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General Introduction

Today’s electronic systems are composed of complex Systems on a Chip (SoCs)
made of heterogeneous blocks that comprise memories, digital circuits, analog
and mixed-signal circuits, etc. To fit a critical application standard requirement,
SoCs pass through a comprehensive test flow (functional, structural, parametric,
etc.) at the end of the manufacturing process. The goal is to achieve near-zero
Defective Parts per Million (DPPM) so as to ensure the quality level required by the
standard. Unfortunately, imperfections in the manufacturing process may introduce
systematic defects, especially when the first devices are produced while the process
is not yet mature. Identification of these systematic defects and correction of the
related manufacturing process call for efficient diagnosis techniques. Hence, the
goal of diagnosis is to extract information from test data in order to identify the
nature and the causes of defects that have occurred in a SoC. Note that additional
data can also be produced and used to improve the diagnosis process, such as
distinguishing test patterns used only during the diagnosis phase.

Failure isolation is critical to identify root-cause of manufacturing issues. The
scaling of manufacturing process technology and shrinking of device sizes and
interconnects in nano-scale geometries make defect isolation more and more
challenging. With the introduction of new transistor devices, lithography, and
fabrication technologies, the demand for faster and precise defect isolation will
continue to grow. Along with manufacturing process complexity, design complexity
has also increased as functionality and computing needs have grown manyfold.
Increasing design complexity makes the defect isolation in billon transistor chip
ever more challenging. Therefore, fast diagnosis and root-cause identification of
failures are essential to maintain high production yields and keep the Moore’s Law
in meeting the time to market demand.

Chips that pass manufacturing test are then shipped to the customer and inte-
grated in their host system. However, despite the quality level of the manufacturing
test procedures, SoCs may fail in the field, either due to the occurrence of a defect
not covered during the manufacturing test phase or due to early-life failures or fail-
ures caused by various wear-out mechanisms. Early-life failures are caused by latent
defects that are not exposed during manufacturing tests, but that are degraded due to
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electrical and thermal stress during in-field use, and lead to a failure in functionality.
Wear-out or aging manifesting as progressive performance degradation, is induced
by various mechanisms such as negative-bias temperature instability or hot-carrier
injection. To avoid catastrophic consequences, many systems include in-the-field
test techniques, which allow the detection of such problems. After detection, the
defective SoC must be diagnosed to identify any possible systematic degradation
patterns and avoid their re-occurrence in next-generation products. In this context,
the first step during the failure identification process is to reproduce the failure
mechanism with any original test and test conditions. Next, a diagnosis program
made of several routines is used to identify, step by step, the failing part of the
defective SoC and, finally, the suspected defects. Each routine corresponds to the
application of a diagnosis algorithm at a given hierarchy level (system, core and cell
levels).

Irrespective of the phase during which a SoC fails (after manufacturing, or after
online test if the defective SoC is sent back to the manufacturer), defective SoCs
undergo logic diagnosis to locate the fault, and then physical failure analysis (PFA)
to characterize the fault. Diagnosis is a software-based method that analyzes the
applied tests, the tester responses, and the netlist (possibly with layout information)
to produce a list of candidates that represent the possible locations and types of
defects (or faults) within the defective circuit. The quality of a diagnosis outcome
is usually evaluated owing to two metrics: accuracy and resolution. A diagnosis is
accurate if the actual defect is included in the reported list of candidates. Resolution
refers to the total number of candidates reported for each actual defect. An accurate
diagnosis with perfect resolution (i.e., one) is the ideal case. Diagnosis is usually
followed by physical failure analysis (PFA), a time-consuming process for exposing
the defect physically in order to characterize the failure mechanism. Due to the high
cost and destructive nature of PFA, diagnosis resolution is of critical importance. In
practice, it is very uncommon to perform PFA on any defect with more than five
candidates. This ensures that the likelihood for uncovering the root-cause of failure
is maximized when performing PFA.

Historically, conventional approaches based on cause-effect (i.e., fault simula-
tion) and/or effect-cause (i.e., critical path tracing) analysis were used in industry for
defect and fault diagnosis. However, with the fast development and vast application
of machine learning (ML) in recent years, ML-based techniques have been shown
to be highly valuable for diagnosis. They can be used for volume diagnosis after
manufacturing to improve production yield or for diagnosis of customer returns to
identify any possible systematic degradation patterns. The main advantage of ML-
based diagnosis techniques is that they can deal with huge amount of insightful test
data that could not be efficiently exploited otherwise in a reasonable amount of time.

A wide range of solutions based on supervised, unsupervised and reinforcement
learning have been proposed in the last 10 years. They can be used for failure
isolation in logic or analog parts of SoCs, board-level fault diagnosis, or even
wafer-level failure cluster identification. A plethora of ML algorithms have been
experimented and implemented in new diagnosis tools used today in industry.
Benefits can be measured in terms of diagnosis accuracy, resolution and duration.
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This book identifies the key challenges in fault diagnosis of system-on-chip and
presents the solutions and corresponding results that have emerged from leading-
edge research in this domain. In a comprehensive form, it provides necessary
background to the reader and proposes a compendium of solutions existing in
this field. The book explains and applies optimized techniques from the machine
learning domain to solve the fault diagnosis problem in the realm of electronic
system design and manufacturing. It demonstrates techniques based on industrial
data and feedback from actual PFA analysis. It also discusses practical problems,
including test sequence quality, diagnosis resolution, accuracy, and time cost.

The first chapter gives some prerequisites on fault diagnosis. Basic terms, such
as defect, fault, and failure, are first enumerated. Then, basic concepts of test
and fault simulation are described. After that, the basics of volume diagnosis for
yield improvement and fault diagnosis of customer returns are given. Finally, basic
information on yield and failure analysis is provided.

Chapter 2 is dedicated to the presentation of conventional methods for fault
diagnosis. The chapter focuses on the automated tools and methods along with
design features at the architectural, logic, circuit, and layout level that are needed
to facilitate silicon debug and defect diagnosis of integrated circuits. These design
features are generally referred to as design for debug and diagnosis (DFD). The
chapter describes how these DFD features along with automated tools and methods
are used effectively in a debug or diagnosis environment for applications ranging
from design validation, low yield analysis, and all the way to field failure analysis.
The chapter can serve as a steppingstone to understand further how conventional
methods for fault diagnosis can be improved by using machine learning—based
techniques.

