




Computer Models of
Process Dynamics



IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson Andreas Molisch Diomidis Spinellis
Anjan Bose Saeid Nahavandi Ahmet Murat Tekalp
Adam Drobot Jeffrey Reed
Peter (Yong) Lian Thomas Robertazzi



Computer Models of Process Dynamics

From Newton to Energy Fields

Olis Rubin
Brooklyn, Pretoria, South Africa



Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through payment of
the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com.
Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data Applied for

ISBN: 9781119885658 [Hardback]

Cover Design: Wiley
Cover Images: © zhengshun tang/Getty Images; Courtesy of Olis Rubin

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India



To Judy
She brought beauty, goodness and love in my life.
We give thanks for all the blessings that we have received, together with our children





Contents

Preface xiii

1 Introduction 1
1.1 Engineering uses of computer models 1
1.1.1 Mission statement 2
1.2 The subject matter 3
1.3 Mathematical material 4
1.4 Some remarks 5

Bibliography 5

2 From Computer Hardware to Software 7
2.1 Introduction 7
2.2 Computing machines 7
2.2.1 The software interface 8
2.3 Computer programming 9
2.3.1 Algebraic expressions 10
2.3.2 Math functions 13
2.3.3 Computation loops 14
2.3.4 Decision making 16
2.3.5 Graphics 17
2.3.6 User defined functions 17
2.4 State transition machines 17
2.4.1 A binary signal generator 18
2.4.2 Operational control of an industrial plant 24
2.5 Difference engines 25
2.5.1 Difference equation to calculate compound interest 26
2.6 Iterative programming 27
2.6.1 Inverse functions 29

vii



2.7 Digital simulation of differential equations 30
2.7.1 Rectangular integration 31
2.7.2 Trapezoidal integration 33
2.7.3 Second-order integration 35
2.7.4 An Example 36
2.8 Discussion 37

Exercises 38
References 41

3 Creative thinking and scientific theories 43
3.1 Introduction 43
3.2 The dawn of astronomy 44
3.3 The renaissance 45
3.3.1 Galileo 45
3.3.2 Newton 46
3.4 Electromagnetism 49
3.4.1 Magnetic fields 50
3.4.2 Electromagnetic induction 50
3.4.3 Electromagnetic radiation 51
3.5 Aerodynamics 52
3.5.1 Vector flow fields 53
3.6 Discussion 54

References 56

4 Calculus and the computer 57
4.1 Introduction 57
4.2 Mathematical solution of differential equations 58
4.3 From physical analogs to analog computers 60
4.4 Picard’s method for solving a nonlinear differential equation 61
4.4.1 Mechanization of Picard’s method 62
4.4.2 Feedback model of the differential equation 62
4.4.3 Approximate solution by Taylor series 64
4.5 Exponential functions and linear differential equations 65
4.5.1 Taylor series to approximate exponential functions 66
4.6 Sinusoidal functions and phasors 67
4.6.1 Taylor series to approximate sinusoids 69
4.7 Bessel’s equation 70
4.8 Discussion 72

Exercises 73
Bibliography 74

viii Contents



5 Science and computer models 75
5.1 Introduction 75
5.2 A planetary orbit around a stationary Sun 76
5.2.1 An analytic solution for planetary orbits 79
5.2.2 A difference equation to model planetary orbits 80
5.3 Simulation of a swinging pendulum 81
5.3.1 A graphical construction to show the motion of a pendulum 83
5.3.2 Truncation and roundoff errors 84
5.4 Lagrange’s equations of motion 85
5.4.1 A double pendulum 87
5.4.2 A few comments 90
5.4.3 Modes of motion of a double pendulum 90
5.4.4 Structural vibrations in an aircraft 91
5.5 Discussion 94

Exercises 94
Bibliography 95

6 Flight simulators 97
6.1 Introduction 97
6.2 The motion of an aircraft 98
6.2.1 The equations of motion 99
6.3 Short period pitching motion 101
6.3.1 Case study of short period pitching motion 104
6.3.2 State equations of short period pitching 105
6.3.3 Transfer functions of short period pitching 107
6.3.4 Frequency response of short period pitching 108
6.4 Phugoid motion 110
6.5 User interfaces 111
6.6 Discussion 112

