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Preface

A subtle change that leads to disastrous consequences—hardware Trojans undoubt-
edly pose one of the greatest security threats to the modern age. How to protect
hardware against these malicious modifications? One potential solution hides within
logic locking, a prominent hardware obfuscation technique. In this book, we take
a step-by-step approach to understanding logic locking, from its fundamental
mechanics, over the implementation in software, down to an in-depth analysis of
security properties in the age of machine learning. This book can be used as a
reference for beginners and experts alike who wish to dive into the world of logic
locking, thereby having a holistic view of the entire infrastructure required to design,
evaluate, and deploy modern locking policies.

Aachen, Germany Dominik Sisejkovic
Aachen, Germany Rainer Leupers
August 2022
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Part I
Hardware Security and Trust: Threats and
Solutions



Chapter 1 )
Introduction Check for

Computer security has become a driving force in the design of modern electronics
systems. Over many years, security primitives, specifically in software, have been
extensively researched. Hardware (HW) security, in comparison, is a relatively
young field, since HW has been traditionally considered immune to attacks, rep-
resenting a root of trust for any electronic system. However, over the last three
decades, an increasing number of vulnerabilities have been identified with the
root cause in the hardware itself [29]. Attacks that exploit these vulnerabilities
can be broadly separated into two categories. The first category encompasses all
attack vectors that are enabled due to an overlooked construction fault in the HW
implementation, opening the door for a range of attack vectors, predominantly in
the form of side-channel attacks and exploits of other unintended HW side effects.
Notable examples in the last years include transient execution attacks, such as
Meltdown [106] and Spectre [93], as well as security exploits in dynamic random-
access memories, such as RowHammer [92, 118]. The second category includes
more recent attack types that are enabled by intentional, malicious changes in the
HW, commonly known as Hardware Trojans (HTs) [30]. The challenges introduced
by these modifications have a deep impact on the research and development
landscape of hardware security, particularly as they can serve as key enablers of
a theoretically unlimited attack surface; including information leakage, reliability
degradation, and denial of service, among others.

The introduction of HTs yields an interesting question: what is their root cause?
Nowadays, a highly competitive environment, short time-to-market, and the ever-
increasing need for reduced design and production costs have transformed the
Integrated Circuit (IC) supply chain into a global effort, driven by third-party
Intellectual Property (IP), subcontracting external design houses, and outsourcing
the fabrication to off-site foundries. This deep reliance on external parties has led
to a far-reaching consequence—the loss of trust and assurance. Hence, legitimate
IP owners are faced with the possibility of injected HTs, leading to untrustworthy
HW components. And this challenge is, by all means, a serious one. A wide range

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 3
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of engineers are involved in the design and production of HW, thereby having full
access to a design and often operating across multiple organizations, countries, and
even continents. It only takes a single rogue entity, implanting a tiny, stealthy, and
carefully placed modification, to lay the foundation for a catastrophic attack. This
covert nature of HTs makes it difficult to catch them in the wild, in particular, due to
the inherent complexity of modern circuits and shrinking feature sizes. Thus, only
a handful of alleged HTs have been reported. For example, more than a decade ago,
a Syrian radar system failed to warn of an incoming airstrike, reportedly because of
HTs embedded in the defense systems [2, 114]. Even though it is difficult to verify
the inclusion of HTs in such incidences, the very potential of this tiny, malicious
design modification has become a focal point within research and industry. The US
military and intelligence executives have placed hardware Trojans among the most
severe threats the nation might face in the event of war [111]. Moreover, the US
Defense Advanced Research Project Agency (DARPA) has issued multiple funding
programs to address the issue of trustworthy electronics, including the TRUST [48],
IRIS [46], and SHIELD [47] program, among others. The seriousness of this
issue has also been recognized within Germany. The German Federal Ministry of
Education and Research (BMBF) has issued a framework program for 2021-2024 to
tackle the challenges of trustworthy and sustainable microelectronics for Germany
and Europe [32] with a range of projects already underway [33].