The third chapter provides details of machine learning techniques proposed so far
to solve various VLSI testing problems. It focuses on explaining scope of machine
learning in VLSI testing. First, it gives a high-level overview of machine learning.
After that, it describes the types of machine learning algorithms. Then, it explains
some popular and commonly used machine learning algorithms. After that, this
chapter discusses some recent machine learning based solutions proposed to solve
VLSI testing problems. Finally, it discusses the strength and limitations of these
methods.

Chapter 4 is dedicated to machine learning support for logic diagnosis and
defect classification. After a preliminary discussion about attempts to distinguish
maleficent defects from benign variations, the chapter presents machine learning
techniques developed so far for distinguishing variations from reliability threats
due to defects. Then, machine learning techniques for identifying different defect
types during diagnosis are discussed. A neural network-based fault classifier is
presented that can distinguish different fault models at gate level. Finally, the chapter
concentrates on distinguishing between transient errors covered by hardening or
masking techniques from intermittent faults. A solution based on Bayesian networks
is presented for classifying intermittent, transient, and permanent faults.

The fifth chapter is dedicated to machine learning in logic circuit diagnosis. It
is organized into three main sections that describe the use of ML for pre-diagnosis,
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viii General Introduction

during-diagnosis, and post-diagnosis, so as to characterize when and how a given
methodology enhances the classic outcomes of diagnosis that include localization,
failure behavior identification, and root cause of failure. The first section is dedicated
to pre-diagnosis, which is concerned with any activities that are performed before
diagnosis is deployed. Examples of pre-diagnosis activities include classic work
such as diagnostic ATPG, and DFT for increasing testability. In the second section,
the use of ML in during-diagnosis activities is described, which generally involves
learning while diagnosis executes. For example, a k-nearest neighbor model can be
created, evolved, and used during on-chip diagnosis to improve diagnosis outcomes.
In the third and last section, post-diagnosis is discussed, which includes all activities
that occur after diagnosis execution. These approaches usually involve volume
diagnosis (i.e., using the outcome results of many diagnoses) to improve diagnostic
resolution.

Chapter 6 gives an overview of the various machine learning approaches and
techniques proposed to support cell-aware generation, test, and diagnosis. The
chapter focuses on the generation of the cell-aware models and their usage for
diagnosis. After some backgrounds on conventional approaches to generate and
diagnose cell-aware defects, the chapter will present a learning-based solution to
generate cell-aware models. Then, it presents a ML-based cell-aware diagnosis
technique. Effectiveness of existing techniques will be shown through industrial
case studies and corresponding diagnosis results in terms of accuracy and resolution.
The chapter will conclude with a discussion on the future directions in this field.

Chapter 7 discusses the state of the art on fault diagnosis for analog circuits with
a focus on techniques that leverage machine learning. For a chip that has failed
either in post-manufacturing testing or in the field of operation, fault diagnosis is
launched to identify the root-cause of failure at subblock level and transistor-level.
In this context, machine learning can be used to build a smart system that predicts
the fault that has occurred from diagnostic measurements extracted on the chip.
The chapter discusses the different elements of a diagnosis flow for analog circuits,
including fault modeling, fault simulation, diagnostic measurement extraction and
selection, and the machine learning algorithms that compose the prediction system.
A machine learning—based diagnosis flow experimented on an industrial case study
is finally presented.

The eighth chapter discusses machine learning support for board-level functional
fault diagnosis. First, the chapter presents an overview of board-level manufacturing
tests and conventional fault-diagnosis models. Next, it discusses the motivation of
utilizing machine learning techniques and presents the existing machine learning—
based diagnosis models. To address the practical issues that arise in real testing data,
the chapter next presents a diagnosis system based on online learning algorithms
and incremental updates. In the following, it also presents a diagnosis system that
utilizes domain-adaption algorithms to transfer the knowledge learned from mature
boards to a new board.

Chapter 9 is dedicated to wafer-level failure pattern analytics. In the first section
of the chapter, the application is about early detection of yield excursions with
the goal to automatically recognize the existence of a systematic failure cluster
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when one occurs. In the second section, analytics is formulated as solving a multi-
class classification problem and the discussion focuses on training a high-accuracy
neural network classifier. In the next section, techniques to learn an individual
recognizer for one pattern class are discussed with the goal to learn with very few
training samples. Generative adversarial networks (GANs) and tensor computation—
based techniques are used together to implement an unsupervised wafer pattern
classification and recognition flow. The last section of the chapter introduces
language-driven analytics and explains its use in the analytics context. The authors
show how a pretrained language model like GPT-3 can play a role in solving the
problem.

Finally, a conclusion summarizes the contribution of the book and some per-
spectives in the field of fault and defect diagnosis of circuits and systems by using
machine learning techniques are given.
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Check for
updates

Harry H. Chen, Xiaoqing Wen, and Wu-Tung Cheng

1 Defect, Fault, Error, Failure

The life of an integrated circuit (IC) consists of three phases, namely the design
phase, the manufacturing phase, and the operational phase. Ideally, an IC should
perform all required functions correctly at its required speed and within its required
power limit. In practice, unavoidable imperfection in the three phases may cause
adverse impact on an IC. As illustrated in Fig. 1, an error may occur at an IC (i.e.,
the IC outputs a wrong signal) and may eventually cause a failure of a system based
on the IC (i.e., the system shows a wrong behavior). System failures may cause
anything from inconvenience to catastrophe. Although techniques for robust system
design exist that can mask the impact of errors to some extent, they are generally
expensive because of larger circuit area and higher power consumption. Therefore, it
is imperative to minimize the occurrence of IC errors by all means so as to minimize
the possibility of system failures.

An IC error can be caused by incorrectness (i.e., bugs) introduced in the design
phase. However, discussions on how to reduce design bugs are not the focus of this
book; instead, this book assumes that IC design is correctly conducted. As illustrated
in Fig. 1, for a correctly-designed IC, an IC error is the effect of either an internal
cause (defect) or an external cause (radiation).
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Fig. 1 Various terms

Fig. 2 Example of manufacturing defects (missing vias)

The internal cause of an IC error is a defect, which is the unintended difference
between the implemented hardware and its intended design [5]. A defect physically
and permanently exists since its occurrence. An IC with one or more defects is
defective; otherwise, the IC is defect-free.