Exercises 113
Bibliography 114

7 Finite element models and the diffusion of heat 115
7.1 Introduction 115
7.2 A thermal model 117
7.2.1 A finite element model based on an electrical ladder network 118
7.2.2 Free settling from an initial temperature profile 119
7.2.3 Step response test 121
7.2.4 State space model of diffusion 126
7.3 A practical application 129

Contents ix



7.4 Two-dimensional steady-state model 131
7.5 Discussion 132

Exercises 134
Bibliography 135

8 Wave equations 137
8.1 Introduction 137
8.2 Energy storage mechanisms 138
8.2.1 Partial differential equation describing propagation in a transmission

line 140
8.3 A finite element model of a transmission line 141
8.4 State space model of a standing wave in a vibrating system 145
8.4.1 State space model of a multiple compound pendulum 147
8.5 A two-dimensional electromagnetic field 148
8.6 A two-dimensional potential flow model 151
8.7 Discussion 155

Exercises 156
Bibliography 159

9 Uncertainty and softer science 161
9.1 Introduction 161
9.2 Empirical and “black box” models 162
9.2.1 An imperfect model of a simple physical object 163
9.2.2 Finite impulse response models 164
9.3 Randomness within computer models 166
9.3.1 Random number generators and data analysis 167
9.3.2 Statistical estimation and the method of least squares 168
9.3.3 A state estimator 171
9.3.4 A velocity estimator 175
9.3.5 An FIR filter 176
9.4 Economic, Geo-, Bio-, and other sciences 179
9.4.1 A pricing strategy 181
9.4.2 The productivity of money 184
9.4.3 Comments on business models 187
9.5 Digital images 189
9.5.1 An image processor 190
9.6 Discussion 193

Exercises 194
Bibliography 196

x Contents



10 Computer models in a development project 197
10.1 Introduction 197
10.1.1 The scope of this chapter 198
10.2 A motor drive model 198
10.2.1 A conceptual model 200
10.2.2 The motor drive parameters 202
10.2.3 Creating the simulation model 203
10.2.4 The electrical and mechanical subsystems 204
10.2.5 System integration 206
10.2.6 Configuration management 208
10.3 The definition phase 208
10.3.1 Selection of the motor 209
10.3.2 Simulation of load disturbances 210
10.4 The design phase 213
10.4.1 Calculation of frequency response 213
10.4.2 The current control loop 214
10.4.3 Design review and further actions 217
10.4.4 Rate feedback 219
10.5 A setback to the project 222
10.5.1 Elastic coupling between motor and load 222
10.6 Discussion 227

Exercises 229
Bibliography 230

11 Postscript 231
11.1 Looking back 231
11.2 The operation of a simulation facility 233
11.3 Looking forward 234

Bibliography 235

Appendix A Frequency response methods 237
Appendix B Vector analysis 261
Appendix C Scalar and vector fields 269
Appendix D Probability and statistical models 287
Index 297

Contents xi





Preface

“It is unworthy for excellent men to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if machines
were used”

Gottfried Wilhelm Leibniz (1685)

My first job was with a large electrical engineering enterprise where I had been
moved to a division that designed and installed heavy duty motor drives. Our
division had just acquired an analog computer that was barely large enough to
simulate these machines. I was lucky to be chosen to work with my friend Gopal
to see what we could achieve with this “new-fangled contraption.”Our first project
was to investigate the performance of a Ward-Leonard (generator–motor) set that
drove a huge mining machine. The computer gave us a new “window to the
world,” through which we could see what was happening inside the motor. All
that we had learned as undergraduates now fell into place. Our basic training
had considered the steady state operation of electric motors, while the lectures
on dynamic behavior were entirely mathematical. We could now construct a com-
puter model that allowed us to see the hardware, the differential equations, and
the transient behavior of shafts and other variables. This is what a computer model
can do for us!
Leibniz would have been elated if he could have foreseen how far machines

could take us, beyond just saving us laborious calculations. Digital computers
now provide us with platforms that make the physical modeling process almost
effortless, leaving us free to think about more important questions. This book is
written to show how a computer can be programmed to simulate motion in
general. We will not include the growing market for new user interfaces, such
as virtual reality or networking. These fields should be left to the expert attention
of specialists.

