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Supervisor’s Foreword

In recent years, it has been shown that the magic numbers in nuclei, corresponding to
closed shells of neutrons or protons in the nuclear shell model, evolvewith proton and
neutron number. They are not as immutable as presented in undergraduate textbooks;
some shell closures disappear,whilst others appear in nuclei away from the valley ofβ
stability. To understand the mechanisms that drive this evolution of nuclear structure,
physicists must study the structure of exotic nuclei, in particular, the characteristics
of the individual nucleons within them, what is known as single-particle structure.
Typically, this information is accessed by measuring direct nuclear reactions using
accelerated beams of ions.

Direct reactions allow access to many nuclear properties. They are reactions that
proceed via a single step, exciting just one degree of freedom in the residual nucleus.
They can probe single-particle properties via the transfer of a single nucleon from
a light ion to or from a nucleus of interest. Pairing properties can be investigated
by transfer of a correlated pair and collective properties via inelastic scattering.
To measure these reactions on short-lived nuclei, it is necessary to use “inverse
kinematics” where the beam particle is the radioactive nucleus and the light ion is
the target.

Radioactive ion beam facilities, such as ISOLDE at CERN, allow nuclear physi-
cists access to exotic nuclei away from stability. Coupled to these facilities, the latest
particle-detection techniques are required to study the structure of these nuclei via
direct reactions in inverse kinematics. Solenoidal spectrometers are a novel device
that offer the best charged-particle resolution compared to other techniques.

Patrick’s thesis describes the first measurement made using a new solenoidal
device, the ISOLDESolenoidal Spectrometer at the ISOLDE facility. Thesemeasure-
ments of the d(28Mg,p)29Mg reaction probe the evolution of nuclear structure along
nuclei with N = 17 investigating the emergence of a new shell closure at N = 16,
testing the modern effective shell model interactions, as well as illuminating the role
that the finite geometry of the nuclear potential plays in observed systematics of
single-particle energies. These data are important in constraining models in a rapidly
evolving region of the nuclear chart. As well as the emergence of a new shell closure
at 24O in lighter N = 16 nuclei, the heavier magnesium isotopes sit in a region of
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x Supervisor’s Foreword

changing nuclear shape called the island of inversion, where the weakening of the N
= 20 shell gap results in the onset of deformation in the nucleus. These phenomena
are of topical interest in the field, and Patrick’s findingswill provide a key benchmark.

Patrick’s thesis also provides a canonical reference for nuclear physicists on the
use of solenoid spectrometers to study direct nuclear reactions in inverse kinematics
and will provide a useful guide for years to come. He has covered in detail the
kinematics of reactions in a solenoid field and the transformations required to extract
the Q-value of the populated states in the reaction from the measured quantities.

May 2022 Dr. David Sharp
STFC Ernest Rutherford Fellow
The University of Manchester

Manchester, UK

The original version of this book inadvertently contained incorrect typesetting within Equations
A.2, A.3, A.5, and A.9. This has now been rectified.



Abstract

The nuclear structure of 29Mg was probed using the d(28Mg,p)29Mg transfer reac-
tion to populate its single-particle states. The ISOLDE facility at CERN provided
a 9.473 MeV/u beam of 28Mg which was directed at a deuterated target within the
ISOLDE solenoidal spectrometer. Exploiting the kinematic advantages of this tech-
nique allowed most states up to 5 MeV to be resolved and angular distributions of
the reaction cross section to be obtained. The DWBA code DWUCK5 was used to
obtain spectroscopic factors for these states. Additionally, some higher-lying excited
states were identified, and their possible properties were proposed.

Theoretical calculations in this region broadly reproduced the observed behaviour
in 29Mg, as well as matching trends from other nuclides in the N = 17 isotones.
These calculations indicate that the nucleon–nucleon interaction between protons
and neutrons, with the tensor interaction as a key component, is driving the evolution
of shell structure, with the filling of the πd5/2 orbital of particular importance in this
region. Finite geometry effects also play an important role in this evolution as the p
orbitals approach the neutron-separation threshold and the energy spacing between
them reduces.

The information gained from the nuclear structure will help to continue refining
these interactions and provide a valuable benchmark for nuclear-structure studies
around the border of the island of inversion. Similar experiments to study 30Al and
31Mg carried out recently will help to further the understanding of nuclear structure
in this exotic region of the nuclear chart.
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