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Preface
Characterization of materials is the measurement and
determination of a material’s physical, chemical,
mechanical, and microstructural properties. This technique
provides the greater degree of awareness required to
handle significant issues such as failure causes and
process-related concerns, as well as allowing the
manufacturer to make critical material decisions. The field
of materials characterization is vast and diverse. Perhaps
the best place to begin is at the beginning, with the first
principle to consider being the depth to which
characterization promotes the discovery of new materials:

Measuring a material’s property allows for
experimental improvement;
Taking unique measurements allows for distinction
through improvement in specific areas; and
Understanding the compositional and structural
foundations of material attributes allows for rationally
designed improvements.

Material characterizations is a crucial step to conduct
before using the materials for any purpose. To ensure that
the material under consideration can perform without
failure during the life of the final product, it might be
subjected to mechanical, thermal, chemical, optical,
electrical, and other characterizations, depending on the
purpose.
This book focuses on the most extensively used
experimental approaches for structural, morphological, and
spectroscopic characterization of materials. One of the
most important aspects of this book is the discussion of



recent results in a wide range of experimental techniques
and their application to the quantification of material
properties. Furthermore, it covers the practical elements of
the analytical techniques used to characterize a wide range
of functional materials (both in bulk as well as thin film
form) in a simple but thorough manner. For a wide range of
readers, from beginners and graduate students to expert
specialists in academia and industry, the book gives an
overview of frequently used characterization approaches.
One of my main aims in preparing this book was to put the
basic characterizations used by material research students
in the form of a single book. The book is divided into eight
chapters.
The first chapter gives the basic ideas of an
electromagnetic spectrum, which is important as properties
of materials are obtained using the interaction of light with
matter. In addition, some fundamentals of crystallography,
the magnetic materials, the molecular vibrations, and
optical properties in materials have been defined. The
second chapter is based on the one and foremost technique
used in material sciences and is called the X-ray diffraction
technique. After synthesis of any material, the first step is
confirmation, which is obtained through the X-ray
diffraction pattern. The basic theory, the experimental
setup, along with some examples and applications have
been included in this chapter. Chapter 3 concerns Raman
spectroscopy. In addition to the X-ray diffraction technique,
Raman spectroscopy may also be used for the identification
of samples. In this chapter, basic theory, the
instrumentation of Raman spectrometer, and illustrations
are included. Chapter 4 discusses X-ray spectroscopic
techniques. Three techniques, namely X-ray absorption
spectroscopy, X-ray photoemission spectroscopy, and Auger
electron spectroscopy have been explained along with the
basic principle and experimental setup for each case.