xiii



In addition to setting the wheels inmotion along a path that led to the computers
of today, Leibniz was also the co-founder of differential calculus. The creation of a
dynamic model is deeply rooted in mathematical analysis. We will sacrifice theo-
retical rigor in order to simplify the mathematics in a way that is intelligible to the
working engineer and computer professional. Wherever possible we will explain
mathematical operations by means of computer programs that approximate their
behavior.
Thanks go to the many reviewers whose suggestions helped to bring this book

into its present form. I hope that it will give readers the benefit of experience that
was gained by working with many colleagues on diverse projects. Thanks to Philip
de Vaal, whose enthusiastic support strengthened me to persevere in the face of
setbacks, and to Becker van Niekerk, whose industry constantly invigorated me
to complete this project. This is the second time that Aileen Storry has helped
me bring a book to see the light of day. Thanks to the professionalism of the Wiley
team, led by Kimberly, Mustaq and Patricia, that managed the publication process.
I must thank my dearest wife for her constant, unstinting support. Not only is

her spelling better than mine, but she has a way of provoking me to write more
lucidly for you, the reader. May it thus give you food for thought, and better equip
you for the future!

xiv Preface



1

Introduction

1.1 Engineering uses of computer models

Computer models are used throughout every phase of industrial research,
design, and development. Simulation studies can play a large part in the concept
phase of an engineering project since computer models can usually be created in
less time and cost less than hardware prototypes. The very creation of such mod-
els forces everyone to delve deeper into the underlying physics of the plant. This
can give valuable insight into plant operation that can aid the plant designers. If
such simulators are developed before the plant is built, they can be used to eval-
uate the design before expensive decisions are made, and thereby help to avoid
costly mistakes. In the later stages of a development program, we can greatly
reduce the time and cost of commissioning and qualification by using simulator
studies to reduce the scale of hardware testing. The model can also be used to
determine safety limits and emergency procedures by simulating tests that would
be hazardous in the real plant. There is also a growing market for training simu-
lators to ensure the competence of the operators who will run the plant. We can
foresee that this will tie up with the creation of virtual reality and the computer
game industry.
Computer modeling of dynamic processes has a long association with control

engineering, where there is often an interest in the speed with which the system
settles to a required operating condition. The designers generally make use of
feedback control loops, where they have to allow for the time response of the
plant to control inputs. Computer models were used to study simple servome-
chanisms, and this led to their extensive use in very large and complex feedback
control problems. They have been widely employed in the aerospace industry
for the design of flight control systems. The process control industry has
applied computer modeling to such large-scale studies as optimizing a complete

1

Computer Models of Process Dynamics: From Newton to Energy Fields, First Edition.
Olis Rubin.
© 2023 The Institute of Electrical and Electronics Engineers, Inc.
Published 2023 by John Wiley & Sons, Inc.



chemical process. The growing field of robotics will also make use of dynamic
models.

“The purpose of computing is insight, not numbers.”
R.W. Hamming (1962)

Computer models also find application in many diverse scientific fields, includ-
ing areas that are known as the softer sciences. As we use machinery to perform
manual labor, we can use computers to mechanize difficult repetitive mathemat-
ical processes and thereby free our minds to consider questions of a more intellec-
tual nature.