The efforts in mitigating HTs evolve around two focal points: detection and
prevention. Trojan detection aims at detecting and removing potential HTs, possibly
before these are placed in silicon. However, detection approaches are still far from
a complete solution due to multiple reasons. First, HTs can be injected on many
different levels of the HW design abstraction and in various stages of the IC supply
chain. This makes it challenging to derive an effective detection mechanism. Sec-
ond, even if comprehensive (and often destructive) reverse engineering procedures
are deployed to verify the absence of Trojans in chips after production, this does
not guarantee that all produced ICs are HT-free. Therefore, more focus has been
given to preventing HT insertion by design. In particular, logic locking has evolved
as a premier technique to protect against HT insertion by means of key-controlled
functional and structural design changes that aim at protecting the asset—the HW
design—throughout the IC supply chain [218]. Hereby, the defensive mechanism
is built on the assumption that an attacker is required to perform extensive reverse
engineering to insert and construct an intelligible, design-specific hardware Trojan.
Hence, the locking-induced changes increase the complexity of the attack by
binding the correct behavioral and structural HW characteristics to a secret key.
Nevertheless, the evolutionary timeline of logic locking has been riddled with a
wide range of attack vectors and unclear security objectives. This has led to logic
locking largely remaining a theoretical concept without any tangible outcome.

To address this issue, in this book, we aim at closing the practicality gap in
logic locking by devising a set of models, software tools, attacks, and schemes that
enable the evaluation and application of logic locking to complex, silicon-proven
HW designs within a concise and realistic attack scenario [164].
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1.1 Outline

This book is organized into four parts covering eleven chapters. The structure is
meant to guide the reader from basic concepts on hardware security to software
implementation details for silicon-ready logic locking. By the end of the book,
readers should be able to understand how logic locking operates and how it can be
challenged, how to implement the right tools to deploy locking schemes, and finally,
how to evaluate the security of logic locking with emerging machine learning-based
approaches. The book is structured as follows.

Background First, preliminaries on electronics supply chain threats and solutions
are presented in Chap. 2.

Hardware Trojans Chapter 3 introduces the anatomy of Hardware Trojans along-
side existing classification systems. Moreover, a consolidated classification is
introduced that considers the impact of defensive approaches. Finally, the chapter
compares the effectiveness of existing Trojan-insertion countermeasures w.r.t the
constructed classification.

Working Principles and Attack Scenarios The mechanics of logic locking, its
impact on reverse engineering as well as common attack scenarios are discussed in
Chap. 4.

Attacks and Schemes An overview and classification of deobfuscation attacks and
logic locking schemes is presented in Chap. 5.

Security Metrics Chapter 6 introduces the design of one of the first generalized
hardware security metrics with respect to logic locking. Furthermore, based on the
introduced concepts, the security—cost trade-off problem is analyzed through a case
study that evaluates the impact of a higher cost budget on the security properties of
logic locking.

Software Framework The design and implementation of a software-based logic
locking framework for the protection of complex multi-module HW designs is
discussed in Chap. 7. The framework is designed in the form of an end-to-end
locking procedure, featuring a technology-independent design representation and
an extensible code base for rapid scheme prototyping. Furthermore, the constructed
framework ensures the deployment of logic locking within an industry-ready setting
without impacting the traditional design, verification, and fabrication steps.

Processor Integrity Protection The implementation of framework extensions in
the form of two protection schemes, Inter-Lock and Control-Lock, is presented
in Chap. 8. Inter-Lock embodies a cross-module, logic locking meta-scheme that
scales any locking policy across multiple HW modules, thereby creating addi-
tional functional and structural dependencies between the selected components.
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This cross-module policy is the first to widen the security implications of logic
locking to complex hardware designs. Control-Lock implements an inter-module
encryption mechanism that aims at protecting critical HW control signals against
the exploitation by software-controlled hardware Trojans. The impact of both
procedures is evaluated on silicon-proven RISC-V processor cores. Finally, the
presented research developments are successfully transferred to industry, resulting
in the first comprehensively logic-locked and commercially available processor—
the “Made in Germany RISC-V” (MiG-V) core [195]. Hereby, a major milestone is
achieved in the domain of logic locking.

Security Evaluation with Machine Learning The introduction of fundamental
concepts in attacks and defenses in logic locking with respect to Machine Learning
(ML) [170] is presented in Chap. 9. First, SnapShot is presented; an attack that
utilizes artificial neural networks to directly predict correct key bits from a locked
netlist. Furthermore, a neuroevolutionary procedure is developed to automatically
assemble suitable neural architectures for the selected prediction problem. Fur-
thermore, the generalized set and self-referencing attack scenario are discussed as
standard attack vectors in a machine learning-based setting.