Defects may occur in the manufacturing phase. An example is shown in
Fig. 2. Manufacturing defects are caused by random imperfection (such as particle
contamination) or systematic reasons (such as process variations). Therefore, all
manufactured ICs need to go through a check process, called manufacturing test.
Ideal manufacturing test passes all defect-free ICs but fails all defective ICs.
Realistic manufacturing test, however, is imperfect in that it may pass some
defective ICs (i.e., under-test) and may fail some defect-free ICs (i.e., over-test).
Passing ICs are shipped to customers for use in electronic systems and failing
ICs are discarded. Yield is defined as the percentage of passing ICs among all
manufactured ICs. Yield loss is catastrophic if it is caused by random defects, or
parametric if it is caused by defects due to process variations. Low yield not only
is the nightmare for IC manufacturers but also makes customers worry about IC’s
quality and reliability. There are two major design-based approaches to improving
yield, namely design for yield enhancement (DFY) and design for manufacturability
(DFM). DFY tries to reduce the effect of process variation while DFM tries to avoid
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random defects. In addition, efforts can be made to reduce over-test, especially for
low-power ICs [11].

Defects may also occur in the operational phase, in the forms of latent defects
and age defects, which may cause IC errors and eventually system failures. Latent
defects are manufacturing defects that escape manufacturing test. This is especially
the case where the quality of manufacturing test is low, causing severe under-
test. Age defects are caused by the wear-out of ICs under electrical, thermal, and
mechanical stresses in the forms of metal fatigue, hot carriers, electromigration,
dielectric breakdown, etc. An example is shown in Fig. 3. In the early operation
stage of a system, latent IC defects are the dominant cause of system failures, called
early failures. In the middle operation stage of a system, latent IC defects become
rare and age defects are yet to show up, resulting in only sparse system failures,
called random failures. In the end operation stage of a system, age defects are the
dominant cause of system failures, called wear-out failures. Therefore, it is desirable
that an IC used in a system can also go through a check process, called field test.
Defective ICs found by field test can then be replaced before they cause any system
failure.

The external cause of an IC error is radiation, which comes from the space as
protons, electrons, and heavy ions or from IC package materials as alpha particles.
Radiation may cause a single event upset (SEU), which is usually a bit flip (0 — 1
or 1 — 0) at a storage element (a memory cell, a flip-flop, or a latch) in an IC
at a certain time [10]. Such a (local) SEU may in turn cause a (global) error at
an output of the IC, eventually resulting in a failure of a system based on the
IC. An SEU is also called a soft error since the affected IC can be free of any
permanent defects and its impact is transient (i.e., the impact of bit flip at a storage
cell disappears after a correct value is loaded). With ever-decreasing feature sizes
and power supply voltages, ICs are increasingly becoming susceptible to soft errors.
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Fig. 4 Stuck-at fault model

Howeyver, due to this transient nature, soft errors cannot be tested for as defects that
are permanent in nature. The common practice for mitigating soft errors is to adopt
radiation-hardening design techniques for storage elements to reduce the chance of
radiation to cause soft errors [28]. Such design techniques are referred to as design
for reliability (DFR).

Generally, defects are the dominant cause of IC errors; thus, defects need to be
targeted in manufacturing test as well as field test. However, directly dealing with
defects in test-related tasks (e.g., quantifying test quality, generating test data, etc.)
is often inefficient and sometimes even computationally infeasible. To solve this
problem, one can model the behavior of a defect by a fault and only deals with
faults explicitly in test-related tasks. Due to the complexity and variety of defects,
their behaviors are widely diverse. As a result, no one fault model can be a good
representative for all defects. Therefore, it is important to select or build a fault
model by taking into consideration of process characteristics, transistor structures,
anticipated defects, circuit abstraction levels, etc. Some typical fault models are
introduced below.

o Stuck-At Fault Model: A gate-level logic circuit is modeled by gates and their
interconnections. If the circuit is defect-free, any signal line should be able to
take both logic values (0 and 1). The existence of some sort of defects in the
circuit may make a signal line to take only one logic value (either O or 1). This
defect behavior can be modeled by a stuck-at fault [9]. If the signal line can only
take logic O (1), it is said to have a stuck-at-0 (stuck-at-1) fault or a SAO (SA1)
fault. Fig. 4a shows a fault-free circuit, whose output (p) is 0 for the input value
combination <x = 0, y = 1, z = 1>. If the output of the OR gate G| has a SAO
(i.e., the output of G is fixed at O due to the existence of some defect), the circuit
output p will be 1 as shown in Fig. 4b. In this case, <x =0,y = 1, z = 1> is said
to be a test vector for the SAQ fault.

o Transistor Stuck Fault Model: A transistor-level circuit is modeled by transistors
and their interconnections. If the circuit is defect-free, any transistor in the circuit
should be able to be turned on and off. The existence of some sort of defects in
the circuit may make a transistor to be permanently turned on (off). This defect
behavior can be modeled by a transistor stuck-on (stuck-off) fault. A transistor
stuck-on (stuck-off) fault is also referred to as a transistor stuck-short (stuck-
open) fault. As illustrated in Fig. 5, an inverter, whose input and output are x and
z, respectively, consists of two transistors, P and N. Thus, this transistor has 4
transistor stuck faults (“P stuck-on”, “N stuck-on”, “P stuck-off”’, “N stuck-off”).
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Fig. 6 Bridging fault model

Whether “N stuck-on” exists can be determined by applying 0 to x and measuring
the quiescent power supply current, Ippq as shown in Fig. 5b. This is because,
if “N stuck-on” exists, applying O to x will turn P on, resulting in a current path
from the power supply to the ground [19]. Whether “N stuck-off” exists can be
determined by first applying O and then 1 to x as shown in Fig. Sc. If the value of
z changes from 1 to 0, “N stuck-off”” does not exist. If the value of z remains at 1,
“N stuck-off” exists. That is, determining whether “N stuck-off” exists needs two
test vectors [25].