1.1.1 Mission statement

This book is written for you, the professional worker in the field of computer mod-
eling, who wishes to widen your horizon and needs to consider new approaches,
applications, and advanced techniques. When we use the word “model” we are
thinking of a program that simulates the dynamic behavior of a physical phenom-
enon. Perhaps you have not already entered the field, but wish to apply your train-
ing in appliedmathematics and experience with computers to explore the behavior
of an object that evolves in this way. This book proceeds from basic methods of
programming and sets up mathematical models of fairly common objects that
can be described by reasonably simple equations.
A series of case studies covers a myriad of different topics in order to provide a

vista of the challenges that fall within this discipline. These topics have been fitted
into a framework that progresses from introductory material to subjects of increas-
ing complexity. You will meet scores of examples that have been carefully chosen
to take you step by step along a logical learning curve that leads to greater
enlightenment.
It is shown how the computer has progressed from being a mere tool to convert

mathematical equations into numbers. We can interact with it as with virtual real-
ity where its graphical output makes the equations become alive.
There is another mission to be accomplished. If there is to be synergy between

yourself and the computer, the simulation process has to stand firmly on the fol-
lowing legs:

Techniques of computer modeling,
Mathematical analysis, and
Imagination, Inspiration, and Creative Thinking

2 1 Introduction



1.2 The subject matter

The book provides a long series of case studies that are based on personal experience.
The emphasis is on the simulation of moving objects or the propagation of energy in
a physical medium. Computer models are presented to the reader either as program
listings or as block diagrams. Most of them are programmed on the MATLAB® or
Scilab® platforms:

MATLAB is a registered trademark of The MathWorks, Inc.
Scilab is registered under the GPLv2 license (previously CeCILL) as circulated by

CEA, CNRS, and Inria.
The computer code fragments use statements that are easily understood by Python

and C users.

Chapter 2 gives an introduction to computer programming, using the instruc-
tion sets from MATLAB and Scilab. This firstly shows how to perform various
repetitive operations, and then goes on to consider the use of a digital computer
to simulate differential equations. These techniques will serve as a springboard
for the creation of even the most advanced computer models.
Chapter 3 serves as an object lesson to show how creative thinking is a tool in

the model building process. It explains how scientific theories are actually concep-
tual models that describe physical phenomena and shows how the evolution of
science depended on a series of inspired guesses. It describes the development
of three different mathematical frameworks that are used in later chapters to illus-
trate the creation of various computer models.
Chapter 4 shows how differential equations can be implemented as computer

models, which can then be exploited to produce graphs and numbers. It also shows
how mathematical tools based on calculus can be used to find analytical solutions
that satisfy the equations. It thereby illustrates how problems can be studied by
two independent methods to increase our confidence in the results.
Chapter 5 considers the creation of differential equations that describe the

motion of point masses and their implementation as computermodels. It also shows
how analytical solutions can be used to perform cross-checks, to verify the computed
results.
Chapter 6 then considers the motion of a rigid body and the creation of a flight

simulator in the aircraft industry.
Chapter 7 analyses the flow of heat through a solid body by exploiting mathe-

matical methods that are based on the concept of scalar and vector fields. These are
used to show how the evolution of a temperature field can be described by a partial
differential equation. It is demonstrated how a computer model can be created by

1.2 The subject matter 3



approximating the body as a series of finite elements, where each individual
element can be described by an ordinary differential equation.
Chapter 8 analyses wave propagation of an energy field through a continuous

medium. It again demonstrates how a computer model can be created by approx-
imating the medium as a series of finite elements. Methods are used that are
similar to those described in Chapter 7. The analysis of the physical phenomena
discussed in these two chapters is much more complex than the study of mechan-
ical motion. The case studies use a combination of computer modeling, mathemat-
ical analysis, and physical analogies as a way to gain a better understanding of the
physical processes that are considered.
Chapter 9 widens our horizon by exploring the realm of uncertainty and statis-

tical analysis. The examples that appear in this chapter consider various topics,
which range from imperfect theoretical knowledge to measurement noise, as well
as business models and digital images.
Chapter 10 shows how simulation engineers can work as members of a design