Designing Deceptive Logic Locking Based on the lessons learned from Chap. 9,
the first theoretical test for uncovering structural leakage points is introduced
in Chap. 10. The test embodies a procedure that can lead to the identification
of fundamental security vulnerabilities that are exploitable by ML-driven attacks.
The analysis results are used as a basis to construct a multiplexer-based locking
policy that targets learning resilience. Through further evaluation steps, an analysis
of challenges in ML-resilient locking is performed. Furthermore, a novel attack
is presented, uncovering a major fallacy in existing multiplexer-based schemes.
The introduced concepts, policies, and attacks offer the potential to establish the
cornerstones for the design of next-generation logic locking in the era of machine
learning.

Next Steps New research directions and open challenges are discussed in Chap. 11.
Finally, Chap. 12 concludes the book.
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Chapter 2
Background

To better understand the contents of this book, this chapter introduces the following
preliminaries. An overview of the major security vulnerabilities in the electronic
supply chain is presented in Sect. 2.1. Prominent Design for Trust (DfTr) solutions
are detailed in Sect. 2.2. Finally, Sect. 2.3 concludes the chapter.

2.1 Electronics Supply Chain Threats

The complexity and distributed nature of the modern electronics supply chain
have led to a lack of trust and assurance thereof. Consequently, a range of attack
vectors has been introduced to steal, illegitimately sell, or compromise the integrity
of Integrated circuits (ICs). The following subsections present the background on
selected trust issues. More details can be found in [29].

2.1.1 Reverse Engineering

In the context of hardware, Reverse Engineering (RE) is defined as the process
of extracting a set of specifications for a hardware design by someone other than
the original design owner [136]. Hereby, RE can be deployed at different circuit
abstraction levels [125]. The legitimacy of RE depends on what its result is used
for. Thus, the product of RE can be utilized for either verification purposes or illegal
actions, such as hardware Trojan insertion or Intellectual Property (IP) theft.

The process of reverse engineering hardware designs includes a set of manual
and semi-automated steps [20, 63, 176, 187, 198]. Starting from a fabricated IC,
the RE flow can be divided into netlist extraction and functionality identification.
The former extracts a netlist representation of the physical chip through multiple
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successive steps, including the sample preparation (package removal and delayer-
ing), image acquisition, layout extraction, and netlist generation. The latter concerns
the acquisition of a high-level description of the intended functionally of the
design [22].

Due to its complexity, the process of reverse engineering has no clear guidelines.
Only recently, first attempts to analyze the required cognitive and technical skills
to perform RE have been analyzed [25]. Nevertheless, it still remains a challenge to
fully automate the process as well as quantify the complexity of RE for a specific
design.

2.1.2 Hardware Trojans

Hardware Trojans (HTs) are defined as malicious and intentional circuit modifi-
cations that can result in undesired circuit behavior after deployment [30, 201].
The malicious behavior can be manifested in the form of information leakage,
performance degradation, increased power dissipation, Denial of Service (DoS)
attacks, and others.

The anatomy of hardware Trojans consists of a trigger and a payload [28, 39].
The trigger activates the Trojan based on a specific activation event, such as the
occurrence of specific data values or circuit states, external signals, number of
cycles, and others. The malicious behavior of the Trojan is manifested in the form
of the payload. The malicious circuitry can be inserted into the hardware at different
design levels, depending on which entities in the supply chain are considered trust-
worthy. Thus, in principle, HTs can be introduced into a design during specification,
design, fabrication, testing, or assembly and packaging, thereby being initiated
by untrusted personnel or Electronic Design Automation (EDA) tools. This broad
attack landscape has led to the introduction of many hardware Trojan taxonomies
and example implementations [51, 90, 143, 148, 186, 208]. Furthermore, a recent
study even demonstrated how hardware Trojans can effortlessly and automatically
be implanted in finalized layouts [120].

The diverse design possibilities, insertion locations, and stealthy implementation
nature make HT detection a challenging task. Moreover, similar to regular faults, the
later Trojans are detected in the design and production flow, the costlier and more
difficult it becomes for the IP owner to act. This problem is further exacerbated by
the fact that HTs are often assumed to be deployed by untrusted, external foundries—
beyond the control of the legitimate IP owner.

Another important aspect lies within the resources required to design, imple-
ment, and inject hardware Trojans [72, 154]. In general, design-independent HTs
can be implemented and inserted with very little knowledge about the design’s
functionality or structure. These Trojans, however, are likely to be detected, exhibit
uncontrollable trigger mechanisms, and result in random payloads, thus mimicking
a random fault. In contrast, design-dependent Trojans can be constructed to allow
for a controllable activation, stealthy implementation, and dedicated payload,
thus leading to high-impact attack scenarios. Consequently, design-dependent HTs