e Bridging Fault Model: Gates in a gate-level circuit and transistors in a transistor-
level circuit are all interconnected by wires. Some defects may short two separate
wires together, and its effect can be modeled by a bridging fault [21] Depending
on how to determine the resultant logic value when the two involved wires have
opposite logic values, bridging faults can be classified into a few types. For the
bipolar technology, the resultant logic value can be assumed to be the AND (OR)
result of the logic values of the two wires, resulting in a wired-AND (wired-OR)
bridging fault. Fig. 6a shows that wires A and B are shorted together. Its effect
can be modeled by a wired-AND bridging fault, whose gate-level representation
is shown in Fig. 6b. For the complementary metal oxide semiconductor (CMOS)
technology, it is more appropriate to model a pair of shorted wires as a dominant
bridging fault, whose logic value is assumed to be determined by the stronger
driver for the two shorted wires. For example, the shorted wires A and B as shown
in Fig. 6a can be modeled by a dominant bridging fault (A dominates B), whose
gate-level representation is shown in Fig. 6c.

e Delay Fault Model: Extra delay can be introduced to wires by resistive open and
short defects, or to transistors or gates by parameter variations. Such extra delay,
either alone or in an accumulative manner, may increase signal propagation delay
so much as to break timing requirements, resulting in wrong circuit behaviors.
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Fig. 8 Cell-aware fault model

Extra delay can be modeled by a delay fault with several varieties. A transition
delay fault is used to model an extra-delay-affected transition (rise (0 — 1) or
fall (1 — 0)) at a gate [18] and the extra delay is assumed to be large enough
to prevent the transition from reaching any output of the circuit at the required
time. Thus, each gate is associated with a slow-to-rise transition delay fault and
a slow-to-fall transition delay fault. An example is shown in Fig. 7, where the
output of G has a slow-to-rise transition delay fault. Suppose that x remains at
1, z remains at 1, and y is applied with a transition of 1 — 0. In this case, at the
time of observation, the output p of G, will be 0 instead of the correct value of
1, meaning that the slow-to-rise transition delay fault is detected. A gate-delay
fault is used to model the extra delay of a gate by explicitly quantifying it [14,
15]. As a result, a gate-delay fault may not cause any wrong circuit behavior if
the signal propagation path going through the gate is short enough to prevent
the extra delay from breaking timing requirements. A path-delay fault is used
to model the accumulative extra delay along a path comprising gates and wires
[30].

* Cell-Aware Fault Model: Complex cells are widely used in ICs and the impact of
intra-cell defects is increasingly becoming significant. In order to explicitly deal
with intra-cell defects in test-related tasks for higher test quality, a defect-oriented
fault model, called the cell-aware fault model [12], can be built as follows: First,
all possible defects in a standard cell are extracted from its layout. After that,
the behavior of each extracted defect is SPICE-simulated under all possible cell
input combinations. Finally, all unexpected behaviors are modeled at the IO ports
of the cell with a digitalized format for use in various test-related tasks, such as
test generation and fault simulation. Fig. 8 shows an example, which shows that
the fault Z1 in the cell MUX2 can be detected by any one of the three input value
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combinations. That is, when any of the input value combinations is applied to a
MUX?2 cell with the fault Z1, the output of the cell will show a value different
from the one for a fault-free MUX2 cell.

2 Test Basics

Defects are the dominant cause of IC errors and they may lead to system failures.
Therefore, test, a check process aimed at determining whether an IC is defective, is
critically important. Since defects may occur both in the manufacturing phase and
in the operational phase of ICs, both manufacturing test and field test are necessary.
On the other hand, today’s ICs usually come in the form of Systems on a Chip
(SoCs) consisting of heterogeneous blocks that comprise logic circuits, memories,
analog and mixed-signal circuits, etc. Therefore, test methods need to be developed
for these different blocks and for the entire SoC as a whole. Furthermore, since ICs
are often assembled on printed circuit boards (PCBs) to make electronic systems,
boards also need to be tested. In this section, general information on manufacturing
test and field test is provided first. After that, the basics for logic test, memory test,
analog test, SoC test, and board test are briefly introduced.

2.1 Manufacturing Test and Field Test

The manufacturing of today’s ICs involves highly complicated processes, materials,
equipment, and operations. This makes it impossible to perfect every factor in
manufacturing, rendering it inevitable that some manufactured ICs are defective.
As a result, manufacturing test is indispensable in guaranteeing IC quality.
Manufacturing test usually consists of multiple rounds. The first round of test,
namely wafer test, is conducted for bare dies on a wafer through direct electrical
contact with the bonding pads of the dies. Its purpose is to identify defective dies
so that only good dies are packaged. After packaging, the second round of test is
conducted through the external pins of packaged ICs. This round of test is necessary
because imperfect packaging may introduce new defects and wafer test is often not
thorough due to various limitations. The passing ICs of this round of test often
goes through a process called burn-in, which is conducted by applying electrical,
thermal, mechanical and environmental stresses so as to accelerate the occurrence
of potential defects to the manufacturing phase, instead of leaving them to occur in
the operational phase. Burn-in is especially important for ICs intended for mission-
critical applications. After burn-in, the third round of test is conducted to screen out
defective ICs whose defects’ occurence is accelerated by burn-in. Only ICs passing
all three rounds of test are shipped to customers. Note that manufacturing test is
usually conducted with powerful automatic test equipment (ATE). Each round of
manufacturing test usually consists of open-short test, DC parametric test, high-
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speed I/O test, memory test, analog test, and logic test under various conditions
related to voltages, temperatures, and operating speeds.

Field test is conducted for ICs already placed into a system, especially a mission-
critical one. Different from manufacturing test, large and expensive ATE cannot be
used for field test. Instead, self-contained test circuitry can be designed into a target
IC so that it can test itself without using external ATE. This method is called built-in
self-test (BIST). An alternative is to design self-contained test circuitry into the PCB
board holding a target IC. This method is called built-out self-test (BOST).

2.2 Logic Test

The testing of a logic circuit is conducted by applying test stimuli to its inputs and
observe test responses at its outputs. If all of the observed test responses match
their corresponding expected test responses, the circuit is judged to be defect-free.
Obviously, the confidence level of the judgement depends on the quality of the test
stimuli used, which is measured by fault coverage achieved by the test stimuli. Fault
coverage of a given set of test stimuli is obtained by fault simulation, while the
process of generating a set of test stimuli to achieve high fault coverage is called fest
generation. Furthermore, it is important to note that, in order to improve test quality
and test efficiency, the circuit-under-test (CUT) itself often needs to be modified
or extended with some test-oriented circuitry. This concept is called design for
test (DFT). In the following, DFT, fault simulation, and test generation are briefly
introduced.