team within an engineering project. At the beginning of the project the computer
model can be used as an electronic prototype that is created more quickly and
cheaply than hardware. It also provides the facility for checking the sensitivity
of the product to variations in parameters within the design tolerances. There must
be a configuration management process to keep track of changes to the model dur-
ing the course of the project. The need for formal procedures is emphasized in
order to create trustworthy models. This includes cross-checks on simulation
results bymeans ofmathematical analysis to see that the computermodel has been
implemented correctly.
When engineers use computer models to assist themwithmaking critical design deci-

sions they must remember that the solutions obtained with the computer are greatly
dependent on the equations that were created to represent the physical hardware.
Approximations in these equations result in approximate solutions. The equations used
in this book may be sufficient for an introduction to the topic, and indeed many have
been used for preliminary investigations of the problems that will be discussed. How-
ever, before readers attempt serious investigations of this type, it is recommended that
they satisfy themselves about the form of the equations that they choose to use.
The moment of truth arrives when the hardware is tested. After this, the com-

puter model can still serve as the means whereby we can quickly and efficiently
predict the behavior of the hardware under different operating conditions.

1.3 Mathematical material

The advance of science led to the creation of new mathematical methods that
describe the new theoretical concepts. Thus, Newton’s laws of motion led to the
creation of vector analysis, while Maxwell’s equations required the concept of a

4 1 Introduction



vector field. Such mathematical analysis forms an integral part of the modeling
process, both in the definition of the models and in checking the results. It was
thus preferable to include selected mathematical material in separate appendices
that can be studied separately or consulted when referred to in the chapters.
Appendix A describes frequency response techniques that are used in engineer-

ing, such as the design of feedback controllers. It shows how MATLAB and Scilab
can determine linear state equations and transfer functions that approximate a
given computer model.
Appendix B describes the use of vectors to create kinetic models of point masses

and rigid bodies.
Appendix C describes the application of vector fields to solve diffusion and

wave equations.
Appendix D discusses the mathematical modeling and analysis of random

events.

1.4 Some remarks

Mathematical modeling began when Galileo and Newton married the sciences of
astronomy and mathematics. Many professions have since used calculus to ana-
lyze systems of every description. As the calculations becamemore complex, scien-
tists began to create computer models. This began with the creation of analog
computers and the development of sophisticated simulation techniques. Some
of the books that were written on the subject are listed below and are still a val-
uable source of information to anyone who wishes to create computer models.
Once the model has beenmathematically defined, it is now possible to use a digital
simulation platform that greatly simplifies its programming on the computer. We
can then experiment with the model and obtain answers with astonishing rapidity.
This creates a risk that we sometimes forget to take some time off to consider
where we are going. The IBM Corporation used to hand out posters that continue
to give good advice “THINK.” The scientists of yesteryear can still serve as a role
model in this regard.
This book aims to show how creative thinking, mathematical analysis, and com-

puter models can be used together to achieve a synergy that may not otherwise be
apparent to the reader. It also takes true wisdom to decide how realistic a model
must be and what is enough to satisfy our needs.

Bibliography

Abbasov, I.B. (2019). Computer Modeling in the Aerospace Industry. New York: Wiley.
Hamming, R.W. (1962). Numerical Methods for Scientists and Engineers. New York:

McGraw-Hill.

Bibliography 5



Karplus, W.J. (1958). Analog Simulation. New York: McGraw Hill.
Korn, G.A. and Korn, T.M. (1956). Electronic Analog Computers. New York:

McGraw Hill.
Paynter, H.M. (1960). A Palimpsest on the Electronic Analog Art, Dedham. MA:

Philbrick Researches.
Raczynski, S. (2014). Modeling and Simulation. New York: Wiley.
Rogers, A.E. and Connoly, T.W. (1960). Analog Computation in Engineering Design.

New York: McGraw Hill.
Rubin, O. (2016). Control Engineering in Development Projects, Dedham. MA:

Artech House.
Shearer J.L., Murphy, A.T. and Richardson, H.H., Introduction to System Dynamics,

Reading, MA: Addison-Wesley, 1967
Soroka, W.W. (1954). Analog Methods in Computation and Simulation. New York:

McGraw Hill.
Tomovic, R. and Karplus, W.J. (1962).High Speed Analog Computers. New York: Wiley.

