminescence (EL)
panels arranged in a matrix with large number of column
and row drivers (e.g. 640 × 480 for VGA resolution).
Although the required voltage may be high, the current
level is low (usually in the mA range). Smart PICs with as



many as 80 output channels have been fabricated on a
monolithic chip.

1.2.2. Computer power supplies and disk
drivers
Computer systems are developing continuously in terms of
speed and processing capabilities. This is made possible by
using higher density Very Large-Scale Integration (VLSI)
technology. However, the increased power requirement has
resulted in an increase in the physical size of the power
supply. In 1976, the CPU board and power supply each
represented one-third of the total physical volume of a
computer system. By the 1990s, the power supply had
grown to 50% of the physical volume while the CPU board
had shrunk to about 20%. To reverse this trend, it is
necessary to develop smart PIC technology to improve the
density and hence the volume of the power supplies.

1.2.3. Variable speed motor drives
Variable-speed motor drives are being developed to reduce
power loss in all applications. The improvement in
performance requires smart power technology that can
operate at relatively high frequencies with low power
losses. This translates to a low ON-state voltage drop at
high current levels, fast switching speed and rugged
operation. For smart PIC implementation, additional
consideration, such as level shifting to and from high
voltages, over-temperature, over-current, over-voltage and
short-circuit protection are more critical.

1.2.4. Factory automation
Advanced numerical control and robotic systems require
efficient smart PIC technology to create a distributed
power control network under the management of a central



computer. The smart PICs for this application must be
capable of providing AC or DC power to various loads, such
as motors, solenoids, arc welders, and so on. They are also
required to perform diagnostic, protection and feedback
functions.

1.2.5. Telecommunications
One of the high-volume markets for smart power
technology is in telecommunications. The technology
required for these applications must be capable of
integrating multiple high-voltage, high-current devices on a
single chip. At present, this has been achieved using MOS
devices fabricated using dielectric insulation.
Improvements are required to reduce the cost of the
dielectric insulation fabrication process. Ongoing
development on direct wafer bonding has been promising
in terms of providing a cost-effective process.

1.2.6. Appliance controls
The main benefit of using smart PICs in appliance control is
to provide improvements in performance and efficiency.
Onboard sensors can also provide more precise controls
(e.g. temperature settings). Simple domestic appliances,
such as toasters, washing machines and irons, are
appearing with smart PICs for this reason.

1.2.7. Consumer electronics
Smart PICs are required for a large variety of
entertainment systems such as CD players, tape recorders,
VCRs, etc. For example, a monolithic motor control IC that
regulates the speed of the motor, while minimizing power
losses, is essential to all battery-operated consumer
entertainment systems. Development of improved lateral