2.2.1 Design for Test (DFT)

Most logic circuits are sequential circuits that cannot be efficiently tested. This
is because a sequential circuit contains flip-flops (FFs), whose inputs are hard
to control and whose outputs are hard to observe. As a result, a common DFT
methodology, called scan design, needs to be applied to sequential circuits [8]. As
shown in Fig. 9a, scan design requires that all FFs replaced with scan FFs. A scan
FF has an original data input and an added scan input, selectable by the scan enable
(SE) signal. All scan FFs form one or more scan chains. Scan test is conducted as
follows: In shift mode (SE = 1), a scan chain operates as a shift register, allowing
test stimuli to be applied from the outside and previous test responses to be taken to
the outside. In capture mode (SE = 0), all scan FFs operate as normal FFs to load
test responses into FFs. This way, scan design makes all FFs both controllable and
observable, thus greatly easing the test generation for sequential circuits. In order
to reduce test data volume for scan test, compressed scan design can be applied.
Fig. 9b illustrates such a technique, called embedded deterministic test (EDT),
in which a ring-register-based decompressor restores compressed test stimuli on
the input side and a compactor reduce test response data volume on the output



Prerequisites on Fault Diagnosis

|'[+§::1L%':\

Combinational

[=]
k=]

Combinational
Portion

Scan Chain

Scan FF

SI

Y Y
| sossaxdwosaqg |

10jorduio)

Compressed
Test Stimuli

e
ATE | Compressed

Test Responses
(b)

Ddud

Y

Y

Y

N| Scan Chain #1 |
| I —— |

ASIN

Y

’-II Scan Chain #n |I

Y

‘ _ | Combinational
> Portion

BIST
Controller

BIST-Ready Circuit

7>

Y

(c)

Fig. 9 Various scan-based DFT techniques

SE



10 H. H. Chen et al.

side [24]. Scan design is also the base for logic BIST as illustrated in Fig. 9c, in
which test stimuli are generated by a linear feedback shift register (LFSR)-based
pseudo random pattern generator (PRPG) and test responses are compressed into
a single signature by a multi-input shift register (MISR) [4]. From the viewpoint
of fault diagnosis, normal scan design provides the best test responses without
any diagnostic information loss. Compressed scan design suffers from moderate
diagnostic information loss due to the compaction of test responses while logic
BIST suffers from the worst diagnostic information loss due to the compression
of all test response into a single signature.

2.2.2 Fault Simulation

The most basic form of fault simulation for a combinational circuit (or the
combinational portion of a scan circuit) ¢ is conducted for a fault f and an input
vector v to determine whether f is defected by v. Suppose that r(c, v) is the output
response to v by the fault-free circuit ¢ and r(c(f), v) is the output response to v
by the circuit ¢ with the fault . If r(c, v) # r(c(f), v), f is said to be detected by
v and v is said to be a test vector for f. r(c, v) can be obtained by logic simulation
and r(c(f), v) can be obtained by forcing the behavior of f into c¢. Note that a test
vector v for two faults fi and f> may lead to identical output responses, i.e., r(c,
v) # r(c(f1), v) = r(c(f2), v). In this case, v can detect both f; and f; but cannot
distinguish between them. A more general form of fault simulation is conducted for
a set of faults F and a set of input vectors V. The purpose is to determine which faults
in F can be detected by at least one vector in V. The percentage of defected faults is
called the fault coverage of V. Compared with logic simulation in which each input
vector only needs to be processed once, fault simulation is more time-consuming
since each input vector needs to be processed once for each fault. To accelerate
fault simulation, parallel fault simulation makes use of bit-parallelism of logical
operations in a digital computer [29]. In the example shown in Fig. 10, a 4-bit word
is used to store the signal values of each signal line. One bit is used to represent
the fault-free value while the remaining three bits are used to represent the values
corresponding to three faults. That is, three faults can be simulated simultaneously
in a single pass. From the values obtained at the output ¢, the test vector <x = 0,
y = 0, z = 1> can detect two faults, “y SA1” and “p SA1”. Other fault simulation
approaches include deductive fault simulation, which deduces all signal values in

[ % + fault-free value

+ value for “y SA1”
+» value for p SA0"
Ls value for ‘p SA1"

Fig. 10 Fault Simulation
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each faulty circuit from the fault-free circuit values and the circuit structure in a
single pass [2], and concurrent fault simulation, which emulates faults in a circuit
in an event-driven manner to avoid unnecessary computation efforts [31].

2.2.3 Test Generation

The basic purpose of test generation for a circuit is to create a small as possible set
of test vectors for achieving the highest possible fault coverage. Test generation
is usually conducted with an algorithm in the form of automatic test pattern
generation (ATPG). The target of generation is usually a combinational circuit or
the combinational portion of a scan-based sequential circuit. Generally, there are
two approaches to test generation, namely non-fault-oriented and fault-oriented.

Non-fault-oriented test generation for a circuit is conducted by considering the
function of the circuit but ignoring its internal structure. Typical test generation
based on this approach include functional test generation, exhaustive test gen-
eration, and random test generation. Although non-fault-oriented test generation
is simple to implement, the number of resultant test vectors is usually large. In
addition, although non-fault-oriented test generation itself does not need to consider
faults, time-consuming fault simulation usually needs to be conducted to calculate
fault coverage.