6 1 Introduction



2

From Computer Hardware to Software

This chapter spends less than 5% of its time on the computer and over 95% of its
time on the software.

“For the machine is not a thinking being, but simply an automaton
which acts according to the laws imposed upon it.”

Ada, Countess of Lovelace, 1843
(Source: In the Public Domain, Rights Holder Augusta Ada King)

We will code computer models in a programming language that bears no resem-
blance to the code that controls the computing circuits.

2.1 Introduction

The mission statement in Chapter 1 described a learning curve that progresses
from basic programming to the most challenging techniques of computer model-
ing. This chapter begins by giving a short introduction to the digital computer. It
will then go on to describe a programming language that will typically be used in
later chapters. It will also show some fundamental techniques whereby this lan-
guage can be used to perform relatively complex tasks. Later chapters will consider
models of continuous motion by means of differential equations; thus we require
methods whereby a digital computer, which is a discrete device, can emulate con-
tinuous behavior. Section 2.7 presents techniques whereby this can be achieved.

2.2 Computing machines

Our word “calculate” comes from the Roman calculus (a pebble). A primitive aba-
cus used pebbles that were laid in furrows of sand. Over many centuries machines
were developed to speed up such calculations. Leonardo da Vinci (1452–1519) left

7

Computer Models of Process Dynamics: From Newton to Energy Fields, First Edition.
Olis Rubin.
© 2023 The Institute of Electrical and Electronics Engineers, Inc.
Published 2023 by John Wiley & Sons, Inc.



sketches of the mechanisms that are used in a mechanical adding machine. Pascal
(1623–1662) invented a calculator that was used by his tax-collector father. Then
Babage (1791–1871) attempted to create a machine that had the capability of the
modern computer (Swade, 1991).

OneeveningIwassitting intheroomsoftheAnalyticalSocietyatCambridge…,
with a table of logarithms lying open beforeme. Anothermember…called out.
‘Well,Babage,whatareyoudreamingabout?’ towhichI replied, ‘Iamthinking
that all these tables might be calculated by machinery.”

Charles Babage

Babage’s first machine, the “Difference Engine,” had an ability to repeat calcula-
tions that had never been achieved before. He abandoned this to embark on a much
more ambitious project, the “Analytical Engine.” This machine embodied many of
the features of modern electronic computers. It was programmable using punched
cards, so complex actions could be achieved by means of a group of more elementary
instructions. It had a “store”where numbers and intermediate results were held and
a separate “mill”where the arithmetic processingwas performed. Themachine could
implement computing loops and was capable of performing conditional branching:

A form of IF…THEN… ELSE

Themachine would have been the size of a small locomotive – 15 feet high, 6 feet
across, and, in one version, 20 feet long. Had it been built, “calculating by steam”
would have been a prophetic wish come true.
In 1944 Aiken built an electromechanical version of Babage’s Analytical

Engine (Trask, 1971). Bernstein (1963) describes the operation of this machine:
“One could go in and listen to the gentle clicking of its relays, which sounded
like a room full of ladies knitting.” This was followed in 1945 by the ENIAC, an
electronic digital computer that contained 18 000 thermionic valves that
consumed 150 kW of electricity (Trask, 1971). The invention of transistors
and integrated circuits then allowed the creation of low-cost, high-performance
microprocessors.

2.2.1 The software interface

Digital computers are able to perform complex operations by executing many sim-
ple actions in discrete steps. The first computers were programmed by writing each
step separately in binary code. Such a set of instructions, known as a program, can
then be loaded into the computer memory bank. The computer then performs the
particular operation by reading the instructions frommemory and executing them
step-by-step. Special programs were then developed and installed in the computer
that allow us to write our instructions in a simpler language. Such an installed

8 2 From Computer Hardware to Software



program then translates our statements into binary instructions that are executed
by the computer. Today there can be several layers of software that act as an inter-
face between the user and the actual computer hardware.
With the advent of personal computers (PCs) in the 1980s the stage was set for

the development of the digital simulation platforms of today. The first PCs were
slow and had little memory, but John Little anticipated that they would eventually
be capable of effective technical computing and initiated the development of the
product that is known as MATLAB® (Moler, 2006). This can execute program files
to perform many scientific and engineering tasks. Numerical results can then be
displayed or plotted in high-resolution graphics.

2.3 Computer programming

Scientific computations can be done through underlying software that allows us to
write our instructions in a language that resembles the equations that are familiar
to mathematicians. A typical instruction to perform an arithmetic calculation
takes the form of a statement that has the following format:

variable = expression;

Mathematicians write equations in this way to define variables as algebraic func-
tions of other variables. The above instruction will cause the computer to perform
a calculation that is defined by the expression on the right-hand side of the equal
(=) sign, and save the result as the variable that is defined on the left-hand side.
This is saved as a binary number in its memory. It is necessary to identify the loca-
tion (address) of this variable in the memory bank, so that it can be retrieved for
later use. The underlying software platform that supports the scientific language
provides a user interface where numbers are displayed as decimals, while the
address of the variable is displayed as a name that is written in alphanumeric
characters.
Several scientific languages have been developed, each of which has a slightly

different algebraic syntax.
The program listings given in this book are extracted from programs that were

created and run on either the Scilab or the MATLAB software platform. Programs
that are saved in a file with the extension .sce can be run by Scilab, while files with
the extension .m can be run byMATLAB. The individual instructions in these pro-
grams can also be typed and run in the command windows of the respective plat-
forms. The next sections (2.3.1–2.3.6) give a short introduction to the basic syntax
that is used. Readers who write programs using these platforms can consult their
built-in Help facilities for further information. User Guides are also available,
which give more basic training.

2.3 Computer programming 9



2.3.1 Algebraic expressions

MATLAB and Scilab perform arithmetical calculations on numerical objects. The
instruction to perform a particular calculation is created by typing a statement of
the form that was shown in the previous section. For example, we could define the
radius of a circle by the following statement:

r = 1.2;

This would instruct the computer to save the numerical value of the radius in its
memory bank. If we now type the letter r in the command window we would see
the following:

r =

1.2

This quantity is now available for further use. If we are using Scilab we could
calculate the area within this circle by the following statement:

A = %pi * (r^2);

Scilab has a predefined variable %pi that is equal to the ratio of a circle’s circum-
ference to its diameter, while MATLAB uses the symbol pi to identify this num-
ber. The brackets define the order of execution. The above statement will thus
cause the square of the radius to be calculated before it is multiplied by %pi.
Now suppose that we have defined the length of a cylinder by the symbol L. We

could then calculate its volume by the following statement:

V = (%pi*(r^2)) * L;

Other arithmetic operations are similarly coded. Their default order of execution
is as follows:

^ exponentiation

+ addition

- subtraction

* multiplication

/ division

Scilab andMATLABallowus to create variables “on the fly” as they are definedby
statements within a program. Their numerical values can then be changed by subse-
quent statements. If a statement refers to a calculation that involves a variable y that
has not been previously created, the programwill end and display an error message:

Undefined variable: y

10 2 From Computer Hardware to Software



MATLAB and Scilab are designed to perform arithmetical calculations on
numerical vectors and matrices, where scalars are regarded to be 1-by-1 matrices.
Suppose that we have created the following scalars:

a11 = 1;

a12 = 2;

a21 = 3;

a22 = 4;

We could then create the following row vectors:

R1 = [a11, a12];

R2 = [a21, a22];

If we now type the name R1 in the command window we would see the
following:

R1 =

1. 2.

These row vectors can then be combined to form a matrix:

M = [R1; R2];

If we now type the name M in the command window, we would see the
following:

M =

1. 2.

3. 4.

We can also address the individual elements in a matrix, in order to use their
values in further calculations. For example, if we type the M(1,2) in the com-
mand window we would see the following:

ans =

2.

Similarly, if we type the M(2,1) in the command window we would see the
following:

ans =

3.