Fault-oriented test generation for a circuit is conducted by explicitly trying to
create a test vector for each target fault under a fault model. Since structural
information of the circuit is needed to define a fault model, fault-oriented test
generation is also called structural test generation, which can be conducted with
special algorithms, including D [27], PODEN (Goel 1981), FAN (Fujiwara 1983),
and SOCRATES (Schulz 1988). A popular approach to structural ATPG, path
sensitization, is illustrated in Fig. 11. First, in order to generate a test vector for the
target fault as shown in Fig. 11a, “L; SAQ”, fault activation is conducted to make 1
to appear on L7 as shown in Fig. 11b. As a result, the fault effect D (1 as the fault-
free value and O as the value corresponding to “L7; SA(Q”) appears on L7 as shown
in Fig. 11c. Next, fault propagation is conducted to make the fault effect D or D to
appear on at least on output of the circuit. For this purpose, O needs to be put on L,
in order to make D to Lg as shown in Fig. 11d and 1 needs to be put on L3 in order to
make D to the output x as shown in Fig. 11d and Fig. 11e. Note that fault activation
and fault propagation lead to three value assignment requirements: 1 — L7,0 — Ly,
and 1 — Ls. Finally, justification is conducted to determine necessary values for the
inputs of the circuit to satisfy the value assignment requirements, and the result is a
test cube (containing a don’t-care value X) as shown in Fig. 11f. Since X cannot be
applied by ATE, a logic value needs to be assigned to X by X-filling, resulting in a
testvector<a=0,b=1,c=1,d = 1>.
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2.3 Memory Test

Different memories, such as read-only memories (ROMs) and random access
memories (RAMs) require different approaches to testing. A ROM can be tested by
reading out all stored values and checking if they are exactly what have been written
into it. Static RAMs (SRAMs), dynamic RAMs (DRAMS), electrically erasable
ROM (EEPROM) and flash memories need to be tested with test patterns targeted
on various memory faults and generated by various memory test algorithms [1, 32].

Classical memory faults include cell stuck-at faults (i.e., the value of a memory
cell is fixed at O or 1), address decoder faults (i.e., a memory cell corresponds to
multiple addresses or one address corresponds to multiple memory cells), data line
faults (i.e., defective input and output data registers prevent correct data from being
written into or read from a memory cell), read/write faults (i.e., defective read/write
control lines/logic prevent a read or write operation from being conducted), and
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data retention faults (i.e., a memory cell loses its content after a certain period of
time). Modern high-density RAMs also suffer from transition faults (i.e., a memory
cell cannot undergo a 0-to-1 or 1-to-0 transition), destructive read faults (i.e., a read
operation changes the content of a memory cell), coupling faults (i.e., the content
of a memory cell is affected by the operations on other memory cells), and pattern
sensitivity faults (i.e., the content of a memory cell is affected by the contents of
other memory cells).

In order to test for the faults mentioned above, many test pattern generation
algorithms have been proposed over the years. These algorithms can be classified
into different types, such as N, N2 and N2, where N is the number of address
locations or words. Generally, test patterns generated by an N? algorithm can detect
more faults than those generated by an N al algorithm but result in longer test
time. In addition, test patterns generated by different algorithms detects different
faults. Therefore, it is necessary to select a proper set of test generation algorithms
for a memory by taking possible faults into consideration. A typical N-class test
generation for detecting cell stuck-at faults is the modified algorithmic test sequence
(MATS), whose length is 4N. This algorithm has three steps: (1) all memory cells
in a RAM are written to logic 0, (2) each address is first read, with logic O being
the expected value, and then written to logic 1, and (3) each address is read with an
expected value of logic 1.

The test result of a memory can be plotted into its fail bit map, which shows
the identified defective cell locations in the memory. From the shape or distribution
of the defective cell locations, the possible cause of the defects may be found. For
example, if the defective cell locations are not regular, the possible cause may be
cell stuck-at faults. If all memory cells in a row or column fail, the possible cause
may be address decoder faults.

2.4 Analog / Mixed-Signal Test

An analog or mixed-signal circuit, either in a standalone form or as part of a
system-on-a-chip (SoC) device, is usually tested by explicitly checking its functions
against specifications through measuring various performance parameters [1, 32].
Typical mixed-signal circuits include A/D converters and D/A converters. The
static properties of an A/D or DA converter include linearity, gain error, offset
error, monotonicity, miscode, integral non-linearity (INL), differential non-linearity
(DNL). The dynamic properties of an A/D or DA converter include signal-to-
noise ratio (SNR), total harmonic distortion (THD), spurious-free dynamic range
(SFDR), and effective number of bits (ENOB). Obviously, such a parameter has
a tolerance range instead of a single expected value. Therefore, it is necessary
to determine whether a measured parameter falls within its design specification
tolerance range. In the testing of an A/D converter, an arbitrary waveform generator
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(AWG) is usually used to generate analog input signals and digital output signals
are obtained by a tester. In the testing of a D/A converter, digital input signals are
applied and analog output signals are obtained by a tester. Therefore, high-precision
AWGs and digitizers are required. As a result, analog / mixed-signal test is usually
expensive due to long test time and the need for complicated test equipment.

2.5 SoC Test

An SoC usually consists of embedded cores of various types and its test needs to
target at all cores as well as the interconnects among them. However, both individual
cores and interconnects in an SoC are usually difficult to access. This problem can be
addressed with the IEEE 1500 Standard for Embedded Core Test, which is a scalable
standard architecture for enabling test reuse and integration for embedded cores
and associated circuitry [32, 33]. It uses a scalable wrapper architecture and access
mechanism similar to boundary scan to facilitate test access to embedded cores and
their interconnects. Note that [EEE 1500 is independent of the functionality of an
SoC or its embedded cores. In addition, built-in self-test (BIST) also helps in easing
the access requirement for embedded cores, especially logic and memory cores.

2.6 Board Test

Generally, various ICs need to be assembled onto a printed circuit board (PCB) in
order to be used in an electronic device. This assembling procedure is complicated
and prune to various defects, making it necessary to conduct board test [32, 33]
The conventional method, namely bed-of-nails, of board test is to directly probe
the solder points on the back of a board. This way, test stimuli can be applied to the
input pins of component ICs and the test responses can be observed from their output
pins. A modern PCB, however, usually consists of surface-mount ICs, whose pins
cannot be accessed from the bottom of the board. This makes it impossible to apply
the bed-of-nails method. This problem can be addressed with the boundary scan
methodology, which has been documented as several IEEE standards. For example,
the IEEE Standard 1149.1 for logic ICs inserts additional logic to form a boundary
scan chain through all I/O buffers of logic ICs. This chain makes it possible to
shift in test stimuli to internal pins and interconnections on a PCB. It also makes it
possible to capture output responses at the input buffers on other ICs on the PCB
and subsequently shift them out for observation. This way, access to all ICs and
interconnections can be established without direct probe contact. The access to the
boundary scan chain is provided by the fest access port (TAP) through a four-wire
serial bus interface and instructions applied through the interface. This boundary
scan interface can provide access to the DFT features, such as BIST, of individual
ICs on a PCB. In addition to IEEE Standard 1149.1, the IEEE Standard 1149.4 is
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available for mixed-signal ICs and the IEEE Standard 1149.6 is available for the I/O
protocol of high-speed networks.

3 Volume Diagnosis for Yield Improvement

As mentioned earlier, diagnosis is used to identify the location and failure mecha-
nism of the defect. To improve the yield, it is important to identify systematic defects
which are caused by the same root cause. To recognize systematic defects, statistics
methods are used on volume diagnosis results to identify whether there are common
root causes. Yield can be recovered only after the common root causes are removed
properly.

In high volume production test environment, there can be many failing dies and
lots of failing data to collect and process. Besides ATE, the machines with sufficient
CPU and memory to process these volumes of failing data need proper management
to get enough throughput.

3.1 Failing Data Limitation in ATE and Its Impact
to Diagnosis Accuracy and Resolution

In scan test, each pattern is independent. In other words, the test results are
independent on the order of test patterns. The main advantage of this independency
is in logic diagnosis. The failing data information is per pattern. The diagnosis
operation can be done pattern by pattern. However, diagnosis suspect count per
pattern can be quite large. Statistics method is used to find the common defect
suspect from all failing patterns. The suspect count can be further reduced by using
passing patterns.

3.2 How to Collect Failure Data for Diagnosis?

To achieve high speed and precise test results, ATE is quite expensive. The hardware
to store test results is expensive as well. In general, ATE has limited failure data
storage space. To do chain diagnosis, to achieve good diagnosis results, at least
100 failing patterns are needed. Each failing pattern has many failing cycles when
scan chains are faulty. Some ATE does not have such big failing data storage. To
do diagnosis, it has to retest repeatedly to collect enough failing data. For logic
diagnosis, each failing pattern has small number of failing cycles. Typically, 1000
to 2000 failing cycles are sufficient to achieve good diagnosis resolution.
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3.3 Failing Data Format

To achieve accurate diagnosis, it is important to know which observe data is failing
or passing. However, due to limited ATE failure data storage, some information is
lost. Since data collected from ATE only identify failing data, it can be mis-leading
to assume non-failing observe data are passing. To avoid wrong diagnosis results, it
is important for precisely label each observe data of each pattern as failing, passing
or unknown. Base on ATE setting, the failing data truncation can be pin-based,
cycle-based or even pattern based. Diagnosis accuracy depends on proper failing
data truncation information.

3.4 Volume Diagnosis Server Farm Setup to Process
Thousands of Failing Data in Production Flow

The resource to do a diagnosis job depends on the memory and the time it needs
to generate the diagnosis report. For a fixed amount of volume diagnosis job, the
throughput can be improved by either using smaller memory or smaller run time. In
a typical server farm to process volume diagnosis, there are much more machines
with smaller memory. To improve the throughput of volume diagnosis, it is more
important to reduce the memory used for each diagnosis job than to speed up the
run time.

3.5 Beside Failing Data Per Die, What Other Data to Collect
for Statistics Yield Analysis

It is common that each die may go through same test under several operation corners
such as different voltage, different clock frequencies, different temperatures. All
these test environment data should be considered when analyzing volume diagnosis
results to find common root causes. Also die locations in wafer, and lot information
should be considered as well.

4 Fault Diagnosis of Customer Return

Despite best screening efforts during a product’s manufacturing process prior to
customer delivery, defects do escape and end up as product failures encountered by
the customer. Generally speaking, customer expectations of quality vary depending
on the market and product segment. When instances of failure exceed an acceptable
level or consequences of failure are severe enough, the product is returned to the
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manufacturer for root cause diagnosis. The goal is to prevent future occurrences
of failure and to ensure minimal negative impact on the manufacturer’s quality
reputation. When the perception of quality takes a hit, it results in direct loss of
business; and a great deal of effort and expense are needed to recover customer
trust.

In looking across the full range of modern electronic products from hand-held
mobile smart-phones to data center servers/routers/switches to artificial intelligence
(AD)-based self-driving cars, one finds a complex assembly of electronic and
mechanical hardware components with a stack of software layers above ultimately
ending in interactions with the human user. The electronic components can be
sophisticated system-on-chips (SoC) and multi-die integrated packages in their
own right. When the user experiences a failure, it could be caused by defects in
the software, in the hardware, or a combination of deleterious interactions among
the components. Indeed, the likelihood of failure rises as an emergent property of
increasing complexity [7].

Multiple testing steps are executed in the process of integrating and assembling
components to create a final product. The purpose is to catch defects as early as
possible since allowing escapes to the next step incurs additional cost. For example,
consider the manufacturing test steps shown in Fig. 12 as a die component moves
from wafer to package to printed circuit board (PCB). Dies on a wafer are tested
and only those passing are diced and proceed to the packaging step. A defective
die that escapes wafer test will be integrated with others in a multi-die package.
If the integrated package fails final test, the defective die is successfully screened;
but replacing it in the finished package may be too costly or impossible. Thus, the
entire defective package has to be discarded rendering naught the costs of package
integration and other companion good dies. If the defective die escapes package final
test and causes failure in PCB sub-system test, the un-recuperated cost is even higher
whether the PCB is re-worked or discarded. A well-accepted industry rule-of-thumb
is that the cost of failure goes up 10X with each successive stage of integration and
assembly.

To reduce the cost of failure, diagnosis should be performed at earlier steps in
the test flow. Testing is never perfect and its inaccuracy has two aspects — allowing
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defects to escape and failing a good part. The latter aspect is commonly called
overkill and it could be due to faulty test equipment or over-stringent test conditions.
The yield at each test step, defined as the ratio of passing parts to tested parts, is
carefully monitored to make sure it stays above an acceptable threshold. Falling
below threshold is known as a yield excursion and must be resolved timely since
profitability is negatively impacted. Low yield excursions could be due to overkill
or a rise in defects at earlier manufacturing steps. Through failure diagnosis, the
manufacturer is profit-driven to resolve low yield excursions as well as to enhance
yield via defect reduction.