Alternatively, we could have created the following column vectors:

C1 = [a11; a21];

C2 = [a12; a22];

2.3 Computer programming 11



Ifwenow type the nameC1 in the commandwindowwewould see the following:

C1 =

1.

3.

These column vectors can then be combined to form the same matrix:

M = [C1, C2];

We can also address the row and column vectors in a matrix. For example, if we
type M(2,:) in the command window we would see the following:

ans =

3. 4.

while if we type M(:,2) in the command window we would see the following:

ans =

2.

4.

Amatrix N can be added to or subtracted from a second matrix (M) provided that
they have the same dimensions. Consider the following statement:

A = M + N;

The individual elements of the matrices are added together, so that A(i,j) =
M(i,j) + N(i,j).
Two matrices M and N can be multiplied using the following statement, provided

that the number of columns of M equals the number of rows of N:

A = M * N;

For example, if M is a row vector [m1, m2] and N is a column vector [n1; n2], the
above statement produces the scalar product:

A = m1 n1 + m2 n2

If M is a square matrix the expression M^2 is equivalent to M*M while M^3 is
equivalent to M*M*M.

Similarly, M^0.5*M^0.5 is equal to M and M^1.5 is equal to M*M^0.5.
Twomatrices can bemultiplied element-by-element provided that they have the

same dimensions. The following statement gives such a matrix that has the same
dimensions as M and N:

A = M .* N;

12 2 From Computer Hardware to Software



The expression M./N gives element-by-element division, while the expression
M.^2 is equivalent to M.*M.
The Help facilities and User Guides give better information on such operations;

for example, how to divide one matrix by another.

2.3.2 Math functions

MATLAB and Scilab have built-in functions, such as:

sqrt square root

sin sine

cos cosine

tan tangent

asin arcsine

atan arctangent

atan2 four quadrant arctangent

exp exponential to base e

log natural logarithm

log10 log to base 10

factorial(4) = 1*2*3*4

M’ matrix transpose (row vector to column vector and vice
versa)

If M is a matrix, the expression sqrt(M)will apply the square root operation
element-by-element. Other functions operate in the same way. We can also nest
functions, as shown by the following example:

s = sqrt(exp(A))

This brings us to complex numbers. If we type the expression sqrt(-1) in the
Scilab command window we would see the following symbol for the unitary imag-
inary number:

ans =

i

Scilab has predefined this quantity, so the statement c = 3 + (4.5*%i) creates
a complex variable.
If we then type the symbol c in the command window, we would see the

following:

c =

3. + 4.5i

2.3 Computer programming 13



We can similarly create a complex matrix such as M + (N*%i).
Unlike sqrt(M), the expression M^0.5 can operate on a real matrix to give a

complex matrix.
The Help facilities and User Guides give better information on available

functions.

2.3.3 Computation loops

We are now coming to those features that distinguish a computer from a
calculator.
Consider the calculation of the following polynomial to produce a variable y as a

function of a given variable (x):

y = a0 + a(1)*x + a(2)*x^2 + ... + a(99)*x^99

where the coefficients are defined as the elements of a vector:

[a(1), a(2), ... ,a(99)]

We can use a calculator as follows, to calculate the individual terms and add
them successively to a running total:

y = a0

y = y + a(1)*x

y = y + a(2)*x^2

///////////

y = y + a(99)*x^99

On a computer, we can avoid the laborious process of separately programming
each individual step by creating a computing loop. MATLAB and Scilab have state-
ments that allow us to do this as follows:

y = a0;

K = 99;

for k = 1:K

y = y + a(k)*x^k;

end;

All the operations that appear between the for statement and the end key-
word will be executed 99 times. In this example there is a single operation, which
calculates a term a(k)*x^k and adds it to the running total (y). The computing
loop goes around from for to end and back to for. The for loop uses a coun-
ter, the variable k, to keep track of the number of times that the operation has
been iterated. This is a true variable that can be used within the calculations. In
this example it has been used to address the elements a(k) of the vector, and
also to determine the power to which the variable x must be raised. The

14 2 From Computer Hardware to Software