The current semiconductor and electronic product supply chain is a complex eco-
system of vendor-customer relationships. For example, the semiconductor foundry
is a supplier to the fabless design house who in turn is a supplier to the product
system integrator who sells the system product to the user customer. The same entity
can be both a customer and a vendor depending on whether one is facing upstream
or downstream in the supply chain respectively. Consider a system integrator who
sources components from multiple hardware suppliers. Incoming inspection through
some form of system-level test (SLT) is performed on all received components.
The system integrator judges each supplier on component quality while driving
down costs in order to maximize profitability by selling system products to the
user customers. Failure diagnosis of a customer return then becomes a shared
responsibility up and down the supply chain.

Just as the cost of failure rises with each stage of assembly and integration,
so goes the difficulty of failure diagnosis. For a complex system, diagnosing
customer failure is notoriously laborious and time-consuming. A well-known case
from the automotive space is the Toyota sudden acceleration issue that resulted
in numerous fatalities and vehicle recalls. Investigations spanned several years
identifying multiple causes including operator error, ill-fitting floor mat, sticky
accelerator pedal, and possible design flaw in the electronic throttle control system
[34]. For automotive electronic components where quality level is required to reach
below 1 DPPM, root-cause analysis of customer returns may last more than a year
and a significant portion of the cases still results in no-trouble-found (NTF).

In diagnosing a customer return, the first step is to reproduce the failure in
a repeatable fashion. This may require replication of the customer’s operating
environment which is not always feasible. Once product defect, and not operator
error, can be firmly established, then a series of experiments are carried out to
isolate and narrow down possible causes. Defect isolation happens in both time
and space. In the time dimension, some failures may take hours or longer to trigger.
Long error detection latency (EDL) is a major challenge in complex system failure
debug. Thus, reducing EDL is a topic of high research interest [20]. Usually both
software and hardware have enhanced capabilities to do logging, take snapshots,
and run self-checking and diagnostics to aid defect localization. Time-critical low-
level software-hardware interactions in embedded systems is a frequent source of
problems when the hardware itself is somewhat marginal. The problem can often be
resolved by software changes to accommodate larger hardware variations.
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When a system integrator is able to identify the hardware SoC component that
is the prime suspect for causing system failure, it is extracted and sent to the SoC
supplier for further diagnosis. Out of the system operation context, the supplier’s
challenge is to confirm that the SoC is indeed defective by running stand-alone tests
on the isolated component. If no failure occurs when the original SoC production
test patterns are applied, new patterns are added to target areas of the SoC that
are suspected to be involved based on system failure symptoms. In the best case,
the defect is exposed by high-coverage structural fault model-based test patterns in
which scan diagnostic tools can help find the physical root cause. But the divide-
and-conquer block-based approach of structural test may miss certain functional
interactions in the SoC. As well in low-power designs with reduced operating
voltage margins, subtle variation-related defects may only be detected by functional
patterns or component-level SLT [23]. Catching defects with functional patterns
raises the difficulty of diagnosis significantly. To aid functional failure analysis,
embedded debug logic to gain deeper internal visibility [22] and sensors to obtain
more granular measurements of internal health [17] have seen increasing adoption
by SoC designers. In the worst case, the SoC supplier is unable to confirm that
the component is the cause of system failure, so it ends up falling under the NTF
category [6].

In summary, fault diagnosis of customer returns is still an unsolved and expensive
challenge due to the inherent complexity involving many parties and factors. A
customer failure is also a failure of the supply chain to deliver a quality product.
Thus every effort should be made to screen defects at earlier steps, perform failure
analysis, and improve upstream processes to minimize defects via yield learning.
Though defects arise from random process variations, systematic aspects of the
design and manufacturing process influence the probability of defect occurrence.
Identifying systematic factors requires a minimum volume of failed samples to
deploy volume diagnosis. The rarity of customer returns may not meet that
minimum volume requirement. Indeed if there is a sufficient number of customer
returns, it’s a strong indication of serious inadequacies in quality control and yield
learning in the supply chain.

5 Yield and Profitable Quality (Changed from Initial ToC)

When a product is manufactured in volume, some instances (so-called parts) may
turn out to be defective and cause failures during deployment. Fig. 13 shows a
simplified flow of design — fabrication — test — customer from which we shall
derive the fundamental equation relating yield, quality and cost.

For a product, let N be the number of parts produced by manufacturing. Let’s
associate the descriptive labels good and bad with non-defective and defective parts
respectively. Thus N = G + B where G and B are respectively the number of good
and bad parts. Intrinsic yield Yy of the manufacturing process is defined to be the
ratio of good parts to total parts produced, i.e., Yo = G/N. In practice, Yy is not a
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Fig. 13 Simplified flow of design— fabrication— test— customer process

known quantity though it is influenced by factors from the design and manufacturing
process. Yy is estimated by testing each part to decide whether it is good (by passing
the test) or bad (failing the test). Let P and F be the number of parts that passed or
failed the test respectively where N = P + F. Then an estimate or measured value
of Yy called test yield Yy,, is defined to be the ratio of P to N, i.e., Y;, = P/N.

If testing was perfect in separating good from bad, then Y, is an exact measure
of Yp. But in reality, testing can make two kinds of mistakes: (1) let a bad part pass
which is known as an escape; or (2) fail a good part which is called an overkill. Let
Besc be the number of escapes and G, be the number of overkills. We obtain the
following equations for F and P: F = B — Bege + Goyk and P = G + Bege — Gopk-
Let us also define the overkill ratio K = G,/N. Only parts passing test are shipped
to the customer. During product use, assume every bad product shipped results in
customer failure. Then the measure of maximum failure rate as experienced by the
customer is called defect level DL = B,z/P which is a direct reflection of product
quality.

By algebraic manipulation of the definitions above, a relationship between Y,
and DL can be derived: Y,,, = (Yo — K) /(1 — DL). In the electronics industry, it is
common to use the term defective parts per million (DPPM) instead of DL. DL is
related to DPPM by DL = DPPM / 10°. For the discussion that follows, it is more
convenient to shape key concepts by considering test yield loss which is 1 — Yy,.
Test yield loss represents the portion of manufactured parts that fail in the testing
stage and thus discarded. It is detrimental to profitability because costs associated
with the discarded parts are a direct loss. When test yield loss is significant, the
associated cost dwarfs all other expenditures involved in test development and
volume production test. The equation for test yield loss is:

Test Yield Loss = 1— (Yo-K) / (l—DPPM/lOﬁ)



